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Abstract- Softwarization is the current trend of 

networking based on the success of technologies like 

Software Defined Networking (SDN) and Network 

Virtualization. Network as a Service (NaaS) is a new 

paradigm based on virtualization that enables customers 

to instantiate their virtual networks over a physical 

substrate network, mapping necessary resources by a 

Virtual Network Embedding (VNE) algorithm. Each 

VNE algorithm defines a resource allocation strategy of 

the NaaS provider, and determines its expenditures and 

revenues. Even though the problem of VNE has been 

widely investigated in recent years, virtualization in SDN 

introduces new challenges due to the new role of the 

controller and additional architectural constraints. In 

this paper, we investigate the VNE problem where both 

virtual and substrate networks are software defined. We 

propose a mathematical programming formulation that 

considers both the objectives of the NaaS provider 

(profit maximization) and the customers (switch-

controller delay minimization). Proposing new design 

metrics (i.e., k-hop delay, correlation, and distance), we 

develop a heuristic algorithm, and prove its effectiveness 

through extensive simulations in the well-known VNE 

evaluation tool, ALEVIN, and comparisons with other 

algorithms and mathematical bounds.  

Keywords: Software Defined Networking (SDN); Virtual 

Network Embedding (VNE); Network Virtualization; 

Multi-Objective Optimization; Network as Services 

(NaaS)   

I. INTRODUCTION 

In recent years, two technologies had major impact on 

computer networks, namely Software Define Networking 

(SDN) [1] and Network Virtualization [2]. SDN has 

introduced a new networking paradigm where the control 

plane is fully programmable and located in a logically 

centralized entity called the controller, while switches are 

simple packet forwarding devices (the data plane) where 

forwarding rules are programmed via an open interface 

e.g., ForCES [3], SoftRouter [4], and OpenFlow [5] in 

their flow tables. In software-defined networks, the 

switch-controller delay is a new important issue due to its 

impact on the network performance [6]. 

 Network Virtualization or "Network as a Service" 

(NaaS) allows to flexibly organize network functions and 

to deploy multiple virtual networks on a shared physical 

substrate network, where functions and resources are 

logically separated. 

Allocation of resources to virtual network (VN) 

requests, the key issue in NaaS, is commonly referred to 

as the Virtual Network Embedding (VNE) problem. In 

this problem, a set of VNs with given resource and 

topology requests should be mapped on a resource-

limited substrate network optimizing specific efficiency 

objectives. A solution of the problem by a VNE 

algorithm is a resource allocation mechanism of the NaaS 

provider that directly impacts expenditures (since it 

determines substrate network resource consumption) and 

revenue (since it determines the VN requests that can be 

accommodated). Hence, from business point of view, 

efficient VNE algorithms are vital tools to manage the 

business of the NaaS providers.  

The VNE problem can be divided into two sub-

problems namely the virtual nodes mapping (VNoM) and 

virtual links mapping (VLiM) problems. These sub-

problems can be dealt with separately, in a coordinated 

way, or jointly. More coordination leads to higher 

efficiency, however at the cost of significant 

computational complexity. Embedding virtual networks 

with nodes and links constraints has been proven to be a 

NP-Hard problem [7]. This has motivated researchers to 

focus on the development of heuristic methods able to 

provide good quality solutions for large instances in a 

reasonable time.  

Isolating the virtual tenant networks is a major 

implementation issue in network virtualization. Recently, 

both the substrate and virtual networks are moving 



toward the SDN paradigm and use its flexibility and 

programmability to enhance network virtualization 

including the isolation issue. SDN hypervisor, e.g., 

FlowVisor [8], facilitates the isolation. It is a critical 

component for virtualizing software-defined networks 

that abstracts the underlying physical SDN network into 

multiple logically isolated virtual SDN networks [9]. It is 

located between the substrate network switches and the 

controllers of the virtual SDN networks, and divides the 

substrate network resources into virtual slices where each 

is under the control of a virtual network controller.  

However, virtualization in SDN raises new issues in the 

VNE problem due to fundamental architectural 

differences of SDN from the traditional networks 

including: a) the centrality and importance of the 

controller which makes its placement an important 

problem [6], b) the constraints of switches on the number 

of entries in the forwarding table, c) the critical role of 

switch-controller delay, and d) virtualization by 

hypervisors whose location is vital in network 

performance. Therefore, whereas the VNE problem in the 

traditional networks has been widely studied and various 

approaches has been proposed [10], they are not directly 

applicable for the VNE problem in SDN.  

Recently, a few attempts to tackle the VNE problem in 

SDN have been done, although with some limitations. In 

[11], only the VLiM problem is investigated and the 

stages of nodes mapping and controller placement are not 

taken into consideration. In [12] and [13], the placement 

of controller is not considered and only the problems of 

embedding nodes and links are addressed. In [14], the 

limitations of the resources of the substrate network are 

not considered and no coordination between the mapping 

of nodes and links is made.  

In this paper, we investigate the problem of embedding 

a set of virtual SDN-based networks in a SDN-based 

substrate network where each virtual node/link is mapped 

on a physical node/path in the substrate network. And, by 

assuming that a distributed hypervisor is used in the 

substrate network, the controller of each VN is placed on 

a hypervisor instance in the substrate network. We 

consider both the objective of the NaaS provider to 

maximize its profit and the objective of customers to 

minimize the switch-controller delay in the VNs. We 

decompose the problem into two sub-problems and 

propose Mixed Integer Linear Programming (MILP) 

models for each of them.  

Even if the MILP formulations provide interesting 

results on the performance bounds, they cannot be used to 

solve the problem in short time and/or on large instances. 

