
Multi-objective Embedding of Software-Defined Virtual Networks

Mohammad Khaksar Haghani

a
, Bahador Bakhshi

a,*
, Antonio Capone

b

a
Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran

b
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

* Corresponding Author

Email Addresses: mkhd_1369@aut.ac.ir (Mohammad Khaksar Haghani), bbakhshi@aut.ac.ir (Bahador Bakhshi),

capone@elet.polimi.it (Antonio Capone)

Abstract- Softwarization is the current trend of

networking based on the success of technologies like

Software Defined Networking (SDN) and Network

Virtualization. Network as a Service (NaaS) is a new

paradigm based on virtualization that enables customers

to instantiate their virtual networks over a physical

substrate network, mapping necessary resources by a

Virtual Network Embedding (VNE) algorithm. Each

VNE algorithm defines a resource allocation strategy of

the NaaS provider, and determines its expenditures and

revenues. Even though the problem of VNE has been

widely investigated in recent years, virtualization in SDN

introduces new challenges due to the new role of the

controller and additional architectural constraints. In

this paper, we investigate the VNE problem where both

virtual and substrate networks are software defined. We

propose a mathematical programming formulation that

considers both the objectives of the NaaS provider

(profit maximization) and the customers (switch-

controller delay minimization). Proposing new design

metrics (i.e., k-hop delay, correlation, and distance), we

develop a heuristic algorithm, and prove its effectiveness

through extensive simulations in the well-known VNE

evaluation tool, ALEVIN, and comparisons with other

algorithms and mathematical bounds.

Keywords: Software Defined Networking (SDN); Virtual

Network Embedding (VNE); Network Virtualization;

Multi-Objective Optimization; Network as Services

(NaaS)

I. INTRODUCTION

In recent years, two technologies had major impact on

computer networks, namely Software Define Networking

(SDN) [1] and Network Virtualization [2]. SDN has

introduced a new networking paradigm where the control

plane is fully programmable and located in a logically

centralized entity called the controller, while switches are

simple packet forwarding devices (the data plane) where

forwarding rules are programmed via an open interface

e.g., ForCES [3], SoftRouter [4], and OpenFlow [5] in

their flow tables. In software-defined networks, the

switch-controller delay is a new important issue due to its

impact on the network performance [6].

 Network Virtualization or "Network as a Service"

(NaaS) allows to flexibly organize network functions and

to deploy multiple virtual networks on a shared physical

substrate network, where functions and resources are

logically separated.

Allocation of resources to virtual network (VN)

requests, the key issue in NaaS, is commonly referred to

as the Virtual Network Embedding (VNE) problem. In

this problem, a set of VNs with given resource and

topology requests should be mapped on a resource-

limited substrate network optimizing specific efficiency

objectives. A solution of the problem by a VNE

algorithm is a resource allocation mechanism of the NaaS

provider that directly impacts expenditures (since it

determines substrate network resource consumption) and

revenue (since it determines the VN requests that can be

accommodated). Hence, from business point of view,

efficient VNE algorithms are vital tools to manage the

business of the NaaS providers.

The VNE problem can be divided into two sub-

problems namely the virtual nodes mapping (VNoM) and

virtual links mapping (VLiM) problems. These sub-

problems can be dealt with separately, in a coordinated

way, or jointly. More coordination leads to higher

efficiency, however at the cost of significant

computational complexity. Embedding virtual networks

with nodes and links constraints has been proven to be a

NP-Hard problem [7]. This has motivated researchers to

focus on the development of heuristic methods able to

provide good quality solutions for large instances in a

reasonable time.

Isolating the virtual tenant networks is a major

implementation issue in network virtualization. Recently,

both the substrate and virtual networks are moving

toward the SDN paradigm and use its flexibility and

programmability to enhance network virtualization

including the isolation issue. SDN hypervisor, e.g.,

FlowVisor [8], facilitates the isolation. It is a critical

component for virtualizing software-defined networks

that abstracts the underlying physical SDN network into

multiple logically isolated virtual SDN networks [9]. It is

located between the substrate network switches and the

controllers of the virtual SDN networks, and divides the

substrate network resources into virtual slices where each

is under the control of a virtual network controller.

