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Abstract

Quality of Service (QoS) provisioning in Wireless Mesh Networks (WMNs) is
an open issue to support emerging multimedia services. In this paper, we study
the problem of QoS provisioning in terms of end-to-end bandwidth allocation
in WMNs. It is challenging due to interferences in the networks. We consider
widely used interference models and show that except a few special cases, the
problem of finding a feasible path is NP-Complete under the models. We pro-
pose a k-shortest path based algorithmic framework to solve this problem. We
also consider the problem of optimizing network performance by on-line dy-
namic routing, and adapt commonly used conventional QoS routing metrics to
be used in WMNs. We find the optimal solutions for these problems through
formulating them as optimization models. A model is developed to check the
existence of a feasible path and another to find the optimal path for a demand;
moreover, an on-line optimal QoS routing algorithm is developed. Comparing
the algorithms implemented by the proposed framework with the optimization
models shows that our solution can find existing feasible paths with high prob-
ability, efficiently optimizes path lengths, and has a comparable performance to
the optimal QoS routing algorithm. Furthermore, our results show that contrary
to wireline networks, minimizing resource consumption should be preferred over
load distribution even in lightly loaded WMNs.

Keywords: Wireless Mesh Networks, Bandwidth Constrained Routing,
NP-Complete, Routing Metric, Integer Linear Programming

1. Introduction

Wireless mesh networking is a promising technology for future multi-hop
wireless access networks. The most distinguishing feature of WMNs is the
static multi-hop wireless backbone of the networks compared to other wire-
less networks. WMNs can act as the last-mile in Internet service provider net-
works, where multimedia services are an integral ingredient of the networks.
Multimedia services need end-to-end QoS support. It is often defined in terms
of bandwidth, delay, and delay jitter. However, it is argued that bandwidth
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allocation is the main QoS requirement since it controls delay and jitter as
well [1]. The problem of end-to-end bandwidth allocation is, in fact, twofold.
First, to accept a given traffic demand with a bandwidth requirement, the band-
width constrained routing algorithm should find a path with sufficient end-to-end
bandwidth, which is called feasible path. Second, network resources should be
utilized efficiently to avoid congestions and effective load distribution through-
out the network to maximize network performance.

Bandwidth constrained routing is a long standing problem in the networking
literature. It has been extensively studied in both wireline and wireless networks
[1–18]. Previous studies in wireline networks mostly focused on the efficient
network utilization aspect because feasible paths in these networks are simply
found using the network pruning technique [2–6]. These solutions cannot be
directly applied for WMNs since they do not consider interference, which is
a fundamental issue in multi-hop wireless networks. In wireline networks, a
flow routed through a path consumes only the bandwidth of the links in the
path. However, in WMNs, each flow consumes bandwidth of all the links in the
interference range of the path. The exact bandwidth consumption by a flow
is determined by the interference pattern that specifies the links interfere with
each other.

The studies on the bandwidth constrained routing problem in wireless net-
works mainly have considered the problem of finding feasible paths. Most the
proposed solutions are variations of flooding-based algorithms [1, 7–16]. These
solutions are not efficient in WMNs because the significant overhead of the
flooding-based algorithms is tolerable only in highly dynamic networks, which
is not the case in WMNs. Recently, a few link-state like (and centralized) al-
gorithms have been proposed [17–19]. The major shortcoming of the existing
studies is that they do not consider the complexity of bandwidth consumption
and its relation to the interference pattern, and usually use (over)simplified
interference models.

The algorithmic aspects of the bandwidth constrained routing problem, e.g.,
complexity of finding a feasible path and the effect of the system models on the
complexity, in general WMNs have not yet been studied in the literature. Most
of the previous work has not considered these complexities and only proposed ad-
hoc heuristic solutions rather than a systematic approach to solve the problem.
Moreover, none of the previous studies have provided evaluations of the ability
of their proposed solutions to deal with the complexities.

In this paper, we study the algorithmic aspects of the QoS routing problem,
where the QoS requirement is described in terms of end-to-end bandwidth. We
consider general multi-rate contention-based WMNs, which can be either single-
channel or multi-channel. It is assumed that the pattern of interferences is
static, specified by an interference model, and is given. Another assumption is
that the network is deployed in a rural area, in which the behavior of the links
is stable and predictable as shown in [20]. We consider the WMN as a part
of an Internet service provider network. Hence, the network is managed, and
routing and resource allocation algorithms are parts of the centralized network
management tool. It is supposed that a fairly accurate and complete view of
the network is available to the algorithms. Traffic demands arrive in an on-line
fashion; so, no prior knowledge of future demands is available. When a new
demand arrives, there are some existing flows in the network; the objective is to
find a feasible path for the demand. It is a path that bandwidth consumption
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by the demand through it does not violate the guaranteed bandwidth of the
existing flows. Moreover, we need to distribute the load in the network through
optimizing the feasible paths to boost network performance. Our contributions
to the problem are as follows.

• We analyze the complexity of the bandwidth constrained routing problem
under widely used interference models. We identify special situations in
which the problem of finding a feasible path is polynomially solvable, and
prove its intractability in general cases.

• Based on systematic investigations of the complexity analysis results,
we propose the Adjustable Constrained Routing Algorithmic Framework
(ACRAF). It is composed of the k-shortest path algorithm, a selector
function, and hop-by-hop call admission control.

• We consider different routing metrics traditionally used for QoS routing,
and adapt them for the bandwidth constrained routing in WMNs. It
yields six routing algorithms, which are implemented through setting the
parameters of ACRAF.

• We develop optimization models to check the existence of a feasible path
for a given demand and find the minimum length feasible path for it.
Furthermore, we develop an on-line optimal QoS routing algorithm. These
are used as benchmarks to evaluate the performance of ACRAF.

The rest of the paper is organized as follows. We present an overview of the
related work and the differences between our work and the previous studies in
Section 2. In Section 3, after describing the needed models, we formulate the
problem. In Section 4, we analyze the complexity of the bandwidth constrained
routing under various interference models. The proposed solution is discussed in
detail in Section 5. We develop the optimization models in Section 6. Simulation
results are presented in Section 7; and finally, Section 8 concludes this paper.

2. Related work

The bandwidth constrained routing problem has been the subject of many
studies from the early days of network development. This problem has been
studied in wireline networks in the context of load balancing and traffic engi-
neering, especially in the MPLS networks [2–6]. These solutions are based on
forming a feasible residual network by pruning all links that do not have suffi-
cient resources. In the pruned network, every path is feasible. In WMNs, the
feasible residual network cannot be constructed by link-level pruning due to the
complexity of bandwidth consumption arises from interference in the networks.
In fact, we show that the problem of finding a feasible path is NP-Complete,
generally.

A number of studies have been carried out on the bandwidth constrained
routing problem in multi-hop wireless networks [21, 22]. Some of them, e.g., [1,
7–13], have been specifically dedicated for mobile ad-hoc networks (MANETs).
These works focused on the dynamic nature of MANETs, and proposed flooding-
based routing algorithms [7–9]; some works attempted to reduce the overhead of
the flooding-based algorithm, e.g., [8, 13]. The main objective in these studies is
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to deal with node mobility. However, due to the static infrastructure of WMNs,
this is not the main challenge in WMNs.

In recent years, a few algorithms and protocols have been proposed for QoS
routing in single-channel [14–18, 23], and multi-channel multi-radio WMNs [19,
24, 25]. In [14–16], the authors proposed flooding-based algorithms to find a
feasible path but they did not consider load distribution throughout the network
and the complexity of finding a feasible path. The authors in [23] proposed a
flooding-based algorithm to find a path that satisfies multiple QoS constraints.
The most closely related studies to this paper are [17–19, 26, 27]. The authors
in [17] proposed the IQRouting algorithm, which is a combination of multiple
routing algorithms. IQRouting applies the algorithms one-by-one, and if it finds
multiple feasible paths, it selects the widest or the least-cost path. Jia et al.
dealt with the shortest widest path problem using the k-shortest path algorithm
in [18]. The interference model used in [17, 18] is only suitable for single-channel
networks; furthermore, these solutions may not find a feasible path, even if it
does exist. In [19], a hop-count bounded heuristic algorithm was proposed to
find a feasible path with maximum bottleneck capacity, which approximates
the widest path. The authors in [26] studied the maximum bandwidth routing
problem and proposed a heuristic algorithm and an optimization model. A
technique was proposed in [28] to approximate the bandwidth of a given path.
The authors in [27] considered the 1-hop interference model [29] and enhanced
this technique to approximate the path bandwidth in a distributed manner.
Using the distributed approach, the authors proposed a hop-by-hop QoS routing
algorithm. However, these studies did not provide analyses of the complexity of
the problem.

In terms of complexity analysis, NP-Completeness of the shortest widest
path problem was proved in [18]. The authors in [19] conjectured that there is
no polynomial time algorithm for the bandwidth constrained routing in multi-
channel multi-radio WMNs. In [30, 31], the authors analyzed the complexity
of the bandwidth constrained routing in single-channel multi-hop wireless net-
works and proved NP-Completeness of this problem. In this paper, we analyze
the complexity under different interference models; moreover, we evaluate the
performance of our proposed pseudo-polynomial algorithm to deal with the in-
tractability of the problem.

Besides these QoS routing algorithms, a number of previous works proposed
routing metrics for on-line load balancing in wireless networks [32–36]. They
were designed to capture packet loss ratio and interference. These metrics were
used for best-effort traffic routing. Such routing metrics are unlikely to be
applicable in QoS routing in rural WMNs. They try to distinguish between
links that have intermediate loss rates, and since this is not the case in rural
WMNs, it will lead to an erratic behavior of the routing layer [20]. In [37],
an off-line mechanism was proposed to achieve optimal load balancing whilst
satisfying user requirements. Clearly, this mechanism cannot be used for on-line
bandwidth constrained routing, which is our concern in this paper, because it
needs prior knowledge of the traffic matrix.