Therefore, we propose a novel heuristic algorithm that 

considers the unique characteristics of the software-

define networks, such as the constraints on the number of 

entries in the flow table and also the location of the 

controller and hypervisors. The proposed solution 

efficiently coordinates controller placement, nodes 

mapping, and also links mapping. More precisely, the 

main contributions of this paper include: 

 formulating and decomposing the problem of the 

virtual network embedding in SDN that aims to 

maximize the business profit of NaaS provider and 

minimizing the delay between switches and controller 

of the embedded virtual networks; 

 development of appropriate design metrics for VNE 

algorithms in SDN, including the concept of 

correlation between virtual nodes for node ranking, 

the k-hop delay concept for controller placement, and 

the distance metric to minimize virtual link resource 

consumption; 

 development a heuristic algorithm for VNE in SDN, 

SVE
1
, that is based on the design metrics, and for the 

first time, coordinates the stages of controller 

placement, nodes mapping, and links mapping; 

 extension of the well-known VNE evaluation tool, 

ALEVIN [15], to support SDN-based virtual and 

substrate networks, which is used to evaluate the 

proposed algorithm in comparison to previous work in 

different scenarios. 

The rest of the paper is organized as follows. Section 2 

provides an overview of the related researches. In Section 

3, the system model and formulation of the VNE in SDN 

problem as optimization models are presented. In Section 

4, we develop the SVE algorithm for solving the 

embedding problem. The results obtained from the 

simulations are presented in Section 5; and in the last 

section, the future directions are discussed. 

II. PREVIOUS WORK 

Virtual network embedding is the key issue of resource 

allocation in NaaS, which is composed of the VNoM and 

VLiM sub-problems. The existing VNE approaches can 

be categorized into coordinated, uncoordinated, and joint 

groups in term of the interaction between the sub-

problems. In the uncoordinated methods [16, 17], VNoM 

and VLiM are solved in two separated and uncoordinated 

stages. In contrast, in the coordinated approaches, there is 

a coordination between the sub-problems [18, 19]. In the 

                                                      
1
 SVE stands for SDN Virtual network Embedding. 

 



joint approaches, both node and link mappings are 

performed jointly that increases the efficiency of the 

embedding at the significant cost of computational 

complexity. 

In [17], a two-stage node mapping scheme was 

proposed by means of resources migration to improve 

resource usage and acceptance ratio of VN requests. In 

[16], to maximize the acceptance ratio, it is aimed to 

reduce bottlenecks in the substrate network by a greedy 

algorithm for VNoM that maps virtual nodes on the 

substrate nodes with the maximum available resources. 

A recursive algorithm named VT-Planner was proposed 

in [18], which coordinates between VNoM and VLiM by 

minimizing the link pressure index in the node mapping 

stage. In [19], coordination between these two sub-

problems was formulated as a MIP model; and to tackle 

its complexity, two rounding techniques, namely 

deterministic and random, were used.   

Even though the VNE problem in traditional networks 

has been widely investigated [2, 10], the proposed 

approaches cannot be directly applied to VNE in SDN 

because of the fundamental different characteristics of 

SDN. First, due to the crucial role of the controller in 

SDN, its placement is an important issue. In [6], the 

controller placement problem in a given (not necessarily 

virtual) SDN network, and its effect on the switch-

controller delay, as an important factor in the network 

performance, was studied. However, it is not considered 

in the traditional VNE algorithms. It must be noted that 

network (nodes and links) embedding via the traditional 

VNE algorithms and then placing the controller in the 

embedded network, which are conducted in two separated 

stages, is not a feasible/efficient solution for the VNE in 

SDN problem. Because node mapping should be 

coordinated with controller placement in order to satisfy 

the required switch-controller delay in the embedded 

virtual network. Neither the traditional VNE algorithms 

nor the controller placement methods consider this 

coordination.   

Second, the size of flow table in SDN switches, as a 

new kind of substrate network resources, should also be 

managed. Finally, virtualization technologies in SDN are 

different from the traditional networks. In SDN, 

hypervisor has the responsibility of virtualizing the 

substrate network. It sits between the tenant SDN 

controllers and their respective virtual SDN networks and 

processes control traffic exchanged between them. Since 

switch-controller communication takes place through the 

hypervisor, its placement also impacts the performance of 

virtual networks. For scalability, performance and fault 

tolerance reasons, a distributed hypervisor can be used in 

the substrate network wherein multiple instances of the 

controller are installed in different locations. The problem 

of obtaining the required number and locations of the 

hypervisor instances, kwon as hypervisor placement 

problem (HPP), was studied in [20] and [21]. These 

papers assumed that the mapping of virtual nodes and 

virtual links and also the placement of the virtual SDN 

controllers are given and aimed to minimize the switch-

controller latency through the solution of HPP. In 

contrary, in this paper, we propose a solution for 

embedding virtual SDN networks, composed of node and 

link mapping and controller placement stages in a 

coordinated manner, which not only minimizes the 

latency, but also maximizes the profit of the NaaS 

provider. In this approach, the location of hypervisors is 

determined by the placement of the virtual controllers, 

i.e., an instance of the hypervisor is installed on a 

substrate node if at least one virtual controller is mapped 

on it. 

Recently, few studies have studied the VNE problem 

in SDN including [11], [12], [13], and [14]. In [12], the 

embedding problem was modeled as an ILP problem and 

a heuristic algorithm was proposed to solve the problem 

in large instances. The algorithm minimizes the link 

bandwidth consumption and the number of used substrate 

nodes. Whereas the solution was proposed for SDN, the 

controller placement problem is not considered, and also 

there is no effort to minimize the switch-controller delay.  

In [11], the VLiM problem was formulated as a MILP 

model and a new algorithm named VLM was developed. 

VLM maps virtual links according to available bandwidth 

of physical links. It attempts to maximize the number of 

accepted links while minimizing substrate resources 

consumption. In [11], only VLiM is solved and the 

VNoM problem is neglected. Moreover, the controller 

placement, switch-controller delay, and flow table 

limitation are not considered. In [13], a MIP formulation, 

for a coordinated node and link mapping was proposed. 

The aim in this work is to maximize the revenue while 

minimizing resource consumption. The constraints taken 

into account are CPU capacity of nodes and the 

bandwidth on links. Moreover the controller placement is 

not considered.  