However, virtualization in SDN raises new issues in the

VNE problem due to fundamental architectural

differences of SDN from the traditional networks

including: a) the centrality and importance of the

controller which makes its placement an important

problem [6], b) the constraints of switches on the number

of entries in the forwarding table, c) the critical role of

switch-controller delay, and d) virtualization by

hypervisors whose location is vital in network

performance. Therefore, whereas the VNE problem in the

traditional networks has been widely studied and various

approaches has been proposed [10], they are not directly

applicable for the VNE problem in SDN.

Recently, a few attempts to tackle the VNE problem in

SDN have been done, although with some limitations. In

[11], only the VLiM problem is investigated and the

stages of nodes mapping and controller placement are not

taken into consideration. In [12] and [13], the placement

of controller is not considered and only the problems of

embedding nodes and links are addressed. In [14], the

limitations of the resources of the substrate network are

not considered and no coordination between the mapping

of nodes and links is made.

In this paper, we investigate the problem of embedding

a set of virtual SDN-based networks in a SDN-based

substrate network where each virtual node/link is mapped

on a physical node/path in the substrate network. And, by

assuming that a distributed hypervisor is used in the

substrate network, the controller of each VN is placed on

a hypervisor instance in the substrate network. We

consider both the objective of the NaaS provider to

maximize its profit and the objective of customers to

minimize the switch-controller delay in the VNs. We

decompose the problem into two sub-problems and

propose Mixed Integer Linear Programming (MILP)

models for each of them.

Even if the MILP formulations provide interesting

results on the performance bounds, they cannot be used to

solve the problem in short time and/or on large instances.

Therefore, we propose a novel heuristic algorithm that

considers the unique characteristics of the software-

define networks, such as the constraints on the number of

entries in the flow table and also the location of the

controller and hypervisors. The proposed solution

efficiently coordinates controller placement, nodes

mapping, and also links mapping. More precisely, the

main contributions of this paper include:

 formulating and decomposing the problem of the

virtual network embedding in SDN that aims to

maximize the business profit of NaaS provider and

minimizing the delay between switches and controller

of the embedded virtual networks;

 development of appropriate design metrics for VNE

algorithms in SDN, including the concept of

correlation between virtual nodes for node ranking,

the k-hop delay concept for controller placement, and

the distance metric to minimize virtual link resource

consumption;

 development a heuristic algorithm for VNE in SDN,

SVE
1
, that is based on the design metrics, and for the

first time, coordinates the stages of controller

placement, nodes mapping, and links mapping;

 extension of the well-known VNE evaluation tool,

ALEVIN [15], to support SDN-based virtual and

substrate networks, which is used to evaluate the

proposed algorithm in comparison to previous work in

different scenarios.

The rest of the paper is organized as follows. Section 2

provides an overview of the related researches. In Section

3, the system model and formulation of the VNE in SDN

problem as optimization models are presented. In Section

4, we develop the SVE algorithm for solving the

embedding problem. The results obtained from the

simulations are presented in Section 5; and in the last

section, the future directions are discussed.

II. PREVIOUS WORK

Virtual network embedding is the key issue of resource

allocation in NaaS, which is composed of the VNoM and

VLiM sub-problems. The existing VNE approaches can

be categorized into coordinated, uncoordinated, and joint

groups in term of the interaction between the sub-

problems. In the uncoordinated methods [16, 17], VNoM

and VLiM are solved in two separated and uncoordinated

stages. In contrast, in the coordinated approaches, there is

a coordination between the sub-problems [18, 19]. In the

1
 SVE stands for SDN Virtual network Embedding.

joint approaches, both node and link mappings are

performed jointly that increases the efficiency of the

embedding at the significant cost of computational

complexity.