3. System model and problem statement

In this section, we first describe the assumptions and models used throughout
the paper; then, we formulate the problem we study here. The notations used
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Table 1: Notations
Notation Description

u and v Node
V Set of nodes, and |V | = n

(u, v) Link
E Set of links, and |E| = m

d(u, v) The Euclidean distance between nodes u and v

I(u,v) Interference set of link (u, v)

I Set of interference sets I = {I(u,v) ∀(u, v) ∈ E}

Î Size of of the largest interference set

I(u,v) Set of potentially interfering links with (u, v)

c(u,v) Physical channel capacity of link (u, v)

C Set of physical capacities C = {c(u,v) ∀(u, v) ∈ E}

f(u,v) Flow on link (u, v)

ALB(u, v) Available link bandwidth of (u, v)
AAB(u, v) Available area bandwidth of (u, v)

TR Transmission range
IR Interference range
Γ The number of orthogonal channels in frequency spectrum
ru The number of radios of node u

deg(u) Degree of node u

p Path p = <u→ . . .→v> from u to v

P Set of paths
p1 ⊕ p2 The concatenation of paths p1 and p2
l(p) Path length function
bw(p) Bandwidth of path p

δ δ = (s, d, b, t, e): Demand for a path from s to d, required
bandwidth = b, arrival time = t, and exit time = e

∆ Set of demands, ∆ = {δi}
φ φ = (s, d, b, p): Flow at rate b from s to d through path p

Φ The set of existing flows, Φ = {φi}
BC(φ, (u, v)) Bandwidth consumption of flow φ at link (u, v)

k The number of hops in k-hop interference model, and
The number of paths in k-shortest path algorithm

are summarized in Table 1. For ease of description, we drop the subscripts when
they are clear from the context, e.g., c is the physical channel capacity of all
links.

3.1. Assumptions

We consider multi-rate contention-based WMNs in which all nodes are static.
The network can be single-channel or multi-channel multi-radio; in the latter
case, all nodes have multiple radios, and there are Γ orthogonal available chan-
nels in the frequency spectrum. We assume that the network is deployed in a
rural location where the PHY layer is stable, i.e., links would perform more or
less like wired links [20]. Hence, we suppose that the physical channel capacity
does not vary over time similar to previous work [15–19, 30, 31]. Moreover,
in this paper, we consider a centralized routing algorithm like previous studies
[17–19, 31].

3.2. System model

The network is modeled by a digraph G = (V,E,C), where V is the set
of n nodes, E is the set of m links, and set C denotes the physical channel
capacities. Each v ∈ V corresponds to a node in the network. Let d(u, v)
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denote the Euclidean distance between nodes u and v. For a given pair of nodes
u and v, there is a link (u, v) ∈ E if d(u, v) ≤ TR, where TR is the transmission
range. Set C is {c(u,v) ∀(u, v) ∈ E}, where c(u,v) is the physical channel capacity
of (u, v).

The links interfering with (u, v) are denoted by the interference set I(u,v).
This set is determined by a particular interference model, e.g., k-hop interference
model [29] or protocol model [38]. It is supposed that interference pattern is
static; the given interference sets do not change over time. We assume that
I(u,v) is given for all links, (u1, v1) ∈ I(u2,v2) if and only if (u2, v2) ∈ I(u1,v1),
and (u, v) ∈ I(u,v). The set of all interference sets is denoted by I.

From the point of view of a flow, there are two kinds of interferences. The
inter-flow interference is the interference between the flow and other existing
flows, and the intra-flow interference is the interference between different links
in the path of the flow.

3.3. Bandwidth models

3.3.1. Available bandwidth

We use the row constraint introduced in [39] to compute link available band-
widths. It is a sufficient condition for feasibility of bandwidth allocation and
implies that the aggregate load of the links in the interference set of each link
must be less than physical channel capacities. Let f(u,v) denote the flow on link
(u, v). This constraint imposes that

∑

(u′,v′)∈I(u,v)

f(u′,v′)

c(u′,v′)
≤ 1 ∀(u, v) ∈ E, (1)

where
f(u,v)

c(u,v) is the fraction of time (u, v) needs to transmit flow f(u,v). We

refer (1) as the “capacity constraint” since if it is satisfied, network bandwidth
allocation will be feasible. Based on this constraint, we define two bandwidths
for each link as follows.

Definition 1. Available Link Bandwidth of (u, v): ALB(u, v) = max
{

0, c(u,v)

(

1−
∑

(u′,v′)∈I(u,v)

f(u′,v′)

c(u′,v′)

)}

.

Definition 2. Available Area Bandwidth of (u, v): AAB(u, v) = min
(u′,v′)∈I(u,v)

{

c(u,v)

c(u′,v′)
ALB(u′, v′)

}

.

ALB(u, v) and AAB(u, v) are, respectively, the maximum bit rates at which
link (u, v) can transmit without violating its capacity constraint and the con-
straint of the other links in its interference set. These definitions are clari-
fied by an illustrative example depicted in Fig. 1. Let c(u1,v1) = 10, c(u2,v2)

= 20, c(u3,v3) = 20, c(u4,v4) = 40, f(u1,v1) = 2, f(u2,v2) = 0, f(u3,v3) = 10,

and f(u4,v4) = 15. Using these definitions, we have ALB(u1, v1) = c(u1,v1)

(

1−

f(u1,v1)

c(u1,v1)
−

f(u2,v2)

c(u2,v2)

)

= 8, ALB(u2, v2) = 20
(

1− 2
10 −

0
20 −

10
20

)

= 6, ALB(u3, v3)

= 20
(

1− 0
20 −

10
20 −

15
40

)

= 2.5, and ALB(u4, v4) = 40
(

1− 10
20 −

15
40

)

= 5. More-

over, AAB(u1, v1) = min
{

10
10ALB(u1, v1),

10
20ALB(u2, v2)

}

= 3, AAB(u2, v2)
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Figure 1: Illustration of ALB (Definition 1) and AAB (Definition 2). The network is a
single-channel WMN. Suppose I(u1,v1) =

{

(u1, v1), (u2, v2)
}

, I(u2,v2) =
{

(u1, v1), (u2, v2),

(u3, v3)
}

, I(u3,v3) =
{

(u2, v2), (u3, v3), (u4, v4)
}

, and I(u4,v4) =
{

(u3, v3), (u4, v4)
}

.

= AAB(u3, v3) = 20
20ALB(u3, v3) = 2.5, and AAB(u4, v4) = 5. Note that al-

though ALB(u2, v2) = 6, link (u2, v2) should not transmit in a rate more than
AAB(u2, v2) = 2.5 to maintain the guaranteed bandwidth of flow f(u3,v3).

3.3.2. Bandwidth consumption

There are two key observations about the bandwidth consumption of a flow
in multi-hop wireless networks. Consider flow φ = (s, d, b, p) that is from s to d
through path p at rate b. First, the flow not only consumes the bandwidth of
the links in the path, ∀(u, v) ∈ p, but also it consumes the bandwidth of other
links (u′, v′) in the interference range of the path. We name the links whose
bandwidth is consumed by the flow as the “affected links” of the path, which is
defined below.

Definition 3. Affected Links of p: AL(p) =
{

(u′, v′) ∈ I(u,v) ∀(u, v) ∈ p
}

.

Note that by definition (u, v) ∈ AL(p) if (u, v) ∈ p, and if (u, v) /∈ AL(p), its
available bandwidth is not influenced by creating flow φ = (s, d, b, p).

The second observation is that a flow may consume the bandwidth of a link
multiple times. Consider link (u, v) ∈ AL(p) and assume (u′, v′) ∈ p interferes
with (u, v); in other words, (u′, v′) ∈ p∩ I(u,v). The amount of the time fraction

needed by (u′, v′) to transmit load b is b
c(u′,v′)

. During this time, link (u, v) must

be shut down to avoid interference. This happens for each (u′, v′) ∈ p ∩ I(u,v);
therefore, the total time fraction link (u, v) must be shut down due to allocating
bandwidth b through path p is

∑

(u′,v′)∈p∩I(u,v)

b
c(u′,v′)

. As a result, we have

Definition 4. The bandwidth consumption by flow φ = (s, d, b, p) at link (u, v) ∈
AL(p) is

BC(φ, (u, v)) = c(u,v)

(

∑

(u′,v′)∈p∩I(u,v)

b

c(u′,v′)

)

.

It is obvious that to maintain the guaranteed bandwidth of the existing
flows, we need BC(φ, (u, v)) ≤ ALB(u, v) because otherwise BC(φ, (u, v)) >
ALB(u, v) yields that

c(u,v)

(

∑

(u′,v′)∈p∩I(u,v)

b

c(u′,v′)

)

> c(u,v)

(

1−
∑

(u′,v′)∈I(u,v)

f(u′,v′)

c(u′,v′)

)

,

∑

(u′,v′)∈p∩I(u,v)

b

c(u′,v′)
+

∑

(u′,v′)∈I(u,v)

f(u′,v′)

c(u′,v′)
> 1,
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that means the capacity constraint of the link is violated.

3.4. Problem statement

In this paper, we study the QoS routing problem in WMNs. In the problem,
there is a set of demands ∆ = {δi = (si, di, bi, ti, ei)}; demand δi arrives at time
ti, needs a path with bandwidth bi from node si to node di. If the QoS routing
algorithm can find a feasible path p, the demand is admitted that creates flow
φ = (s, d, b, p) in the network. In this case, the demand leaves the network at
time ei. In the context of QoS routing, network performance is usually measured
in terms of demand acceptance rate (or the number of accepted demands) [2–
6], which needs to be optimized by the QoS routing algorithm. Obviously,
this network performance optimization problem is equivalent to the problem of
maximizing the probability of finding a feasible path for each demand. Two
factors influence this probability. The first one is resource availability in the
network that determines the existence of feasible paths. The second factor is the
ability of the QoS routing algorithm to find existing feasible paths. Accordingly,
the QoS routing problem is composed of two subproblems: the problem of
finding a feasible path for a given demand and the problem of efficient utilization
of network resources. These subproblems are explicated more formally in the
following.