The closest work to this paper, i.e., [14], takes 

controller placement into account. In that paper, two 

objectives are considered, namely balancing stress on 

substrate resources and minimizing the switch-controller 

delay. To determine the stress on a substrate node, in 

addition to the number of mapped virtual nodes on it, the 



computational power and the flow table space needed to 

handle the virtual links go through the node are also 

considered. In that paper, two algorithms named SBE
1
 

and DME
2
 were developed. SBE focuses on balancing the 

stress on substrate resources while keeping the switch-

controller delay within a given bound. On the other hand, 

DME minimizes the switch-controller delay while 

limiting the stress on substrate nodes and links. In 

comparison to other works, the SBE and DME algorithms 

are more applicable to VNE in SDN; however, they have 

considerable drawbacks. In these algorithms, the 

constraints of the capacity of the substrate resources, 

especially the size of switches’ flow table, are not 

considered. Besides, node mapping, link mapping, and 

controller placement are performed in three separated and 

uncoordinated steps. Finally, the SBE and DME 

algorithms do not directly consider the business profit of 

the NaaS provider.  

In summary, there is a considerable research gap in the 

problem of embedding software-defined virtual networks. 

In this paper, we formulate and solve the multi-objective 

VNE in SDN to maximize the profit of NaaS provider 

and minimize the switch-controller delay. We consider 

the special constraints of SDN in addition to traditional 

networks. More importantly, we coordinate the node 

mapping, link mapping, and the controller placement 

stages in our solution. Moreover, assuming using of a 

distributed hypervisor, we also determine the location of 

the instances of the hypervisor. 

III. SYSTEM MODEL AND PROBLEM STATEMENT 

In this section, first, the assumptions made in this paper 

are clarified. Then the abstract model of the substrate 

network and VN requests are explained. Finally, the 

problem of multi-objective embedding of software-

defined virtual network is decomposed and formulated as 

two MILP optimization models. The notations used in 

this paper are summarized in Table I. 

A. Assumptions 

In this paper, we study the off-line version of the VNE 

problem wherein all VN requests are known and given at 

the beginning. Each VN request can only be mapped on a 

subset of substrate nodes
3
, if there are enough resources, 

i.e., CPU, flow table and bandwidth, in the subset, this 

request is accepted, otherwise it is rejected.  

                                                      
1
 Stress-Balancing Embedding 

2
 Delay-Minimizing Embedding 

3
 The set considers various constraints, e.g., geographical constraint. 

 

Table I. Notations 

Notation Description 
   The set of substrate network nodes 
   The set of substrate network links 

   The set of substrate network nodes capable to host VN’s 
controller and substrate hypervisor instances 

   The CPU capacity of substrate node   
   The flow table capacity of substrate node    

       The bandwidth capacity of substrate link       

       The minimum delay between substrate nodes   and   

  
  The set of nodes of     VN request 

  
  The set of links of     VN request 

     
The subset of substrate nodes that     VN can be 
mapped on them 

   
The subset of substrate nodes that delay between them 
and node   is greater than  . 

  
  The required CPU capacity for     

  

  
  The required flow table capacity for     

  

      
  The required bandwidth capacity for         

  

D The set of VN requests 
      The number of virtual nodes mapped on      
      The number of virtual links go through      
       The set of virtual links mapped on          

   The upper limit of the switch-controller delay 
    Revenue of allocating a unit of CPU for a customer 
    Revenue of allocating a unit of bandwidth for customer 

  Cost of using a unit of bandwidth of substrate links 

Each virtual node of a given VN is mapped on only one 

substrate node, and two virtual nodes of a VN are not 

mapped on the same substrate node. 

To provide virtualization functionality in SDN, 

different hypervisor architectures were introduced in [21]. 

In this article, we assume that the NaaS provider uses the 

distributed hypervisor to isolate tenants’ virtual networks. 

In this architecture, multiple hypervisor instances are 

distributed over several locations in the network, and the 

substrate network switches support the multiple-

controller feature4, and consequently can be controlled 

by multiple hypervisor instances5. We assume that in the 

physical location of a subset of substrate nodes, there is a 

server in addition to the switch. In the case of mapping of 

at least a virtual SDN controller to these nodes, an 

instance of the distributed hypervisor is installed on the 

server to host the mapped virtual controller(s). It is 

assumed that there is only one controller per virtual SDN. 

The architectures of the virtual networks and the 

substrate network, based on these assumptions, are 

illustrated in Fig. 1(a) and Fig. 1(b), respectively.  

  

 

                                                      
4
 This feature was introduced in version 1.5 of the OpenFlow protocol. 

5
 The architecture is identical to the “Distributed Network Hypervisor 

Architecture for Multi-Controller SDN Switches,” in proposed in [21]. For 

more details about the architecture, please see. Fig. 1(c) and Section III.C. 



 

 

 

 

 

(a) Two virtual networks (b) Substrate network (c) Embedding of the VNs in the substrate network 

Fig. 1. An illustration of the architecture of virtual networks, the architecture of the substrate network, and mapping of the VNs in the substrate 

network. The controllers of both VN requests are mapped on node G; hence, an instance of the distributed hypervisor is installed on the server to host 

the virtual controllers. 

 

As it shown, in the virtual networks, there is a 

controller that is connected to each switch via a dedicated 

link. In the illustrated substrate network, in nodes A, C, 

and G, there is also a server, depicted by hexagonal, 

besides the switch. Fig. 1(c) shows a mapping of the 

VNRs in the substrate network. The mappings of the 

nodes and links are depicted by dashed arrows. In this 

example, both the virtual controllers are mapped on node 

G. Therefore, an instance of the hypervisor is installed on 

the server in this node. 

A. Substrate Network Model 

The substrate network is represented by a directed 

graph    (        ) where    is the set of substrate 

nodes,    is the set of substrate network links, and 

       is a subset of the substrate nodes which are 

capable to host a hypervisor instance and consequently 

virtual SDNs’ controllers, i.e., in addition to switch, there 

is a server in these nodes, e.g., nodes A, C, and G in Fig. 

1(b). For each substrate node     , the CPU and flow 

table capacities
1
 are respectively denoted by    and   . 