In [17], a two-stage node mapping scheme was

proposed by means of resources migration to improve

resource usage and acceptance ratio of VN requests. In

[16], to maximize the acceptance ratio, it is aimed to

reduce bottlenecks in the substrate network by a greedy

algorithm for VNoM that maps virtual nodes on the

substrate nodes with the maximum available resources.

A recursive algorithm named VT-Planner was proposed

in [18], which coordinates between VNoM and VLiM by

minimizing the link pressure index in the node mapping

stage. In [19], coordination between these two sub-

problems was formulated as a MIP model; and to tackle

its complexity, two rounding techniques, namely

deterministic and random, were used.

Even though the VNE problem in traditional networks

has been widely investigated [2, 10], the proposed

approaches cannot be directly applied to VNE in SDN

because of the fundamental different characteristics of

SDN. First, due to the crucial role of the controller in

SDN, its placement is an important issue. In [6], the

controller placement problem in a given (not necessarily

virtual) SDN network, and its effect on the switch-

controller delay, as an important factor in the network

performance, was studied. However, it is not considered

in the traditional VNE algorithms. It must be noted that

network (nodes and links) embedding via the traditional

VNE algorithms and then placing the controller in the

embedded network, which are conducted in two separated

stages, is not a feasible/efficient solution for the VNE in

SDN problem. Because node mapping should be

coordinated with controller placement in order to satisfy

the required switch-controller delay in the embedded

virtual network. Neither the traditional VNE algorithms

nor the controller placement methods consider this

coordination.

Second, the size of flow table in SDN switches, as a

new kind of substrate network resources, should also be

managed. Finally, virtualization technologies in SDN are

different from the traditional networks. In SDN,

hypervisor has the responsibility of virtualizing the

substrate network. It sits between the tenant SDN

controllers and their respective virtual SDN networks and

processes control traffic exchanged between them. Since

switch-controller communication takes place through the

hypervisor, its placement also impacts the performance of

virtual networks. For scalability, performance and fault

tolerance reasons, a distributed hypervisor can be used in

the substrate network wherein multiple instances of the

controller are installed in different locations. The problem

of obtaining the required number and locations of the

hypervisor instances, kwon as hypervisor placement

problem (HPP), was studied in [20] and [21]. These

papers assumed that the mapping of virtual nodes and

virtual links and also the placement of the virtual SDN

controllers are given and aimed to minimize the switch-

controller latency through the solution of HPP. In

contrary, in this paper, we propose a solution for

embedding virtual SDN networks, composed of node and

link mapping and controller placement stages in a

coordinated manner, which not only minimizes the

latency, but also maximizes the profit of the NaaS

provider. In this approach, the location of hypervisors is

determined by the placement of the virtual controllers,

i.e., an instance of the hypervisor is installed on a

substrate node if at least one virtual controller is mapped

on it.

Recently, few studies have studied the VNE problem

in SDN including [11], [12], [13], and [14]. In [12], the

embedding problem was modeled as an ILP problem and

a heuristic algorithm was proposed to solve the problem

in large instances. The algorithm minimizes the link

bandwidth consumption and the number of used substrate

nodes. Whereas the solution was proposed for SDN, the

controller placement problem is not considered, and also

there is no effort to minimize the switch-controller delay.

In [11], the VLiM problem was formulated as a MILP

model and a new algorithm named VLM was developed.

VLM maps virtual links according to available bandwidth

of physical links. It attempts to maximize the number of

accepted links while minimizing substrate resources

consumption. In [11], only VLiM is solved and the

VNoM problem is neglected. Moreover, the controller

placement, switch-controller delay, and flow table

limitation are not considered. In [13], a MIP formulation,

for a coordinated node and link mapping was proposed.

The aim in this work is to maximize the revenue while

minimizing resource consumption. The constraints taken

into account are CPU capacity of nodes and the

bandwidth on links. Moreover the controller placement is

not considered.