First, we consider the problem of finding a feasible path. Suppose that net-
work G = (V,E,C) is given and a set of flows, Φ, are existing in the network.
These flows determine the available bandwidth of each link. At time t, a new
demand δ = (s, d, b, t, e) arrives. The problem is to find a feasible path p from
s to d. Feasibility of the path implies that transmission at rate b through the
path does not violate the capacity constraint (1). In other words, it means that
if flow φ = (s, d, b, p) is created, its bandwidth consumption does not exceed the
available bandwidth of any link; otherwise, the capacity constraint is violated
as explained in Section 3.3.2. More specifically, the problem is defined as follows.

Problem: Feasible Bandwidth Constrained Path in WMNs (FBCP).
Instance: G = (V,E,C), set I, set Φ of existing flows, and a demand δ =
(s, d, b, t, e).
Question: Is there any path p = <s → . . . → d> such that creating flow
φ = (s, d, b, p) satisfies BC(φ, (u, v)) ≤ ALB(u, v) ∀(u, v) ∈ AL(p)?

Since flow φ does not affect ALB(u, v) if (u, v) /∈ AL(p), satisfaction of this con-
straint only for the links (u, v) ∈ AL(p) is the necessary and sufficient condition
for the feasibility of the path.

As mentioned, network performance is measured in terms of the number ac-
cepted demands. Hence, the second subproblem, efficient utilization of network
resources, is defined formally as follows.

Problem: Maximum Acceptance Rate in WMNs (MAR).
Instance: G = (V,E,C), set I, and set ∆ of demands.
Question: What is the maximum number of demands that can be accepted?

Here, we assume that there is not any information about a demand before it
arrives. Hence, the QoS routing algorithm is on-line. When a demand arrives,
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the algorithm attempts to find a path for it only according to the state of the
network at the time.

4. Complexity analysis

In this section, we analyze the complexity of the FBCP and MAR problems.

4.1. Complexity of finding a feasible path

The problem of finding a feasible path with a guaranteed end-to-end band-
width is polynomially solvable in wireline networks by networking pruning.
However, in multi-hop wireless networks, it is substantially difficult. In fact,
in general, the FBCP problem is intractable, which is due to interferences in
wireless networks. Interference model, which specifies the interferences, greatly
influences the complexity of the problem. In the following, we first provide an
insight into the complexity, give an illustrative example, and prove a theorem
on the complexity of FBCP problem under an arbitrary interference model.
Then, we consider different interference models widely used in the literature
and analyze the complexity of the FBCP problem under each model.

4.1.1. Introduction

The constraint of the FBCP problem, BC(φ, (u, v)) ≤ ALB(u, v), is affected
by both intra-flow and inter-flow interferences. However, the problem is that the
interferences are not fully determined until the path is completely constructed.
For example, in finding a path for demand δ, if link (u, v) is selected because
of ALB(u, v) ≥ b, it cannot be guaranteed that constraint BC(φ, (u, v)) ≤
ALB(u, v) will be satisfied when the path gets completed. This is due to the
fact that the links added to the path after (u, v) affect BC(φ, (u, v)), and may
violate the constraint. The following theorem and corollary show the complexity
of the FBCP problem under an arbitrary interference model.

Theorem 1. For a given interference model, flow φ = (s, d, b, p), and link
(u, v), if BC(φ, (u, v)) is the same for every path p where (u, v) ∈ p, and it is
the same for every path p where (u, v) ∈ AL(p) \ p, pruning the network by the
following rules

1. Link (u, v) is pruned if ALB(u, v) < BC(φ, (u, v)).

2. Link (u, v) is pruned if ∃(u′, v′) s.t. (u, v) ∈ I(u′,v′) and ALB(u′, v′) <
BC(φ, (u′, v′)).

yields that

1. All paths in the pruned network is feasible for the demand δ = (s, d, b, t, e)
corresponding to flow φ.

2. The pruning does not exclude any feasible path.

Proof. The proof can be found in Appendix A.1.

Corollary 2. If the conditions of Theorem 1 hold, the FBCP problem is poly-
nomially solvable.
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Figure 2: Illustration of the complexity of finding a feasible path. Label of each link is the
channel assigned to the link. Two paths for demand (u1, u5, 5, 0, 1) are shown by dashed
lines. Assume that c = 15, and I(u1,u2) =

{

(u1, u2), (u2, u3), (u3, u4)
}

, I(u2,u3) = I(u3,u4) =
{

(u1, u2), (u2, u3), (u3, u4), (u4, u5)
}

, I(u4,u5) =
{

(u2, u3), (u3, u4), (u4, u5)
}

, and I(u1,u6)

= I(u6,u2) =
{

(u1, u6), (u6, u2)
}

.

Table 2: Bandwidth consumption of flows in the topology depicted in Fig. 2.
φ Bandwidth consumption at link

(u1, u2) (u1, u6) (u6, u2) (u2, u3) (u3, u4) (u4, u5)

φ1 15 0 0 20 20 15
φ2 10 10 10 15 15 15

Proof. This is a direct result of Theorem 1. It is sufficient to prune the network
by the rules mentioned in the theorem. It implies that if there is a feasible path
for demand δ, it will be present in the pruned network, and since every path is
feasible after the pruning, a path can be found by polynomial time graph search
algorithms.

We illustrate the complexity of FBCP by an example when the conditions of
Theorem 1 do not hold. Consider Fig. 2, which depicts a general multi-channel
multi-radio WMN. Suppose that we use Dijkstra’s algorithm. Assume that there
is not any flow in the network, c = 15 bps, and a demand (u1, u5, 5 bps, 0, 1)
arrives. There are two (not necessarily feasible) paths for the demand: p1 = <
u1→u2→u3→u4→u5> and p2 = <u1→u6→u2→u3→u4→u5>. We con-
sider a flow per path: φ1 = (u1, u5, 5, p1) and φ2 = (u1, u5, 5, p2). Bandwidth
consumption by these flows is shown in Table 2. As it seen, in this topol-
ogy, bandwidth consumption at each link by the demand depends on its path.
Note that path p1 is not feasible, because BC(φ, (u2, u3)) = BC(φ, (u3, u4)) >
ALB(u2, u3) = ALB(u3, u4) = c. However, p2 is feasible.

In this example, if (u2, u3) and (u3, u4) are pruned due to bandwidth con-
sumption by flow φ1, it excludes the existing feasible path p2 from the pruned
network. If we do not prune the network, Dijkstra’s algorithm finds path p1
as the shortest path which is not feasible. Even if we augment Dijkstra’s algo-
rithm to check the feasibility of each partial path, it does not solve the problem.
Assume that we check the capacity constraint of all the links in the interference
set of each link before Dijkstra’s algorithm selects the link to be used in a par-
tial path. In this example, the augmented algorithm starts from node u1 and
creates partial paths p′1 = <u1→ u2> and p′2 = <u1→ u6> by relaxing the
node. In the next steps, p′1 is extended to p′1 = <u1→ u2→ u3→ u4> which
is a feasible partial path. After this point, no further extension is possible due
to the following reasons. First, (u4, u5) is not selected since checking the capac-
ity constraint for all (u, v) ∈ I(u4,u5) indicates that the capacity constraint of
(u2, u3) and (u3, u4) is violated if the required bandwidth is allocated through
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path <u1→u2→u3→u4→u5>. Second, Dijkstra’s algorithm does not extend
p′2 through (u6, u2) because u2 has already been visited. Therefore, even the
augmented Dijkstra’s algorithm cannot find the existing feasible path p2.

It should be noted that as we prove in the following, this is not the problem
of Dijkstra’s algorithm. For every polynomial search algorithm, it is possible to
construct a pathological topology in which the algorithm fails to find an existing
feasible path. In the following, we analyze the effect of the interference models
on the complexity of the problem.

4.1.2. k-hop interference model [29]

In the k-hop interference model, two links within k-hop range interfere with
each other. In this section, we assume that the network is single-channel and
analyze the effect of the value of k on the complexity of the FBCP problem.
Multi-channel networks are discussed in Section 4.1.4.

Case 1. Node-Exclusive model (k = 1) [29]: In this model, only links that
share an end-node interfere with each other; therefore, I(u,v) =

{

(u′, v′) s.t. u =

u′ or u = v′ or v = u′ or v = v′
}

. We show that FBCP is polynomially solvable
under this model if routing mechanism (routing algorithm in conjunction with
routing metric) meets the single-hop requirement which is defined bellow.

Definition 5. Let p1 = <u→v> and p2 = <u→u′→ . . .→v> be, respectively,
the single-hop and a multi-hop feasible paths from u to v. A routing mechanism
meets the single-hop requirement if it always selects p1 instead of p2

1.

To show polynomial solvability of FBCP, it is sufficient to show that the
conditions of Theorem 1 hold. Consider φ = (s, d, b, p), suppose that s and d
are not directly connected, and for the sake of simplicity of presentation assume
that all links have the same physical channel capacity. We make the following
observations.

• BC(φ, (u, v)) = BC(φ, (v, u)) because I(u,v) = I(v,u).

• BC(φ, (u, v)) = 0 if u, v /∈ p because AL(p) =
{

(u, v) s.t. u ∈ p or v ∈ p
}

.

• BC(φ, (u, v)) = 3b if (u, v) ∈ p and u, v /∈ {s, d} because p ∩ I(u,v) =
{

(v′, u), (u, v), (v, u′)
}

.