The substrate link between nodes   and   has a bandwidth 

capacity which is indicated by       . The delay from node 

  to node   via the shortest (minimum delay) path 

                                                      
1
 In this paper, we focus on substrate switches resources and don’t 

consider the capacity constraint of the servers. 

between them is denoted by       . For each     , we 

define its forbidden set as    {      |           
where   is the maximum acceptable switch-controller 

delay in the VNs. If the controller of a given VN is 

mapped on  , its respective switches cannot be mapped 

on     . 

The business model of the NaaS provider who is the 

owner of the substrate network is as follows. The revenue 

is generated by accepting VN requests and allocating the 

required resources. It is proportional to the amount of the 

requested resources; more specifically, the revenue by 

allocating a unit of CPU and bandwidth for customers is 

   and    respectively. Regarding the expenditure, it is 

assumed that the substrate switches and servers are the 

provider’s assets and installed in physical locations 

owned by the provider. Hence, allocating resources on 

the substrate nodes does not impose any cost for the NaaS 

provider. In contrast, bandwidth allocation on the 

substrate links is costly since it is assumed that the NaaS 

provider leases the links between substrate nodes from 

another carrier [22]
2
. In summary, bandwidth allocation 

on the substrate links is the only cost that the NaaS 

provider should pay which is   per unit of bandwidth. 

                                                      
2
 In practical cases, establishment of links between physical locations 

needs authorities which are given to a limited number of carrier 

companies. 



B. Virtual Network Request Model 

The     VN request is represented by a graph   
  

   
    

       ; where   
  is the set of the nodes of the 

request,   
  is the set of the links, and         is a 

subset of substrate nodes that can be used for mapping 

    
 . The required CPU and flow table capacities of 

node     
  are denoted by   

  and   
 , respectively. The 

requested bandwidth on link         
  is denoted 

by       
 . The set   contains all VN requests.  

As depicted in Fig. 1(a), in each virtual network, there 

is a direct link between each switch and the controller for 

the southbound communications (i.e., OpenFlow 

protocol). Its delay must be less than a given parameter  . 

More precisely, assuming that the controller of   
  is 

mapped on substrate node  , virtual node     
  must 

not be mapped on the substrate nodes      since the 

minimum delay between   and   is more than  .  

C. Formulation of VNE in SDN  

In this section, we formulate the problem of multi-

objective embedding of software-defined virtual 

networks. For a given substrate network   , a set   of 

VN requests, and the maximum acceptable switch-

controller delay  , the objective is to accept a set of 

requests that maximizes the profit of the NaaS provider 

(according to the aforementioned business model) while 

minimizing the switch-controller delay in the accepted 

VNs. Even though the maximum of the delay is bounded 

by parameter  , its minimization is crucial for the timely 

response of the controller to switch that impacts the 

performance of the virtual SDNs. This two-fold objective 

simultaneously takes the goals of the NaaS provider and 

customers into account. 

This embedding problem can be formulated as a single 

multi-objective MILP optimization model. However, that 

leads to a complicated model that even cannot be solved 

for small instances because of the coupling between 

decision variables in the objective function. In the 

following, we decompose the multi-objective MILP into 

two sub-problems.  

The VNE algorithm is the NaaS provider’s tool to 

maximize its profit. In short-term, the goal is achieved by 

satisfying the QoS requirements of the accepted requests. 

In long-term, it is influenced by customers’ QoE that 

depends on the performance of the embedded virtual 

network; and it is determined by the switch-controller 

delay. Therefore, minimizing the delay not only is the 

objective of the customers but also boosts the NaaS 

provider’s profit. Accordingly, the NaaS provider should 

consider minimizing the delay in the VNE algorithm; 

however, since its effect is long-term and indirect, the 

direct short-term profit maximization is prioritized over 

the delay minimization. Based on this fact, in the 

following, the problem is formulated in two stages. At the 

first step, we formulate maximizing the profit while 

maintaining QoS requirements of accommodated 

requests. Then, in the second stage, to improve the 

performance of accepted requests, we formulate 

minimizing the maximum switch-controller delay while 

maintaining the maximum achievable profit determined 

by the first sub-problem.  

The following decision variables are used to develop 

the optimization models: 

    is a binary variable that is equal to 1 if   
  is 

accepted; otherwise it is 0. 

     
  is a binary variable that is equal to 1 if virtual 

node     
  is mapped on substrate node     ; 

otherwise, it is 0. 

             
  is a binary variable that is equal to 1 if link 

         belongs to the path that link         
  is 

mapped on; otherwise, it is 0. 

   
  is a binary variable that is equal to 1 if the 

controller of   
  is mapped on     ; otherwise, it is 

0. 

   
  is a binary variable that is equal to 1 if a     

  is 

mapped on node     ; otherwise, it is 0. 

In the following, the objective function and constraints 

are formulated and then the important notes about them 

are clarified.  

In the first model, the goal is to maximize the profit; 

thus, the objective function is  

(1)                

where     and      are the revenue and cost of 

embedding, respectively. According to the 

aforementioned business model, they are as follows: 

(2)       ∑ ∑   
 

    
 

   

  
   

   ∑ ∑       
 

        
 

   

  
   



(3)       ∑ ∑ ∑       
 

        
 

             
 

  
           



The constraints of the problem are the node and link 

capacity constraints, virtual node and link mapping, and 

the switch-controller delay constraints, which are 

formulated as follows.  



The constraints on the capacity of substrate node’s CPU 

and flow table are (4) and (5). 

      ∑ ∑   
 

    
 

     
 

  
   

    

      ∑ ∑   
 

    
 

     
 

  
   

    

The substrate link’s bandwidth constraint is 



          

∑ ∑       
 

        
 

             
 

  
   

        

The constraint to map a virtual link on a path in substrate 

network is (7). 

 
∑             

 

        

 ∑             
 

        

     
      

  

   
              

         

The constraints for the relations between the variables are   

    
          

  ∑     
 

      

    

    
             ∑     

 

    
 

    

    
              

  ∑     
 

    
 

 

    
    ∑   

 

    

    

The following equation formulates the maximum 

tolerable delay between switches and controller, 

  
    

   

    
                 

Finally the domain constraints are as follows. 