The closest work to this paper, i.e., [14], takes

controller placement into account. In that paper, two

objectives are considered, namely balancing stress on

substrate resources and minimizing the switch-controller

delay. To determine the stress on a substrate node, in

addition to the number of mapped virtual nodes on it, the

computational power and the flow table space needed to

handle the virtual links go through the node are also

considered. In that paper, two algorithms named SBE
1

and DME
2
 were developed. SBE focuses on balancing the

stress on substrate resources while keeping the switch-

controller delay within a given bound. On the other hand,

DME minimizes the switch-controller delay while

limiting the stress on substrate nodes and links. In

comparison to other works, the SBE and DME algorithms

are more applicable to VNE in SDN; however, they have

considerable drawbacks. In these algorithms, the

constraints of the capacity of the substrate resources,

especially the size of switches’ flow table, are not

considered. Besides, node mapping, link mapping, and

controller placement are performed in three separated and

uncoordinated steps. Finally, the SBE and DME

algorithms do not directly consider the business profit of

the NaaS provider.

In summary, there is a considerable research gap in the

problem of embedding software-defined virtual networks.

In this paper, we formulate and solve the multi-objective

VNE in SDN to maximize the profit of NaaS provider

and minimize the switch-controller delay. We consider

the special constraints of SDN in addition to traditional

networks. More importantly, we coordinate the node

mapping, link mapping, and the controller placement

stages in our solution. Moreover, assuming using of a

distributed hypervisor, we also determine the location of

the instances of the hypervisor.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, first, the assumptions made in this paper

are clarified. Then the abstract model of the substrate

network and VN requests are explained. Finally, the

problem of multi-objective embedding of software-

defined virtual network is decomposed and formulated as

two MILP optimization models. The notations used in

this paper are summarized in Table I.

A. Assumptions

In this paper, we study the off-line version of the VNE

problem wherein all VN requests are known and given at

the beginning. Each VN request can only be mapped on a

subset of substrate nodes
3
, if there are enough resources,

i.e., CPU, flow table and bandwidth, in the subset, this

request is accepted, otherwise it is rejected.

1
 Stress-Balancing Embedding

2
 Delay-Minimizing Embedding

3
 The set considers various constraints, e.g., geographical constraint.

Table I. Notations

Notation Description
 The set of substrate network nodes
 The set of substrate network links

 The set of substrate network nodes capable to host VN’s
controller and substrate hypervisor instances

 The CPU capacity of substrate node
 The flow table capacity of substrate node

 The bandwidth capacity of substrate link

 The minimum delay between substrate nodes and

 The set of nodes of VN request

 The set of links of VN request

The subset of substrate nodes that VN can be
mapped on them

The subset of substrate nodes that delay between them
and node is greater than .

 The required CPU capacity for

 The required flow table capacity for

 The required bandwidth capacity for

D The set of VN requests
 The number of virtual nodes mapped on
 The number of virtual links go through
 The set of virtual links mapped on

 The upper limit of the switch-controller delay
 Revenue of allocating a unit of CPU for a customer
 Revenue of allocating a unit of bandwidth for customer

 Cost of using a unit of bandwidth of substrate links

Each virtual node of a given VN is mapped on only one

substrate node, and two virtual nodes of a VN are not

mapped on the same substrate node.

To provide virtualization functionality in SDN,

different hypervisor architectures were introduced in [21].

In this article, we assume that the NaaS provider uses the

distributed hypervisor to isolate tenants’ virtual networks.

In this architecture, multiple hypervisor instances are

distributed over several locations in the network, and the

substrate network switches support the multiple-

controller feature4, and consequently can be controlled

by multiple hypervisor instances5. We assume that in the

physical location of a subset of substrate nodes, there is a

server in addition to the switch. In the case of mapping of

at least a virtual SDN controller to these nodes, an

instance of the distributed hypervisor is installed on the

server to host the mapped virtual controller(s). It is

assumed that there is only one controller per virtual SDN.