• BC(φ, (u, v)) = 2b if (u, v) ∈ p and u = s or v = d because if u =
s, we have p ∩ I(s,v) =

{

(s, v), (v, u′)
}

and if v = d then p ∩ I(u,d) =
{

(v′, u), (u, d)
}

.

• BC(φ, (u, v)) = 2b if (u, v) /∈ p and u ∈ p \ {s, d} because due to the
single-hop requirement v /∈ p; hence, p ∩ I(u,v) =

{

(v′, u), (u, v′′)
}

.

• BC(φ, (u, v)) = b, if (u, v) /∈ p and u = s or v = d because if u = s, due
to the single-hop requirement v /∈ p; hence we have p ∩ I(s,v) =

{

(s, v′)
}

.

If v = d, in the similar way, we have p ∩ I(u,d) =
{

(u′, d)
}

.

1A simplified version of this requirement was also identified as “triangular inequality” in
[10].
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Figure 3: Illustration of bandwidth consumption under the node-exclusive interference model
in single-channel WMNs. Label of each is link the bandwidth consumption by flow (u1, u5, 1, p)
at the link.

An example of the bandwidth consumption by a flow in a single-channel network
under the node-exclusive interference model is shown in Fig. 3. Obviously, if the
network is single-channel, the bandwidth consumption is the same for all paths
from s to d. Consequently, due to Theorem 1 and Corollary 2, the problem is
polynomially solvable.

Case 2. General case (k ≥ 2): The computational complexity of bandwidth
allocation in multi-hop wireless network under the node-oriented k-hop interfer-
ence model was studied in [31]. This model implies that two nodes within k-hop
distance of each other are interfering. The authors proved that the problem is
NP-Complete for k ≥ 1. In this paper, we use the link-oriented k-hop model
[29]. It is easy to see that the node-oriented k-hop interference model is equiv-
alent to the link-oriented (k + 1)-hop model. Hence, their analysis shows that
the FBCP problem is NP-complete under the link-oriented k-hop interference
model for k ≥ 2.

4.1.3. Interference range model [40] in single-channel networks

The interference range model is a special case of the well-known protocol
model [38]. In this model, the interference range IR is defined besides the trans-
mission range TR. Under this model, two links (u, v) and (u′, v′) are interfering
if d(u, u′) ≤ IR or d(u, v′) ≤ IR or d(v, u′) ≤ IR or d(v, v′) ≤ IR. In this section,
we assume that network is single-channel and analyze the effect of the value of
IR on the complexity of FBCP.

Case 1. IR,(u,v) < TR,(u,v): This is an artificial case where the interference
set of (u, v) contains only links that have a common end-node with (u, v). Note
that this is the definition of the node-exclusive model; hence, in this case, the
FBCP problem is polynomially solvable as discussed in Section 4.1.2.

Case 2. IR ≥ (1 + γ)TR: This case is usually used in the literature, where
1 ≤ γ ≤ 2. It is easy to see that this model is equivalent to a generalization of
the link-oriented k-hop interference model with k ≥ 2, where different values of
k are used for different links. Therefore, as proved in [31], the FBCP problem
is NP-complete in this case.

4.1.4. Interference range model [40] in multi-channel networks

When the interference range model is used in multi-channel multi-radio
WMNs, channel assignment affects the interference sets besides the Euclidean
distance between nodes. Two links are potentially interfering if they are in the
interference range of each other; but to be actually interfering they should also
be assigned to the same channel. Channel assignment pattern and interference
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sets are influenced by the number of available channels in the frequency spec-
trum, Γ, and the number of radios of each node, ru. We analyze their effects
on the complexity of the FBCP problem in this section. The following analyses
are based on the interference range model with IR ≥ (1 + γ)TR; however, they
can be easily adapted to the k-hop interference model.

Case 1. No interference: There is not any interference in multi-channel
multi-radio WMNs if there are sufficient available channels and radios. In this
case, similar to wireline networks, we have I(u,v) =

{

(u, v)
}

and AL(p) = p.
As a result, for a given flow φ = (s, d, b, p), we have BC(φ, (u, v)) = b if only
if (u, v) ∈ p. Note that it is the same for all paths; hence, the requirements
of Theorem 1 are met, and consequently, the FBCP problem can be solved
polynomially.

Let I(u,v) denote the set of potentially interfering links with (u, v). It is
easy to see that an interference free channel assignment is achievable if Γ ≥
max |I(u,v)| and ru ≥ deg(u). A unique channel should be assigned to each link

in every interference set that means Γ ≥ max |I(u,v)|. In each node, a radio
should be tuned to the unique channel of each incoming or outgoing link that
means ru ≥ deg(u). It is important to note that these are sufficient conditions2.

Case 2. Outgoing interfering links: This is a special case, in which only
the outgoing links of each node interfere with each other; more formally, I(u,v) =
{

(u′, v′) s.t. u = u′
}

. This is accomplished by assigning the same channel to
all outgoing links of each node; however, the channel must be unique in the
interference range of the outgoing links. The number of potentially interfering

links with (u, v) is |I(u,v)|, where
deg(u)

2 links are the outgoing links of the node

(including the link itself). Therefore, we need Γ ≥ max
(

|I(u,v)| −
deg(u)

2 + 1
)

available channels. In each node, a channel is assigned to all outgoing links and a

unique channel is needed for each incoming link; hence, at least ru ≥
(deg(u)

2 +1
)

radios are needed at node u. Again, note that these are sufficient conditions to
achieve the desired channel assignment3.

Under this channel assignment, the FBCP problem is polynomially solvable
since the conditions of Theorem 1 hold due to the following reasons. First,
BC(φ, (u, v)) = BC(φ, (u, v′)) ∀(u, v), (u, v′) ∈ E because both links have the
same interference set. Second, BC(φ, (u, v)) = b if (u, v) ∈ p since at most one
outgoing link of each node belongs to the path and outgoing links of different
nodes are not interfering. Hence, BC(φ, (u, v)) = BC(φ, (u, v′)) = b if and only
if u ∈ p, and it is the same for all paths p.

Case 3. General case: In general multi-channel multi-radio WMNs with
an arbitrary channel assignment, the FBCP problem is intractable as formally
stated in the following theorem.

Theorem 3. The FBCP problem in multi-channel multi-radio WMNs with an
arbitrary channel assignment under the interference range model with IR ≥
(1 + γ)TR is NP-Complete.

2The necessary and sufficient conditions are ru = deg(u) and Γ = χ(IG), where χ(IG) is
the chromatic number of the potentially interference graph. In potentially interference graph
IG, each vertex represents a link in G, and there is an edge between two vertices if their
corresponding links are potentially interfering with each other.

3Deriving the necessary conditions is not easy in this case.
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Table 3: Summary of the complexity of the FBCP problem
Interference Model Network/Model Configuration The Complexity of FBCP

k = 1 & single hop requirement Polynomially solvable
k-hop model & single-channel network

k ≥ 2 NP-Complete
Interference range model IR,(u,v) < TR,(u,v) Polynomially solvable
in single-channel WMNs IR ≥ (1 + γ)TR NP-Complete

Γ ≥ max |I(u,v)| & Polynomially solvable
Interference range model ru ≥ deg(u)

in multi-channel WMNs Γ ≥ max
(

|I(u,v)| −
deg(u)

2
+ 1

)

Polynomially solvable

with IR ≥ (1 + γ)TR & ru ≥
(deg(u)

2
+ 1

)

General case NP-Complete
Physical model General case NP-Complete

Proof. The proof can be found in Appendix A.2.

4.1.5. Physical model [38]

The physical interference model is another commonly used model. It is based
on the Signal to Interference Noise Ratio (SINR) concept. A transmission on
link (u, v) is successful if SINR of the signal received at v is greater than a
predefined threshold. In [40], the authors showed that the interference range
model with IR ≥ (1+γ)TR is a special case of the physical model. Consequently,
according to the case 2 in Section 4.1.3 and case 3 in Section 4.1.4, the FBCP
is NP-complete under the physical interference model in both single and multi-
channel networks.

Table 3 summarizes the results of the complexity analyses presented in this
section.

4.2. Complexity of efficient network utilization

Efficient network resource utilization, which is formally stated by the MAR
problem, is a network-wide optimization problem. Finding its optimal solution
is very difficult. In fact, its off-line version in the wireline network, where there
is not any interference and the information about all demands is given at the
beginning, is NP-Hard [5]. Clearly, the on-line version in WMNs that have very
complicated interference patterns and there is not any information about future
demands is much more difficult.

Dynamic routing is a well-developed approach to obtain a good approximate
solution for this problem [6]. In this approach, the minimum length feasible path
is selected for each demand, where the length of the path is a monotonically
increasing function of link loads. Using this approach in WMNs has its own
complexities. If the FBCP problem is polynomially solvable, the minimum
length feasible path problem is also solved in polynomial time using the shortest
path algorithms. However, if FBCP is NP-Complete, this problem is extremely
difficult. From the complexity theory point of view, the problem is NP-Hard
since it is the optimization version of an NP-Complete decision problem, the
FBCP problem.

An example, where Dijkstra’s algorithm fails to find the minimum length fea-
sible path is illustrated in Fig. 4. Assume that c= 10 bps, demand (u1, u8, 6 bps, 0, 1)
has been arrived, and the weight of each link is one. Similar to Fig. 2, band-
width consumption depends on path; so, the pruning rules in Theorem 1 do
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Figure 4: A pathological topology where Dijkstra’s algorithm cannot find the minimum hop
feasible path from u1 to u8 with bandwidth 6. The label of each link is the channel as-
signed to the link and c = 10 bps. Under a given interference model, I(u1,u4) = I(u4,u6) =
{

(u1, u4), (u4, u6)
}

and the remaining links do not interfere with each other due to the channel
assignment.

not solve the problem. We use the augmented Dijkstra’s algorithm, which is
explained in Section 4.1.1. It starts from u1; in relaxing this node, it visits
u2, u3, and u4. In relaxing node u4, it does not select (u4, u6) because partial
path <u1→ u4→ u6> is not feasible due to the interference between (u1, u4)
and (u4, u6). In relaxing u3, it does not select (u3, u4) because u4 has already
been visited. The algorithm continues relaxing u2, u5, u7, and u6 sequentially.
Finally, it selects path p1 = <u1→u2→u5→u7→u6→u8> while the minimum
hop feasible path is p2 = <u1→u3→u4→u6→u8>.