   
       {    


   

         
             

            
  {    


   

             
  

          
            

  {    

   
           

    
  {    

The following notes about these equations need to be 

clarified: 

 Equations (1), (2), and (3) define the objective 

function. It is formulated based on the explained 

business model that maximizes the profit obtained 

from embedding VN requests in cost of using the 

carrier links.  

 Substrate network resource constraints are formulated 

by (4), (5), and (6). As mentioned, in this paper, we 

don’t consider the resources needed for the 

controllers, and moreover, since the volume of the 

southbound communication traffic is negligible in 

comparison to data traffic, it is not considered in the 

formulation. 

 Constraint (7) guarantees that the virtual link 

        
  is mapped on a path between the 

substrate nodes that   and   are mapped on them. 

 The constraint (8) guarantees that in the case of 

accepting   
 , each virtual node     

  is mapped on 

a single substrate node. 

 The constraint (9) guarantees that for each accepted 

request, two virtual nodes are not mapped on the 

same substrate node. 

 The constraint (10) indicates that if node        is 

used for mapping a node of   
 . 

 The constraint (11) guarantees that if   
  is accepted, 

its controller must be mapped on a substrate network 

node. 

 The constraint (12) guarantees that if the controller of 

  
  is mapped on     , i.e.,   

   , and delay 

between   and   exceeds  , i.e.,     , then none of 

the switches of the request can be mapped on  , i.e., 

  
  must be zero. In other words, this constraint 

implies that the switches of   
  can only be mapped 

on a nodes that satisfy the switch-controller delay 

constraint.  

In summary, the optimization model of the first stage is 

as follows. 

maximize (1) 

s. t. (2) – (16) 

As explained, in the second stage, the objective is to 

minimize the maximum switch-controller delay while 



maintaining the maximum obtainable profit. Therefore, in 

the second stage, the maximum profit obtained at the first 

stage        is added as the following constraint.  

(17)               

All the constraints of the first stage model should also 

be satisfied in this model. Moreover, the following 

constraint is added to limit the maximum switch-

controller delay by   which is minimized in the objective 

function.  

 

   
    

             

    
                     

This inequality implies that if both   
  and   

  are equal 

one,   has to be at least       , otherwise it does not 

impose any constraint. 

In summary the optimization model of the second 

stage is as follows: 

Minimize   

s. t. (2) – (18) 

The solution of the first stage problem determines the 

maximum achievable profit and the corresponding 

acceptable VN requests. The solution of second model 

rearranges the mappings of the accepted requests in order 

to minimize the switch-controller delay while 

maintaining the profit.   

Note that the solution of the second stage problem 

specifies the mapping of virtual nodes and links and also 

the placement of the virtual controllers. When the 

controller of   
  is mapped on substrate node  ,   

   , a 

hypervisor instance must also be installed on the server in 

node   to host the controller. Thus, in our approach, by 

solving the VNE problem that specifies the placement of 

the controllers, the location and the required number of 

hypervisor instances, the HPP problem, are also 

determined; in other words, the hypervisor placement 

problem is also implicitly solved. 

Whereas decomposing the multi-objective problem into 

the sub-models decreases its complexity, unfortunately 

these formulations also cannot be used to solve the 

problem in a reasonable time and/or in practical instances 

due to the NP-Completeness of the problem [7]. This 

encourages us to develop a heuristic algorithm for 

embedding software-defined VNs. It should be noted that 

in the following sections, these optimization models are 

relaxed to obtain the performance bounds to evaluate the 

heuristic algorithms. 

IV. THE SVE ALGORITHM 

In this section, we propose a heuristic algorithm named 

SVE to solve the multi-objective software-defined VNE 

problem. At the beginning, the features and underlying 

ideas of SVE are explained, and then, in the following 

subsections, the details are discussed.  

The main features of SVE differentiating it from the 

existing methods are as follows: 

 In addition to coordination between nodes and links 

mapping stages, for the first time, SVE coordinates 

the controller placement and nodes mapping stages 

too.  

 SVE tries to maximize the profit of NaaS provider 

meanwhile it also guarantees that the worst switch-

controller delay does not exceed r.  

 In SVE, in addition to the CPU capacity, the number 

of entries in flow table is also considered as a node 

constraint. 

The SEV algorithm is designed based on a few key 

ideas. First, traditional VNE algorithms, e.g., [14], aim to 

distribute VN requests in the substrate network in order to 

balance the load and avoid bottlenecks in the substrate 

network. However, in SVE, an opposite idea is used to 

reflect the architectural differences between SDN and 

traditional networks. SVE takes the importance of switch-

controller delay into account by mapping virtual nodes 

around the controller.  

Second, distributing virtual nodes in the substrate 

network leads to significant resource consumption by 

virtual links since they are mapped on long paths. To 

reduce the cost, SVE coordinates the node and link 

mapping stages by considering the bandwidth of virtual 

links in the node mapping stage. 

Third, in the off-line version of the VNE problem, the 

information about all VN requests is available at the 

beginning. This information is used by SVE to increase 

the profit by maximizing the number of accepted requests 

while minimizing the cost of mapping. Both the 

acceptance probability and the mapping cost are 

proportional to the amount of substrate resources needed 

for mapping a request; and it is mainly influenced by 

virtual links because each virtual node is always mapped 

on a single substrate node but a virtual link can be 

mapped on a path in substrate network where its length 

determined by the embedding algorithm. To take this fact 

in consideration, SVE sorts VN requests according to the 



total number of virtual links in descending order. In this 

way, large requests that make more revenue are processed 

before other requests; therefore, their acceptance 

probabilities increase that enhances the revenue, and 

since substrate links have not been consumed by the other 

VNs, their large number of virtual links are mapped on 

short paths, that reduces the mapping cost.  

Based on these ideas, the SVE algorithm, after sorting 

the requests, maps each VN in three stages. At first step, 

the location of network controller is specified wherein 

mapping the nodes around the controller is taken in 

consideration. In the second step, it maps the nodes while 

reflects the cost of link mapping. Finally, at the third step, 

the links are mapped. The details and design 

considerations of these steps are explained in the 

following subsections.   