The architectures of the virtual networks and the

substrate network, based on these assumptions, are

illustrated in Fig. 1(a) and Fig. 1(b), respectively.

4
 This feature was introduced in version 1.5 of the OpenFlow protocol.

5
 The architecture is identical to the “Distributed Network Hypervisor

Architecture for Multi-Controller SDN Switches,” in proposed in [21]. For

more details about the architecture, please see. Fig. 1(c) and Section III.C.

(a) Two virtual networks (b) Substrate network (c) Embedding of the VNs in the substrate network

Fig. 1. An illustration of the architecture of virtual networks, the architecture of the substrate network, and mapping of the VNs in the substrate

network. The controllers of both VN requests are mapped on node G; hence, an instance of the distributed hypervisor is installed on the server to host

the virtual controllers.

As it shown, in the virtual networks, there is a

controller that is connected to each switch via a dedicated

link. In the illustrated substrate network, in nodes A, C,

and G, there is also a server, depicted by hexagonal,

besides the switch. Fig. 1(c) shows a mapping of the

VNRs in the substrate network. The mappings of the

nodes and links are depicted by dashed arrows. In this

example, both the virtual controllers are mapped on node

G. Therefore, an instance of the hypervisor is installed on

the server in this node.

A. Substrate Network Model

The substrate network is represented by a directed

graph () where is the set of substrate

nodes, is the set of substrate network links, and

 is a subset of the substrate nodes which are

capable to host a hypervisor instance and consequently

virtual SDNs’ controllers, i.e., in addition to switch, there

is a server in these nodes, e.g., nodes A, C, and G in Fig.

1(b). For each substrate node , the CPU and flow

table capacities
1
 are respectively denoted by and .

The substrate link between nodes and has a bandwidth

capacity which is indicated by . The delay from node

 to node via the shortest (minimum delay) path

1
 In this paper, we focus on substrate switches resources and don’t

consider the capacity constraint of the servers.

between them is denoted by . For each , we

define its forbidden set as { |
where is the maximum acceptable switch-controller

delay in the VNs. If the controller of a given VN is

mapped on , its respective switches cannot be mapped

on .

The business model of the NaaS provider who is the

owner of the substrate network is as follows. The revenue

is generated by accepting VN requests and allocating the

required resources. It is proportional to the amount of the

requested resources; more specifically, the revenue by

allocating a unit of CPU and bandwidth for customers is

 and respectively. Regarding the expenditure, it is

assumed that the substrate switches and servers are the

provider’s assets and installed in physical locations

owned by the provider. Hence, allocating resources on

the substrate nodes does not impose any cost for the NaaS

provider. In contrast, bandwidth allocation on the

substrate links is costly since it is assumed that the NaaS

provider leases the links between substrate nodes from

another carrier [22]
2
. In summary, bandwidth allocation

on the substrate links is the only cost that the NaaS

provider should pay which is per unit of bandwidth.

2
 In practical cases, establishment of links between physical locations

needs authorities which are given to a limited number of carrier

companies.

B. Virtual Network Request Model

The VN request is represented by a graph

 ; where
 is the set of the nodes of the

request,
 is the set of the links, and is a

subset of substrate nodes that can be used for mapping

 . The required CPU and flow table capacities of

node
 are denoted by

 and
 , respectively. The

requested bandwidth on link
 is denoted

by
 . The set contains all VN requests.

As depicted in Fig. 1(a), in each virtual network, there

is a direct link between each switch and the controller for

the southbound communications (i.e., OpenFlow

protocol). Its delay must be less than a given parameter .

More precisely, assuming that the controller of
 is

mapped on substrate node , virtual node
 must

not be mapped on the substrate nodes since the

minimum delay between and is more than .