5. Proposed solution

In this section, we first explain how to deal with the problems of finding
a feasible path and efficient network utilization. Then, we integrate our so-
lutions into an algorithmic framework. Finally, we analyze the computational
complexity of the framework.

5.1. Finding a feasible path

Finding a feasible path is composed of three functionalities: network pruning,
searching, and satisfying feasibility. Our proposed mechanisms for them are as
follows.

5.1.1. Network pruning

For a given instance (G, I,Φ, δ) of the FBCP problem, we prune the network
according to AAB(u, v); (u, v) is pruned if AAB(u, v) < b. The reason is
that if AAB(u, v) < b, routing the demand through (u, v) violates the capacity
constraint of at least one link in the interference set of (u, v). It must be noted
that this pruning does not affect the solution space but shrinks the search space
more than pruning according to ALB(u, v).

5.1.2. Satisfying feasibility

Since network pruning does not guarantee feasibility of paths in the pruned
network, we use a call admission control (CAC) mechanism to maintain path
feasibility. The CAC is performed in a hop-by-hop manner as follows. Assume
p =<s→ . . .→ u> is a feasible partial path from s to u. This path can be
extended one hop through (u, v) only if allocating the required bandwidth b
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through path p′ = p ⊕ <u→v> does not violate the capacity constraint of any
link. More precisely, p can be extended to p′ only if for flow φ = (s, v, b, p′), we
have BC(φ, (u, v)) ≤ ALB(u, v) ∀(u, v) ∈ AL(p′). Obviously, if v = d, path p′

will be a feasible path for the demand and it is admitted.

5.1.3. Search strategy

To search for a feasible path, we use the k-shortest path algorithm that allows
revisiting each node up to k times. We use the k-shortest path strategy due to
the shortcoming of Dijkstra’s algorithm in finding feasible paths as demonstrated
by the example in Fig. 2. It arises from the fundamental property of Dijkstra’s
algorithm that each node is visited only one time. Reconsider Fig. 2; in this
figure, Dijkstra’s algorithm does not find feasible path p2 = <u1→u6→u2→
u3→u4→u5>, since it does not allow revisiting node u2 through partial path
<u1 → u6 → u2>. In this example, if we use the 2-shortest path algorithm,
it extends partial path <u1→ u6> to <u1→ u6→ u2>, and finally finds the
feasible path p2.

5.2. Efficient network utilization

We use the dynamic routing technique to find an approximate solution for
the MAR problem. Dynamic routing is composed of two subproblems: select-
ing an appropriate routing metric, which will be discussed later, and finding
the minimum length paths. We use a selector function besides the k-shortest
path algorithm to approximate the minimum length feasible paths. We run
the k-shortest path algorithm using path length function l(p), but do not ter-
minate the algorithm as soon as it reaches the destination. The algorithm
always attempts to find k paths, which are stored in set P . We select the
best path among the k paths by a selector function s(P ). The selector func-
tion can be either argminp∈P l(p) or a combination of l(p) and other functions.
This approach improves optimality of the result. For example, in Fig. 4, if
we use the 2-shortest path algorithm with l(p) =

∑

(u,v)∈p 1 and selector func-

tion s(P ) = argminp∈P l(p), the 2-shortest path algorithm finds both paths
p1 = <u1→ u2→ u5→ u7→ u6→ u8> and p2 = <u1→ u3→ u4→ u6→ u8>,
P = {p1, p2}, and the selector function selects p2, which is the minimum hop
feasible path.

The efficiency of dynamic routing technique depends on the path length
function in use. Conventional routing metrics proposed for this purpose in
wireline networks are based on the bandwidth of path, bw(p). It is the maximum
bit rate at which data can be transmitted through the path without violating
the capacity constraint. Assume that a flow at rate f is transmitting through
path p, its bandwidth consumption at link (u, v) is

c(u,v)

(

∑

(u′,v′)∈p∩I(u,v)

f

c(u′,v′)

)

= f
(

∑

(u′,v′)∈p∩I(u,v)

c(u,v)

c(u′,v′)

)

.

This bandwidth consumption can be at most ALB(u, v) in order to satisfy the
capacity constrain (1); hence,

f
(

∑

(u′,v′)∈p∩I(u,v)

c(u,v)

c(u′,v′)

)

= ALB(u, v),
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and consequently,

f =
ALB(u, v)

∑

(u′,v′)∈p∩I(u,v)

c(u,v)

c(u′,v′)

.

Therefore, the bandwidth of path is defined as follows.

Definition 6. The bandwidth of path p: bw(p) = min
(u,v)∈AL(p)

ALB(u,v)
∑

(u′,v′)∈p∩I(u,v)

c(u,v)
c
(u′,v′)

.

In the following, we consider a few commonly used QoS routing metrics in
wireline networks, and explain how they can be adapted for WMNs.

5.2.1. Hop count and least usage metrics

In spite of the fact that the hop count path length function, lHC(p) =
∑

(u,v)∈p 1, is not a dynamic function, it is still being used in bandwidth con-
strained routing in wireline networks, since it minimizes network resource con-
sumption [41]. In WMNs, resource consumption by flows at a link depends on
the size of the interference set of the link. Consequently, a path with minimum
resource usage can be found by minimizing the following path length function.

Definition 7. Least Usage path length function [42]: lLU (p) =
∑

(u,v)∈p

|I(u,v)|.

5.2.2. Widest Shortest Path (WSP)

We find an approximate solution for the WSP problem using the k-shortest
path algorithm and an appropriate selector function. We find k minimum hop
paths using the k-shortest path algorithm, and if there are multiple same length
paths, the selector function selects the widest one. The bandwidth of the path
is defined by Definition 6.

5.2.3. Shortest Widest Path (SWP)

The authors in [18] approximated the shortest widest path in single-channel
networks under the 2-hop interference model. Finding SWP is harder than WSP
because according to Definition 6, the bandwidth of path cannot be determined
before it is completed. Here, we approximate a solution for SWP using path
length function lWP (p) defined as follows.

Definition 8. Widest Path length function: lWP (p) = max
(u,v)∈p

1
AAB(u,v) .

We use the k-shortest path algorithm and find the k widest paths according
to lWP (p). If there are multiple paths with the same width, we select the one
that has the minimum number of hops.

5.2.4. Minimum criticality metric

Comparisons between the path length functions proposed for dynamic band-
width constrained routing in wireline networks were carried out in [6, 41], and
showed that the following path length function has superior performance.

Definition 9. Reversed Link Bandwidth path length function: lRLB(p) =
∑

(u,v)∈p

1
ALB(u,v) .

17



Some previous works, e.g., [31, 43], used this routing metric in WMNs. We
augment it by two observations. First, in wireless networks, congestion occurs in
an interference region not at a single link. Therefore, we use AAB(u, v) instead
of ALB(u, v). Second, in addition to the available bandwidth, criticality of a
link also depends on the size of its interference set. Larger interference sets
imply that links have to share bandwidth with more other interfering links; in
other words, it means more criticality. Hence, we take the interferences into
account, and define the following path length function.

Definition 10. Minimum Criticality path length function: lMC(p) =
∑

(u,v)∈p

|I(u,v)|

AAB(u,v) .

5.3. Adjustable algorithmic framework

In this section, we present the Adjustable Constrained Routing Algorithmic
Framework (ACRAF), where the aforementioned algorithms and routing metrics
are integrated into a single framework. The value of k in the k-shortest path
algorithm, the path length function l(p), and the selector function s(P ) are the
adjustable parameters of this framework, which are discussed in more detail in
Section 5.3.1.

Algorithm 1 shows how an ACRAF-based QoS routing is implemented. Al-
gorithms 2 and 3, respectively, depict the pseudo-code of ACRAF and the k-SP
algorithm. ACRAF prunes the network in step 1. In step 2, the k-SP algorithm
attempts to find a set of k minimum length feasible paths. Finally, the selector
function selects the best path in step 3.

Algorithm k-SP is the integration of the k-shortest path algorithm and the
CAC mechanism described in Section 5.1.2. In k-SP, each node v, except the
source node, stores up to k shortest paths from the source to itself together
with the corresponding length in the array v[1 . . . k]. The predecessor of v in
the ith shortest path and the corresponding length are stored in v[i].π and v[i].l,
respectively. There are two parameters in k-SP: wl(p)(u, v) and ⊗l(p), which are
depended on the path length function l(p). Parameter wl(p)(u, v) is the length of
link (u, v) and ⊗l(p) is the operator that computes path length from the lengths
of the links. The values of the parameters for the aforementioned path length
functions are shown in Table 4.