A. Controller Placement Stage 

Controller placement has significant impact on both the 

NaaS provider’s and customer’s objectives. More 

precisely, resource availability around the controller’s 

location in the substrate network determines both the 

acceptance probability and the switch-controller delay. If 

controller is mapped on a node where there is not enough 

resource in the neighbor, the VN request is likely rejected 

or the virtual nodes of the request have to be mapped 

away from the controller that increases the delay and also 

the mapping cost. 

To locate a suitable place for controller and switches, in 

this paper, we use the stress index as the load measure. 

The node and link stress indexes are defined in [23]; and 

redefined for SDN paradigm in [14]. In this paper, we use 

the same definition of the node and link stress indexes. 

For a substrate node     , its stress is a weighted sum 

of the number of virtual nodes mapped on it (     ), and 

the number of virtual links traversing that node (     ). 
More formally, the stress of substrate node  , denoted by 

     , is 

                      

where   and   are design parameters that determine the 

importance of each factor of the node stress. 

The stress of the substrate link          is the sum of 

data and control traffic loads. Since we assumed that 

control plane traffic is negligible in comparison to the 

data plane, it is not taken into account. Let        

denotes the virtual links mapped on substrate link      ; 

the stress of the link is 

        ∑ ∑
      

 

      
        

          
   

To measure the availability of resources around a 

substrate node, we used the concept of neighborhood 

resource availability (NR) which is defined in [23] as 

follows: 

 
      (  

         )

(∑ (  
           )        

)

where   
                 and   

     

                      are respectively the maximum node 

and link stress of the substrate network.    is the set of 

substrate links adjacent to s. A high       value 

indicates that node   and its adjacent links are lightly 

loaded. 

      reflects the NaaS provider’s objective in 

controller placement stage. However, to take the 

customer’s objective into account, the delay between 

node   and other substrate nodes should also be 

considered. For this purpose, another metric named k-hop 

delay, denoted by          is defined. Let        is the 

 -hop bounded neighbors of  , i.e., the set of substrate 

nodes that are connected to node      through at most 

  hops, and then we have 

         
∑               

|      |


The value of   depends on node   and VN request   
 . It 

should be large enough to be able to map all     
  on 

the neighbors. More formally, 

         {|  
 |  |      |  

        is different from the estimation used in [14], 

where the average delay to all substrate nodes is 

obtained. However, the idea behind         is that the 

substrate nodes which are unlikely be used for mapping 

    
  in the case of selecting   for hosting the controller 

of   
 , should not affect the placement of the controller. 

For placing the controller, SVE calculates       for all 

nodes     ; the node with the largest    is selected to 

place the controller. If there are several nodes with the 

same value of   , the node with the lowest         is 

selected. 

B. Nodes Mapping Stage 

The main question of the node mapping stage is to find 

a substrate node to map a given virtual node. However, in 

SVE, at first, we try to find the proper order of the virtual 



nodes for mapping. To clarify the importance of this 

issue, consider mapping of two virtual nodes       
 , 

where the required bandwidth between them,       
 , is 

very high. If after mapping   on     , nodes other than 

  are mapped, likely the substrate nodes around   are 

used. Hence, there is not any room to map   near  ; so,   

must be mapped on a node away from   that increases the 

length of the path for mapping virtual link      ; and 

consequently increases the mapping cost.  

We introduce the correlation coefficient metric to 

determine the appropriate order of virtual nodes mapping 

that minimizes the cost. For a given request   
 , the 

correlation coefficient for every non-mapped virtual node 

    
  with respect to the mapped nodes of the request is 

defined as 

                
       

                 
 

where,   
    

  is a set of the virtual nodes that mapped 

before  . This metric measures the correlation between a 

non-mapped node   and the mapped nodes   
  in terms 

of required bandwidth between them.                 

indicates that required bandwidth between   and the 

mapped nodes is greater than the corresponding 

bandwidth for   ; so, as explained before, to minimize the 

cost of the virtual link mapping in the substrate network, 

node   should be mapped before   . Based on this idea, in 

the node mapping stage, SVE dynamically ranks virtual 

nodes based on        in descending order
1
. 

This node ranking mechanism is different from the 

procedures proposed in [24-26] that determine a static 

order of virtual node mapping at the beginning. In SVE, 

the order of unmapped nodes depends on the mapped 

nodes. In this way, it considers the resources that will be 

used by virtual links and makes coordination between the 

node mapping and the link mapping stages. Moreover, 

since this metric reflects the required virtual links 

bandwidth, SVE maps bandwidth intensive links on 

shorter paths to reduce the cost.   

Ranking substrate nodes for mapping a virtual node is 

the second issue in the node mapping stage. SVE ranks 

the substrate nodes according to the weight metric. The 

weight for a substrate node        with respect to virtual 

node     
  is defined as follows: 

                                                      
1
 For mapping the first node, where   

  is empty, the node with the largest 

degree is selected. 

        ∑       
         

     
 

 

where, and    is the substrate node that virtual node   is 

mapped on, and         is the number of hops between 

the substrate nodes   and   . By this definition, the 

weight of   for mapping   is the lower bound on the total 

bandwidth which will be used in the substrate network for 

mapping the virtual links       if   is mapped on  . By 

selecting a substrate node   with the minimum weight, 

SVE coordinates the node and link mapping stages even 

more to minimize the cost.  

Similar to the ranking of the virtual nodes, substrate 

nodes’ ranking should also consider the NaaS customer’s 

objective, i.e., minimizing the switch-controller delay. 

For this purpose, we define the Distance of substrate 

node      with respect to virtual node     
  as 

follows: 



              

     (
      

   
    

 
        

)   (
  

 

   
    

 
   

 )  

where,   
       is the set of substrate nodes that are not 

used for mapping virtual nodes     
  up to now,   

  is 

the delay between   and the substrate node that the 

controller of   
  is mapped on it; and   is a coefficient 

between 0 to 1. By changing the value of  , the 

importance of each term is controlled. Small value of   

reduces the importance of the switch-controller delay 

while its large value reduces the importance of substrate 

resource consumption. To select the proper substrate 

node for mapping  ,               is calculated for all 

substrate nodes     
  that have enough CPU and flow 

table resources, then the node with the smallest Distance 

value is selected to map this virtual node. 