C. Formulation of VNE in SDN

In this section, we formulate the problem of multi-

objective embedding of software-defined virtual

networks. For a given substrate network , a set of

VN requests, and the maximum acceptable switch-

controller delay , the objective is to accept a set of

requests that maximizes the profit of the NaaS provider

(according to the aforementioned business model) while

minimizing the switch-controller delay in the accepted

VNs. Even though the maximum of the delay is bounded

by parameter , its minimization is crucial for the timely

response of the controller to switch that impacts the

performance of the virtual SDNs. This two-fold objective

simultaneously takes the goals of the NaaS provider and

customers into account.

This embedding problem can be formulated as a single

multi-objective MILP optimization model. However, that

leads to a complicated model that even cannot be solved

for small instances because of the coupling between

decision variables in the objective function. In the

following, we decompose the multi-objective MILP into

two sub-problems.

The VNE algorithm is the NaaS provider’s tool to

maximize its profit. In short-term, the goal is achieved by

satisfying the QoS requirements of the accepted requests.

In long-term, it is influenced by customers’ QoE that

depends on the performance of the embedded virtual

network; and it is determined by the switch-controller

delay. Therefore, minimizing the delay not only is the

objective of the customers but also boosts the NaaS

provider’s profit. Accordingly, the NaaS provider should

consider minimizing the delay in the VNE algorithm;

however, since its effect is long-term and indirect, the

direct short-term profit maximization is prioritized over

the delay minimization. Based on this fact, in the

following, the problem is formulated in two stages. At the

first step, we formulate maximizing the profit while

maintaining QoS requirements of accommodated

requests. Then, in the second stage, to improve the

performance of accepted requests, we formulate

minimizing the maximum switch-controller delay while

maintaining the maximum achievable profit determined

by the first sub-problem.

The following decision variables are used to develop

the optimization models:

 is a binary variable that is equal to 1 if
 is

accepted; otherwise it is 0.

 is a binary variable that is equal to 1 if virtual

node
 is mapped on substrate node ;

otherwise, it is 0.

 is a binary variable that is equal to 1 if link

 belongs to the path that link
 is

mapped on; otherwise, it is 0.

 is a binary variable that is equal to 1 if the

controller of
 is mapped on ; otherwise, it is

0.

 is a binary variable that is equal to 1 if a

 is

mapped on node ; otherwise, it is 0.

In the following, the objective function and constraints

are formulated and then the important notes about them

are clarified.

In the first model, the goal is to maximize the profit;

thus, the objective function is

(1)

where and are the revenue and cost of

embedding, respectively. According to the

aforementioned business model, they are as follows:

(2) ∑ ∑

 ∑ ∑

(3) ∑ ∑ ∑

The constraints of the problem are the node and link

capacity constraints, virtual node and link mapping, and

the switch-controller delay constraints, which are

formulated as follows.

The constraints on the capacity of substrate node’s CPU

and flow table are (4) and (5).

 ∑ ∑

 ∑ ∑

The substrate link’s bandwidth constraint is

∑ ∑

The constraint to map a virtual link on a path in substrate

network is (7).

∑

 ∑

The constraints for the relations between the variables are

 ∑

 ∑

 ∑

 ∑

The following equation formulates the maximum

tolerable delay between switches and controller,

Finally the domain constraints are as follows.

 {

 {

 {

 {

The following notes about these equations need to be

clarified:

 Equations (1), (2), and (3) define the objective

function. It is formulated based on the explained

business model that maximizes the profit obtained

from embedding VN requests in cost of using the

carrier links.

 Substrate network resource constraints are formulated

by (4), (5), and (6). As mentioned, in this paper, we

don’t consider the resources needed for the

controllers, and moreover, since the volume of the

southbound communication traffic is negligible in

comparison to data traffic, it is not considered in the

formulation.

 Constraint (7) guarantees that the virtual link

 is mapped on a path between the

substrate nodes that and are mapped on them.

 The constraint (8) guarantees that in the case of

accepting
 , each virtual node

 is mapped on

a single substrate node.