Algorithm 1 : An ACRAF-based QoS routing

Inputs: G = (V,E,C), I, and ∆
Outputs: Set of accepted demands
Require: ∆ is sorted in ascending order of ti
1: Set parameters k, l(p), and s(P )
2: for i = 1 to |∆| do
3: δ ← ∆[i]
4: ACRAF(G, I, δ)
5: if there is feasible path then

6: Add δ to the set of accepted demands
7: return The set of accepted demands

The k-SP algorithm initializes the required data structures in lines 1–4.
ExtractMin finds the unvisited instance u[j] that has the minimum u[j].l and
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Algorithm 2 : ACRAF

Inputs: G = (V,E,C), I, and δ = (s, d, b, t, e)
Outputs: p =<s→ . . .→d>
Parameters: k, l(p), and s(P )
1: Prune (u, v) ∈ E if AAB(u, v) < b
2: P ← k-SP(G, I, δ, k, l(p))
3: p← s(P )

Algorithm 3 : k-SP

Inputs: G, I, δ, k, l(p)
Outputs: P = {p1, . . . , pk}
1: for ∀v ∈ V \ s do

2: for i = 1 to k do

3: v[i].π ← NIL, v[i].l←∞, and add v[i] to Q
4: s[1].π ← NIL, s[1].l← 0, and add s[1] to Q
5: while Q is not empty do

6: u[j]← ExtractMin(Q)
7: p′ ← GetPartialPath(G, u[j])
8: for ∀(u, v) ∈ E and v /∈ p′ do
9: if IsFeasible(p′ ⊕ <u→v>) then

10: update← false

11: for i = 1 to k do

12: if update = false and v[i].l >
(

wl(p)(u, v)⊗l(p) u[j].l
)

then

13: v[i].l←
(

wl(p)(u, v)⊗l(p) u[j].l
)

14: v[i].π ← u[j]
15: update← true

16: DecreaseKey(Q, v[i])
17: for i = 1 to k do

18: Add GetPartailPath(G, d[i]) to P
19: return P

Table 4: Length of link and path length computing operator for the path length functions
l(p) ⊗l(p) wl(p)(u, v)

lHP (p) + 1
lLU (p) + |I(u,v)|

lRLB(p) + 1
ALB(u,v)

lMC(p) +
|I(u,v)|

AAB(u,v)

lWP (p) max 1
AAB(u,v)

removes it from Q. GetPartialPath(G, u[j]) returns the partial path p′, from
the source node to node u. In lines 8–16, k-SP relaxes u[j], in which u updates
the length of v[i] if the following conditions hold: i) Node v is not in the partial
path p′, which is checked in line 8; and ii) Path p′ ⊕ <u→ v> is a feasible
path, which is checked by IsFeasible(p) in line 9; and iii) As examined in line
12, the current length of the partial path <s→ . . .→ v[i]> is greater than the
length of the new partial path p′ ⊕ <u→ v>, that is u[j].l ⊗l(p) wl(p)(u, v). In
the relaxation of u[j], k-SP must update only one of v[i]s through link (u, v),
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Table 5: QoS routing algorithms based on ACRAF
Name l(p) s(P )

Wk-MHC lHC(p) argmin lHC(p)
Wk-WSP lHC(p) argmax bw(argmin lHC(p))
Wk-SWP lWP (p) argmin lHC(argmin lWP (p))
Wk-RLB lRLB(p) argmin lRLB(p)
Wk-WLU lLU (p) argmax bw(argmin lLU (p))
Wk-MC lMC(p) argmin lMC(p)

which is enforced by variable update.

5.3.1. Parameters of ACRAF

There are three parameters in ACRAF: k, l(p), and s(P ). The value of k
determines the efficiency of ACRAF to deal with the NP-Completeness of the
FBCP problem and to find the minimum length paths. If the value of k is
not limited, ACRAF will be exact. It will find the optimal feasible path if any
one exists at the cost of an exponential running-time. To achieve a pseudo-
polynomial running-time, the value of k should be restricted. Obtaining the
minimum value of k that guarantees the exactness of the algorithm is a very
difficult problem.

Different combinations of path length function l(p) and selector function
s(P ) lead to different routing algorithms. The selector function may select
the best path according to multiple metrics. We use the notation “argmin
l2(argmin l1(p)),” if the best path is selected according to l1(p) and in the case
of existing multiple minimum length paths, the selection is performed based
on l2(p). Table 5 shows six different algorithms that can be implemented by
adjusting the parameters of ACRAF.

5.3.2. Computational complexity analysis

The worst-case complexity of ACRAF depends on the complexity of the
k-SP algorithm. We assume that it uses the Fibonacci heap. It creates heap Q
in lines 1–4, which takes O(kn log(kn)) times. The complexity of ExtractMin

is O(log(kn)). The complexity of GetPartialPath is O(n). They execute kn
times, therefore the total complexity is O(kn(n+ log(kn)). Lines 8–16 execute
per (u, v) ∈ E in finding a shortest path to all nodes; since k-SP finds k paths
to each node, these lines execute km times. In these lines, checking v /∈ p′ takes
O(n) times, IsFeasible takes O(nÎ) times, where Î is the size of the largest
interference set, and the remaining operations are O(1). Lines 17–18 take at
most O(kn) times. Combining all these running times yields to O(k-SP) =
O(kn log(kn) + kn(n+ log(kn)) + km(nÎ +n) + kn) = O(kn log(kn) + kn2 +
knmÎ). The worst-case complexity of s(P ) is O(knÎ). Therefore O(ACRAF)
= O(k-SP) = O(kn log(kn) + kn2 + knmÎ).

6. Optimal solutions

In this section, we find optimal solutions for the FBCP and MAR problems
through formulating them as optimization models. We first consider the FBCP
problem and develop an optimization model to check the existence of at least
one feasible path for a given demand. Then, we extend the model to find the
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minimum length feasible paths. Finally, for the MAR problem, we develop an
optimal QoS routing algorithm.

6.1. Finding any feasible path
To check the existence of a feasible path for demand δ in network G, we do

not need to optimize any objective function. The feasible path must satisfy two
constraints. The first one is the conventional flow conservation constraint which
is

∑

(u,v)∈E

x(u,v) −
∑

(v,u)∈E

x(v,u) =











1, if u = s

−1, if u = d

0, otherwise

∀u ∈ V, (2)

and
x(u,v) ∈ {0, 1} ∀(u, v) ∈ E. (3)

Where the binary variable x specifies the route of the demand; x(u,v) = 1 if the
demand is routed through (u, v) and x(u,v) = 0 otherwise. The flow on each
link is specified by

f(u,v) = bx(u,v) ∀(u, v) ∈ E. (4)

Note that if there is a set of existing flows, Φ 6= {} in the FBCP problem, (4)
should be f(u,v) = f ′

(u,v) + bx(u,v) where f ′
(u,v) is the existing flow on (u, v).

The second constraint is the capacity constraint. However, the capacity
constraint for a link needs to be satisfied only if the link carries a load. We
partition E into two subsets E1 =

{

(u, v) ∈ E s.t. f ′
(u,v) > 0

}

and E2 = E \E1.
For the links belong to E1, the capacity constraint is

∑

(u′,v′)∈I(u,v)

f(u′,v′)

c(u′,v′)
≤ 1 ∀(u, v) ∈ E1. (5)

For the links in set E2, the capacity constraint should be satisfied if the link is
used to route the new demand. To model this conditional constraint, we use
the big M technique and reformulate the capacity constraint (1) as

∑

(u′,v′)∈I(u,v)

f(u′,v′)

c(u′,v′)
≤ 1 +M

(

1− x(u,v)

)

∀(u, v) ∈ E2, (6)

where the parameter M is a very big value4. When (u, v) is not used in routing,
x(u,v) = 0, the right hand side of (6) becomes a very big value, hence (6) does
not impose any restriction. When x(u,v) = 1, (6) turns into (5).

Putting these constraints altogether yields the following model. Its solution
indicates whether there is a feasible path for demand δ in network G or not.

Model: FeasiblePath(G, I, δ)
Objective: No objective function
Subject to: (2)–(6).

It is important to note that this model is an Integer Linear Programming
(ILP) model due to the binary variables x(u,v). ILP models are NP-Complete in
general, and since we proved that FBCP is NP-Complete, the FeasiblePath

is also intractable, and may not be solved in a reasonable time.

4It is easy to show that M must be greater than the size of the largest interference set.
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6.2. Optimizing path lengths

We mentioned before that the dynamic routing technique needs minimum
length paths. The optimization model to find the minimum length feasible
path for demand δ in network G using path length function l(p) is obtained by
extending FeasiblePath. Let us assume link weights wl(p)(u, v) are additive;
therefore, we need to optimize the following objective function.

minimize
∑

(u,v)∈E

x(u,v)wl(p)(u, v). (7)

In this model, similar to FeasiblePath, the path should be feasible; thus,
its constraints are (2)–(6). Consequently, the desired optimization model is

Model: OptimalPath(G, I, δ, l(p))
Objective: (7)
Subject to: (2)–(6).

6.3. Optimal on-line QoS routing

We develop an optimal QoS routing algorithm to solve the on-line version of
the MAR problem according to the following observation. Routing metrics and
route selection are issues in the network routing problem since it is assumed that
existing flows in the network cannot be rerouted. If we relax this constraint, and
assume that we can reoptimize flow routes at any given time, it is not important
which path is selected for each flow. In other words, the routing metric is not
a matter. Obviously, this is an optimal on-line strategy since we reoptimize the
network every time it is needed.

In the optimal QoS routing problem, we only need to reoptimize routs at de-
mand arrival times. When a new demand arrives, the optimal algorithm checks
the existence of a feasible solution for the set active demands through solving
an optimization problem. It accepts the new demand if a feasible solution exists
for the set; otherwise, the new demand is rejected. The set of active demands
denoted by ∆ contains the new demand and all the existing flows (demands
that were accepted and have not finished yet). The optimization model we need
in this algorithm is very similar to FeasiblePath with the difference that we
should find feasible paths for a set of flows. We relax FeasiblePath to get
a Linear Programming (LP) model, which is much easier than the ILP model.
In this relaxation, we remove the binary variable x and assume that flows are
splittable; in other words, we use multi-path routing. Furthermore, we use (1)
for the capacity constraint instead of (5) and (6). This shrinks the solution
space of the problem because we enforce the capacity constraint for all links
even if they do not carry any load. However, its effect is negligible specially
when there are several flows in the network. Because in this case, the flows are
split over almost all links, and consequently the combination of (5) and (6) is
equivalent to (1). The optimization model is obtained as follows. Constraints
(3) and (4) are removed, and constraint (2) now becomes

∑

(u,v)∈E

f(u,v),δi −
∑

(v,u)∈E

f(v,u),δi =











bi, if u = si

−bi, if u = di

0, otherwise

∀δi ∈ ∆, ∀u ∈ V, (8)
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where f(u,v),δi is the flow of demand δi on link (u, v). The capacity constraint
is

∑

(u′,v′)∈I(u,v)

∑

δi∈∆ f(u′,v′),δi

c(u′,v′)
≤ 1 ∀(u, v) ∈ E. (9)

Finally, the model is

Model: FeasibleSet(G, I,∆)
Objective: No objective function
Subject to: (8) and (9).