C. Link Mapping Stage 

In this paper, each virtual link is mapped on a single 

path in the substrate network; therefore mapping all 

virtual links of a given VN is an instance of the integer 

multicommodity flow problem, which is NP-hard [27]. 

To tackle its complexity, in SVE algorithm, the K-

Shortest Path algorithm is used to map the virtual links. 

To map         
 , the   minimum-delay paths are 

found from    to    in the substrate network and       is 

mapped on the shortest feasible path, i.e., has sufficient 

residual bandwidth. The flowchart of the SVE algorithm 

is illustrated in Fig. 2.  



 

 
Fig. 2. The Overall flowchart of the SVE algorithm 

 

V. EVALUATION AND NUMERICAL RESULTS 

In this section, the performance of SVE is compared 

with the SBE and DME algorithms [14] and the bounds 

obtained from the optimization models. SBE aims to 

balance stress on substrate nodes and links while 

guaranteeing the worst switch-controller delay. On the 

other hand, DME tries to minimize the average switch-

controller delays while limiting the stress. 

A. Simulation Settings 

For evaluations, the ALEVIN simulator
10

 was used 

[15]. The simulations were performed in 10 substrate 

networks with different topologies and sizes, depicted in 

Table II. The Waxman Generator was used to create the 

virtual network requests, where the number of nodes is 

                                                      
10

 ALEVIN does not support SDN by default. It is extended for this 

purpose which is available at ceit.aut.ac.ir/~bakhshis/papers/alevin-

fork.zip  

between 5 to 18, parameter α is randomly selected from 

interval [0.3, 0.7], and      . 

In the following figures, the horizontal axis is the 

number of VN requests, which is the measure of 

network load. In the simulations, for each number of 

requests, we created five different equal-size sets of 

VNs. The sets of VNs are mapped on 10 different 

substrate networks. Therefore, the results in the 

following figures are the average of 50 different 

embedding experiments, which is sufficient for about 

94% confidence interval in the results. 

In these simulations, we assumed that all substrate 

nodes are capable to host the controller, i.e.,    
    moreover, all substrate nodes can be used for 

mapping each request, i.e.,             
 . The 

simulation settings are summarized in Table III.  

Since the SBE and DME algorithms do not consider 

the node and link capacity constraints and consequently 

always accept VN requests, we made modifications to 

enforce the resource constraints in the algorithms. 

Start

Is there any VN 
Request to map?

End

Calculate NR for all nodes in     and 
map the controller on node with 
highest NR. If there are multiple 
nodes, map the controller on node 
with smaller average k-hop delay.

Choose next virtual node according to 
node degree and correlation factor.

Is there any 
unmapped virtual 

node?

Map virtual node according to node 
weight and Distance value.

No

Yes

Yes

NoMap virtual links using k-
shortest path alghorithm

Is node mapping 
successful?

Is virtual links 
mapping successful?

VN request is acceptedVN request is rejected

Sort VNs based on size (number of 
virtual links) in descending order.

Yes

No

No

Yes



Table II. Substrate Networks in Simulation 

Substrate network # of nodes # of links 

1 39 172 

2 37 114 

3 40 178 

4 54 162 

5 65 216 

6 50 176 

7 37 164 

8 34 166 

9 33 132 

10 32 116 

 

Table III. Simulation Settings 

Parameter Value 

Virtual Network Generator Waxman Generator 

Waxman α parameter Randomly in [0.3, 0.7] 

Waxman   parameter 0.5 

Number of nodes per VNR [5, 18] 

      

            
  

SVE   parameter 0.25 

  50 ms 

SVE   parameter 1 

SVE   parameter 1 

 SVE   parameter 50 

    100 

     100 

  1 

In addition to the heuristic algorithms, the results of 

the optimization models are also presented as the 

benchmark to evaluate the efficiency of the algorithms. 

Since the problem is NP-Hard, the models cannot be 

solved even for small instances; so, in the following 

results, the upper-bounds for the revenue and lower-

bounds for the switch-controller delay were obtained by 

relaxing the binary variables     
  and             

 . 

B. Numerical Results 

In this section, we use the acceptance rate, revenue, 

and revenue-to-cost ratio metrics to evaluate the 

algorithms; these are the commonly used evaluation 

criteria of VNE algorithms. Moreover, the average and 

maximum of the switch-controller delay, the particular 

metric of software-defined virtual networks, are also 

evaluated. 

B.1. Acceptance, Revenue and Cost 

Fig. 3 shows the acceptance rate of the SVE, SBE, and 

DME algorithms. The results show that SVE achieves 

better acceptance rate than the others since it considers 

the substrate resource consumption by means of the 

correlation coefficient and distance metrics. The 

efficiency of SVE increases as more load offered to the 

network, i.e., increasing the number of VN requests, 

because of the proper ordering of VN requests according 

to their size by this algorithm. The performance of SVE 

is comparable to the upper bound especially in the 

lightly loaded networks.  

The revenue generated by each VNE algorithm is 

important for the NaaS provider. The comparison 

between the revenue of the algorithms and the 

mathematical upper bound, i.e., the value of the 

objective function of the LP relaxation of the first stage 

model, is depicted in Fig. 4. These results show that, not 

only SVE accepts more requests, which is depicted in 

Fig. 3, but also, it generates more revenue since it 

exploits the available information about the requests to 

order and map them accordingly. Moreover, it has a 

comparable performance with respect to the 

mathematical bound. The gap between SVE and the 

bound increases by the number of VN request which is 

in part due to looseness of the bound. 