Note that solving this model may reroute all the exiting flows. The optimal
QoS routing algorithm is developed using this optimization model as shown in
Algorithm 4. In this algorithm, if δi is rejected, it is removed from the set of
active demands in line 9; moreover, it is removed in line 12 if it is finished.

Algorithm 4 : OptimalQR

Inputs: G, I, and ∆
Outputs: The set of accepted demands
Require: ∆ is sorted in ascending order of ti
1: Create empty set ∆
2: for i = 1 to |∆| do
3: δi ← ∆[i]
4: Add δi to ∆
5: Solve FeasibleSet(G, I,∆)
6: if FeasibleSet has a feasible solution then

7: Add δi to the set of accepted demands
8: else

9: Remove δi from ∆
10: for each δj ∈ ∆ do

11: if ej < ti+1 then

12: Remove δj from ∆
13: return The set of accepted demands

7. Simulation results

In this section, we present simulation results to evaluate the performance
of ACRAF and the routing algorithms based on it. First, we consider the per-
formance of ACRAF to deal with the NP-Completeness of the FBCP problem.
Next, we investigate the problem of optimizing path lengths. Then, the perfor-
mance of the routing algorithms in Table 5 is compared. Finally, we present the
results on the overhead of ACRAF.

7.1. Simulation setup

The performance of bandwidth constrained routing algorithms depends on
network topology (average node degree) and network load [44]. We evaluate the
algorithms in different topologies, which are shown in Table 6. These topologies
are general multi-channel multi-radio WMNs, in which c = 100 Mbps, Γ = 10,
and the number of radios of each node is a uniform random variable in the
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Table 6: Simulated topologies
Name Area (m2) n m Node Average

placement node degree

Dense-10 675×675 100 1004 Grid 10.04
Dense-8 525×525 64 612 Grid 9.56
Random 1000×1000 100 656 Random 6.56
Sparse 1350×1350 100 360 Grid 3.6

range from 2 to 5. A static channel assignment is performed by the Greedy
minimum interference algorithm [45]. The interference sets are computed using
the interference range model, where TR = 150 m and IR = 350 m. In dense and
sparse grid topologies, the distance between nodes in each row (column) is TR

2
and TR, respectively.

We use a flow-level event-driven simulator developed in Java. In each exper-
iment, there is a set of demands ∆ = {δi = (si, di, bi, ti, ei)}. The source and
destination of each demand are randomly chosen. Its bandwidth requirement is
a uniform random variable in the interval [1,10] Mbps. The holding time, ei−ti,
is an exponential random variable with mean 5 minutes. Demand arrival rate
is a Poisson random variable.

In the FBCP problem, it is assumed that there is a number of exiting flows,
which are denoted by set Φ. To simulate it, which is needed in Sections 7.2
and 7.3, we perform the following steps. At the beginning of the simulation, we
create a demand, attempt to accept it using Wk-SWP, and allocate the required
bandwidth if accepted; we repeat this procedure until the desired number of
flows is generated. These accepted demands are not removed until the end
of the simulation. This leads to an almost random distribution of ALB(u, v)
in the network. The results presented in the following are the average of 10
experiments with different sets Φ and ∆.

7.2. Dealing with NP-Completeness

To evaluate the performance of ACRAF to deal with the NP-Completeness
of the FBCP problem, we compare it to the FeasiblePath model and use the
following metric.

Definition 11. The success rate of algorithm A , Sr(A ), is the number of
demands that algorithm A accepts divided by the number of demands that Fea-
siblePath accepts.

This metric is computed as follows. At the beginning, as explained in Section
7.1, we create a number of existing flows. Then, for each demand δ ∈ ∆, we
attempt to find a feasible path by the ACRAF-based routing algorithm and
by the FeasiblePath model. We count the number of demands that each
approach can accept. Since we only evaluate the ability to find a feasible path
in this section, we do not create a flow for the accepted demands.

Fig. 5 shows the success rate of the Wk-MHC algorithm, which is selected as
a sample of the ACRAF-based routing algorithms in this simulation, versus the
number of existing flows, |Φ|. This figure shows that, first, the FBCP problem is
not very difficult especially in lightly loaded sparse networks as ACRAF achieves
a high success rate. Second, ACRAF with k = 5 improves Sr(Wk-MHC) up to
9% in comparison to Dijkstra’s algorithm (ACRAF with k = 1) in Fig. 5(a).
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Third, there is a critical number of existing flows where ACRAF has the worst
success rate, e.g., 35 in Fig. 5(a), 42 in Fig. 5(b), and 60 in Fig. 5(c). When the
number of existing flows is much less than the critical value, there are multiple
feasible paths for each demand; in this case, ACRAF can find one of them easily.
When the number of existing flows is higher than the critical value, there is not
any feasible path for most of the demands; in this case, the network pruning
and CAC procedures shrink search space significantly which leads to the high
success rates.

7.3. Achieving path length optimality

We evaluate the ability of ACRAF to find the minimum length feasible paths
by comparing it to the optimal solution obtained by the OptimalPath model.
We use the optimality ratio metric, which is defined as follows, to quantify the
ability.

Definition 12. Optimality ratio of algorithm A , Or(A ), is the length of the
feasible path found by the algorithm for a given demand, divided by the length
of the path found by the OptimalPath model for the demand.

This metric is computed in a similar way that Sr(A ) is computed. We
first create a number of existing flows; then, we compare the length of the
feasible paths found by A and OptimalPath for each demand. Here, we
again selected Wk-MHC as a sample of the ACRAF-based routing algorithms.
The optimality ratios of Wk-MHC versus the number of existing flows in the
Random, Dense-10, and Sparse topologies are shown in Fig. 6. These figures
show that ACRAF, even with k = 2, performs notably better than Dijkstra’s
algorithm. In addition, it is seen that the paths found by ACRAF are typically
not longer than the optimal path more than 0.2–0.6%. Optimality ratio has a
similar behavior to the success rate versus the number of existing flows. When
there are very few flows in the network, one of the k paths found by ACRAF,
is the minimum length path; therefore, Or≈ 1. In the case of a high number of
existing flows, a very limited number of demands are accepted; and for most of
them, there is only one feasible path, which is the minimum length feasible path.
Consequently, the paths found by ACRAF are optimal, that implies Or≈ 1.

7.4. Effect of routing metrics

In this section, we consider the MAR problem and study the effect of the
routing metric used in ACRAF on the approximate solution obtained from it.
In addition to the six ACRAF-based routing algorithms shown in Table 5, we
simulated the OptimalQR algorithm. To evaluate the performance of the
algorithms, we consider the following widely used metric.

Definition 13. Acceptance rate of algorithm A , Ar(A ), is the number of ac-
cepted demands by the algorithm divided by the total number of demands.

To measure this metric in each experiment, we create a set of demands and
apply the algorithms on them. Contrary to Sections 7.2 and 7.3, there is not
any existing flow at the beginning, and we allocate the required bandwidth for
each accepted demand to measure the efficiency of network resource utilization.
Fig. 7 depicts the performance of the algorithms in the Random, Dense-8, and
Sparse topologies. In these simulations, we used the Dense-8 topology instead
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Figure 5: Success rate (Definition 11) of the Wk-MHC algorithm versus the number of existing
flows, |∆| = 200.
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Figure 6: Optimality ratio (Definition 12) of the Wk-MHC algorithm versus the number of
existing flows, |∆| = 200.

27



of Dense-10 because solving the FeasibleSet model, which is needed in each
iteration of OptimalQR, is time consuming in the Dense-10 topology.

These figures show that, first, the adapted versions of the traditional routing
metrics outperform their corresponding wireline versions; for instance, Wk-MC
outperforms Wk-RLB, and Wk-WLU outperforms Wk-WSP. Second, the av-
erage node degree has a considerable influence on the performance of the algo-
rithms. Comparing Fig. 7(c) and 7(b) shows that the average acceptance rate
of each algorithm in Dense-8 is much less than in the Sparse topology. Third,
Wk-SWP and Wk-MC are, respectively, the worst and best routing algorithms,
independent of the network topology and load. This is contrary to the results in
wireline networks [41], which showed to optimize network performance in lightly
loaded networks, routing metrics should give preference to load distribution, i.e.,
we should use SWP like algorithms. However, our results show that in WMNs,
resource consumption should be preferred over load balancing regardless of the
network load and topology.

In these figures, as it is expected, the acceptance rate of the OptimalQR al-
gorithm is better than the ACRAF-based algorithms due to two reasons. First,
the algorithm is allowed to reroute all existing flows. Therefore, at each de-
mand arrival time, if it is needed, OptimalQR reroutes existing flows to find
a feasible path for the new demand. However, ACRAF-based algorithm cannot
reroute existing flows; they have to provide sufficient resources for upcoming
demands through finding an appropriate feasible path for each demand. Sec-
ond, OptimalQR uses multi-path routing while the ACRAF-based algorithms
are single-path. Even when there is not any single feasible path for a band-
width intensive demand, OptimalQR can accept it by splitting the demand
into multiple low-bandwidth flows and routing them.

7.5. Overhead

In Section 5.3, we mentioned that the running-time of ACRAF is pseudo-
polynomial since the value of k is limited. This limitation causes that the
ACRAF-based routing algorithms cannot find arbitrary feasible paths. In this
section, we present simulation results on the trade-off between the overhead of
ACRAF and its ability to find a feasible path with respect to the value of k.

We analyzed the computational complexity of ACRAF in Section 5.3.2, and
showed it is mainly determined by the computational complexity of the k-SP
algorithm. The computational overhead of k-SP is mostly due to relaxing links
in lines 8–16. When the conditions in lines 8, 9, and 12 hold, link (u, v) is selected
that updates the weight and predecessor of v[j] in lines 13–16. According to
these observations, we measure the overhead of ACRAF in terms of the number
of updates in lines 13–16 per accepted demand, which is the overhead we have
to pay to find each feasible path. In this section, since we intend to measure
the trade-off between the overhead and the path-finding ability of ACRAF, we
slightly modified it, ACRAF finishes as soon as it finds a feasible path.

We simulate ACRAF with three different values of k, small (k = 3), medium
(k = 20), and large (k = 200). With the large value of k, ACRAF becomes
an exhaustive search algorithm in our simulations, it finds a feasible path if
any exists. Table 7 shows the simulation results, where the success rate of
Wk-MHC and its overhead are presented. For each topology, we used three
different numbers of existing flows, |Φ|. These numbers were selected according
to the critical value of each topology shown in Fig. 5. The first number is less
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Figure 7: Acceptance rate (Definition 13) of the algorithms in Table 5 versus demand arrival
rate. k = 4, and |∆| = 500.
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Table 7: Overhead of ACRAF in terms of the number of updates per accepted demand
Configuration k

Topology |Φ| 3 20 200
Overhead Sr Overhead Sr Overhead Sr

50 146.53 0.996 778.48 1.0 3415.77 1.0
Sparse 60 133.01 0.982 730.93 0.996 3092.74 1.0

70 87.41 1.0 412.05 1.0 1163.59 1.0
30 193.25 1.0 1001.21 1.0 6562.58 1.0

Dense-10 40 147.78 0.98 731.75 0.995 4265.03 1.0
50 137.41 0.991 664.56 0.991 3599.43 1.0
25 180.69 1.0 944.91 1.0 6364.93 1.0

Random 35 153.46 0.962 788.41 0.995 5174.21 1.0
45 85.06 1 .0 392.27 1.0 2171.53 1.0

than the critical value, the second one is near the value, and the last number is
greater than the value. This table shows the following results. First, ACRAF
achieves high success rates with an acceptable overhead using small values of
k. However, to be an exact algorithm, the value of k should be very large that
yields a significant overhead, e.g., up to 30 times in comparison to the small
values. Second, the overhead diminishes considerably by increasing the number
of existing flows. It is due to the network pruning. When many flows exist in
the network, most of the links have not sufficient available bandwidth and are
pruned, which shrinks the search space significantly. Third, the worst success
rate of ACRAF in each topology is the case where |Φ| is about the critical value
of the topology, this confirms the previous results depicted in Fig. 5.

8. Conclusions and future work

We have studied the problem of bandwidth constrained routing in WMNs.
We analyzed the effect of interference models on the complexity of the problem,
and showed that except a few special cases, the problem of finding a feasible path
is NP-Complete. We proposed ACRAF to solve the problem. We also investi-
gated the problem of optimum utilization of network resources. To achieve this,
we used the dynamic routing technique and developed routing metrics to con-
sider both interferences and bandwidth. We developed six routing algorithms
by adjusting the parameters of ACRAF. Moreover, we developed three opti-
mization models: a model to check the existence of a feasible path, a model to
optimize path lengths, and another to find the maximum number of acceptable
demands.

Comparisons between ACRAF and the optimization models showed that it
can find most of existing feasible paths, optimizes path length efficiently, and
has comparable performance to the optimal QoS routing. We simulated the
ACRAF-based routing algorithms in three networks with different average node
degrees under various network loads. It showed that the performance of the
algorithms depends on network topology and offered load; however, in all cases,
the Wk-MC algorithm outperforms the others.

In this paper, we assumed that the static interference sets are given, and
solved the QoS routing problem. In the future, we plan to study the problem
of joint QoS routing and interference management, which can be accomplished
by e.g., channel assignment and power control.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

The proof of Theorem 1 is as follows.

Proof. We prove both parts by contradiction.
Assume that there is an infeasible path p in the pruned network. Since flow φ

through path p does not consume ALB(u, v) if (u, v) /∈ AL(p), infeasiblity of the
path can only be due to the following cases: there is (u, v) ∈ p s.t. ALB(u, v) <
BC(φ, (u, v)) or there is (u′, v′) ∈ AL(p) \ p s.t. ALB(u′, v′) < BC(φ, (u′, v′)).
The first case is not possible because of the pruning rule 1. The second case
implies that ∃(u, v) ∈ p s.t. (u′, v′) ∈ I(u,v) and therefore (u, v) ∈ I(u′,v′),
which is due to the assumptions about interference sets mentioned in Section
3.2. However, this is also impossible because if ALB(u′, v′) < BC(φ, (u′, v′))
then (u, v) must be pruned by the second rule.

To prove the second part, let p be a feasible path that is excluded from the
pruned network. Without loss of generality, assume that the path is excluded
due to pruning link (u, v). Pruning (u, v) implies that there is a path p′ and
its corresponding flow φ′ = (s, d, b, p′) such that ALB(u, v) < BC(φ′, (u, v)) or
∃(u′, v′) s.t. (u, v) ∈ I(u′,v′) and ALB(u′, v′) < BC(φ′, (u′, v′)). Since the band-
width consumption is the same for all paths, we have ALB(u, v) < BC(φ, (u, v))
or ALB(u′, v′) < BC(φ, (u′, v′)) where φ is the flow corresponding to p. How-
ever, these mean that p is not feasible because either (u, v) or (u′, v′) ∈ AL(p)
has not sufficient available bandwidth.

Appendix A.2. Proof of Theorem 3

We prove Theorem 3 by reducing the Path with Forbidden Pairs (PFP)
problem to the FBCP problem. The PFP problem is defined as follows [46].

Problem: Path with Forbidden Pairs (PFP).
Instance: Graph G = (V,E), a set of forbidden pairs FN = {{u1, v1},. . .,
{uq, vq}}, and nodes s and d.
Question: Is there any path p = <s→ . . .→ d> such that contains at most
one vertex from each pair in FN?

Proof. For the sake of simplicity of presentation, we assume that in PFP each
node belongs to only one forbidden pair. This restriction will be removed later.
For a given instance (G,FN, s, d) of PFP, we construct an instance (G′, I,Φ, δ)
of FBCP. We assume that there is no restriction on the number of radios and
channels. The key observation is that nodes are the conflicting entities in PFP
but in FBCP with the interference range model, links are interfering with each
other. Hence, to construct G′, we replace nodes in G by links in G′ as follows.
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(b) Topology of the instance of FBCP corresponding to the instance of PFP in (a).

Figure A.8: An instance of PFP and its corresponding instance of FBCP.

• Each node u ∈ G is replaced by two nodes u and u′ and a link (u, u′) in
G′ where c(u,u′) = 1.

• The outgoing links of node u in G, (u, v) ∈ E, are represented by (u′, v)
in G′ where c(u′,v) =∞.

To form the desired interference sets,

• Set IR =∞, all links are in the interference range of each other.

• Assign a common channel to all links
{

(u′, v) ∀u′ ∈ G′
}

.

• For each pair {u, v} ∈ FN , assign the same channel to links (u, u′) and
(v, v′). However, the channel should be unique in the network.

• Assign a unique channel to every remaining link (u, u′) where u does not
belong to any forbidden pair in FN .

An instance of PFP and its corresponding transformed topology are depicted
in Fig. A.8. To complete the description of the instance of FBCP, we set Φ = {}
and δ = (s, d′, b = 1, 0, 1). We use the following facts to complete the proof.

F1. I(u,u′) =
{

(u, u′), (v, v′)
}

if and only if ∃{u, v} ∈ FN , and since c(u,u′) =
c(v,v′) = 1, only (u, u′) or only (v, v′) can be present in the solution of
FBCP.

F2. I(u,u′) =
{

(u, u′)
}

if and only if ∄{u, v} ∈ FN , and since c(u,u′) ≥ b, it can
be in the solution of FBCP independent of other links.

F3. Whereas all links
{

(u′, v) ∀u′ ∈ G′
}

are interfering with each other, they
can be in the solution of FBCP independent of each other because c(u′,v) =
∞.
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We claim that path p′ = <s→ s′→ u1→ u′
1→ u2→ u′

2→ . . .→ d→ d′> is
a feasible solution for FBCP, if and only if path p = <s→u1→u2→ . . .→ d>
is a feasible solution for PFP. Let p′ be feasible. If {u, v} ∈ FN , due to fact
F1, only (u, u′) or (v, v′) is in p′ which implies only u or v is in p and hence,
p is feasible. Assume p is a feasible path for PFP, p′ is a feasible solution for
FBCP because the capacity constraint of (u′, v) ∀u′ ∈ G′ is satisfied due to fact
F3, this constraint is satisfied for (u, u′) due to F2 if ∄{u, v} ∈ FN and due to
feasibility of p and F1 if ∃{u, v} ∈ FN . These complete the proof.

If node u belongs to multiple forbidden pairs, the proof is the same; however,
the node should be replaced by multiple nodes and links. For example, assume
{u, v1}, {u, v2} ∈ FN , node u is replaced by three nodes u, u′, and u′′ and two
links (u, u′) and (u′, u′′). The outgoing link (u, v) is represented by (u′′, v), the
same channel is assigned to both links (u, u′) and (v1, v

′
1), and the same channel

is assigned to both links (u′, u′′) and (v2, v
′
2).
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