Revenue to cost ratio is another important metric from 

the NaaS provider’s business point of view, since two 

algorithms can have the same revenue and acceptance 

rate but in different amount of substrate network 

resource consumption. This ratio shows how well the 

substrate network resources are used. The results are 

shown in Table IV. As it shown, the SVE algorithm 

achieved considerably higher revenue-to-cost ratio. The 

reason is the coordination between node and link 

mapping stages in this algorithm. It tries to map adjacent 

nodes near each other by using the correlation 

coefficient and distance metrics that decreases the cost 

of mapping. 

 

 
Fig. 3. Acceptance rate of the algorithms and its upper bound 

with respect to number of VN requests 
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Fig. 4. Revenue of the algorithm and its upper bound with 

respect to number of VN requests 

Table IV. Revenue-to-cost ratio of the algorithms and its upper 

bound with respect to number of VN requests 

The number 

of requests 

Approach 

SVE SBE DME Bound 

2 0.609 0.378 0.486 0.812 

4 0.634 0.388 0.485 0.804 

6 0.608 0.384 0.489 0.781 

8 0.600 0.375 0.460 0.752 

10 0.580 0.367 0.455 0.752 

B.2. Switch-controller delay 

The most important performance metric for the NaaS 

customer, i.e., the switch-controller delay, is evaluated 

in this section. The average and maximum of the delay 

for the heuristic algorithms and the lower bounds are 

depicted in Fig. 5 and Fig. 6, respectively.  

The average switch-controller delay in the networks 

mapped by SVE is less than the VNs which are mapped 

by SBE, and it is comparable to DME. Note that results 

obtained from DME are less than the results by SVE and 

even by the optimization models, it is not surprising. 

The algorithm only aims to minimize the delay and does 

not consider NaaS provider’s profit therefore it accepts a 

fewer requests and minimize the delay in the accepted 

demands which can be less than the delay in the case of 

accepting more requests, which is obtained by SVE or 

the optimization model. 

Therefore, it accepts a little number of requests (which is 

shown in Fig. 3) and tries to map the nodes around the 

controller to minimize the delay. On the other hand, the 

average delay for SBE is very high since it does not 

attempt to minimize it. The lower bound on the delay, 

i.e., the value of the objective function of the second 

stage model, is also depicted in the figure that shows the 

efficiency of SVE. As shown in Fig. 6, similar to the 

average switch-controller delay, the maximum of the 

delay for SVE is much less than SBE and more than 

DME. These results, in conjunction with the results in 

the previous section, confirm that SVE can efficiently 

satisfy both the provider and customer objectives. 

 
Fig. 5. The average switch-controller delay in mapped VN 

requests by the algorithms and optimization model 

 
Fig. 6. The maximum switch-controller delay in mapped VN 

requests by the algorithms and optimization model 

B.3. Impact of design parameters 

SVE is a parametric algorithm, where the parameters   

and   influence on the performance of the algorithm. 

The parameter   determines the number of hops which 

are used to estimate the K-hop delay. In SVE, it is 

claimed that bounding the number of hops leads to a 

better estimation of delay, and consequently more 

suitable location of controller is found that decreases the 

delay between switches and controllers. This statement 

is satisfied in Fig. 7 where the average delays of two 

versions of SVE are depicted. In one version, depicted 

by dashed lines, the K-hop bounding is used where   is 

determined by (23), while in the second version, 

depicted by solid line, the K-hop bounding mechanism 

is removed from the algorithm. As indicated, using the 
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K-hop delay leads to decrease in the switch-controller 

communication delay. 

The second parameter is   that balances between the 

profit and the delay. The effect of this parameter is 

shown in Fig. 8 that depicts the average switch-

controller delay by SVE for different values of  . By 

increasing the value of  , SVE puts more attention to the 

delay and tries to map virtual nodes as close as possible 

to the controller. Increasing the value of   causes that 

SVE does make effort to map virtual nodes alongside 

each other. Therefore, virtual links are mapped on longer 

paths that increase the cost and consequently decrease 

the revenue-to-cost ratio. This effect of   on the ratio is 

shown in Table V. 

 
Fig. 7. The impact of “K-hop delay” in the SVE algorithm on the 

switch-controller delay in the mapped VN requests 

 
Fig. 8. The average switch-controller delay for different values of 

parameter δ in the SVE algorithm 

 

 

 

Table V. The revenue to cost ratio of SVE for different values of   

The number of 

requests 

revenue-to-cost ratio 

              

2 0.631 0.591 0.518 

4 0.632 0.614 0.551 

6 0.614 0.599 0.550 

8 0.612 0.582 0.512 

10 0.599 0.563 0.513 

VI. CONCLUSION AND FUTURE WORK 

In this paper, the VNE problem is formulated in SDN 

ecosystem wherein a set of software-defined VN 

requests are mapped on a SDN based substrate network 

in order to maximize the profit of the NaaS provider and 

minimize the delay between switches and controller in 

the mapped VNs. The problem is solved by the proposed 

algorithm which consists of three coordinated stages 

namely the controller placement, virtual nodes mapping, 

and virtual links mapping stages. 

In the controller placement stage, SVE maps controller 

to the node with most resources in its neighbor 

according to the NR metric, and also considers the 

switch-controller delay by the K-hop delay metric. In the 

node mapping stage, it selects virtual nodes for mapping 

in descending order of the correlation coefficient metric 

that considers the amount of traffic volume between 

virtual nodes; and maps them on the substrate node with 

the minimum weight and distance. Finally, an instance 

of the distributed hypervisor is installed in the nodes 

where at least a controller mapped on. 

In this paper, we considered several practical aspects 

of VNE in SDN; the following issues can be 

investigated in future work:  

 Whereas we use the NR, correlation coefficient, and 

distance metrics to coordinate controller placement, 

virtual nodes mapping, and virtual links mapping; 

these stages are carried out in three separate phases. 

For the next step, to achieve higher efficiency, these 

problems can be tackled as a joint problem. 

 In this paper, the embedding problem was 

considered in off-line mode, wherein the 

information of all requests is available at the 

beginning; at the next step, the problem can be 

studied in on-line mode where whole VN requests 

are not known in advance and arrive to the network 

one-by-one. 
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