 The constraint (9) guarantees that for each accepted

request, two virtual nodes are not mapped on the

same substrate node.

 The constraint (10) indicates that if node is

used for mapping a node of
 .

 The constraint (11) guarantees that if
 is accepted,

its controller must be mapped on a substrate network

node.

 The constraint (12) guarantees that if the controller of

 is mapped on , i.e.,

 , and delay

between and exceeds , i.e., , then none of

the switches of the request can be mapped on , i.e.,

 must be zero. In other words, this constraint

implies that the switches of
 can only be mapped

on a nodes that satisfy the switch-controller delay

constraint.

In summary, the optimization model of the first stage is

as follows.

maximize (1)

s. t. (2) – (16)

As explained, in the second stage, the objective is to

minimize the maximum switch-controller delay while

maintaining the maximum obtainable profit. Therefore, in

the second stage, the maximum profit obtained at the first

stage is added as the following constraint.

(17)

All the constraints of the first stage model should also

be satisfied in this model. Moreover, the following

constraint is added to limit the maximum switch-

controller delay by which is minimized in the objective

function.

This inequality implies that if both
 and

 are equal

one, has to be at least , otherwise it does not

impose any constraint.

In summary the optimization model of the second

stage is as follows:

Minimize

s. t. (2) – (18)

The solution of the first stage problem determines the

maximum achievable profit and the corresponding

acceptable VN requests. The solution of second model

rearranges the mappings of the accepted requests in order

to minimize the switch-controller delay while

maintaining the profit.

Note that the solution of the second stage problem

specifies the mapping of virtual nodes and links and also

the placement of the virtual controllers. When the

controller of
 is mapped on substrate node ,

 , a

hypervisor instance must also be installed on the server in

node to host the controller. Thus, in our approach, by

solving the VNE problem that specifies the placement of

the controllers, the location and the required number of

hypervisor instances, the HPP problem, are also

determined; in other words, the hypervisor placement

problem is also implicitly solved.

Whereas decomposing the multi-objective problem into

the sub-models decreases its complexity, unfortunately

these formulations also cannot be used to solve the

problem in a reasonable time and/or in practical instances

due to the NP-Completeness of the problem [7]. This

encourages us to develop a heuristic algorithm for

embedding software-defined VNs. It should be noted that

in the following sections, these optimization models are

relaxed to obtain the performance bounds to evaluate the

heuristic algorithms.

IV. THE SVE ALGORITHM

In this section, we propose a heuristic algorithm named

SVE to solve the multi-objective software-defined VNE

problem. At the beginning, the features and underlying

ideas of SVE are explained, and then, in the following

subsections, the details are discussed.

The main features of SVE differentiating it from the

existing methods are as follows:

 In addition to coordination between nodes and links

mapping stages, for the first time, SVE coordinates

the controller placement and nodes mapping stages

too.

 SVE tries to maximize the profit of NaaS provider

meanwhile it also guarantees that the worst switch-

controller delay does not exceed r.

 In SVE, in addition to the CPU capacity, the number

of entries in flow table is also considered as a node

constraint.

The SEV algorithm is designed based on a few key

ideas. First, traditional VNE algorithms, e.g., [14], aim to

distribute VN requests in the substrate network in order to

balance the load and avoid bottlenecks in the substrate

network. However, in SVE, an opposite idea is used to

reflect the architectural differences between SDN and

traditional networks. SVE takes the importance of switch-

controller delay into account by mapping virtual nodes

around the controller.

Second, distributing virtual nodes in the substrate

network leads to significant resource consumption by

virtual links since they are mapped on long paths. To

reduce the cost, SVE coordinates the node and link

mapping stages by considering the bandwidth of virtual

links in the node mapping stage.

Third, in the off-line version of the VNE problem, the

information about all VN requests is available at the

beginning. This information is used by SVE to increase

the profit by maximizing the number of accepted requests

while minimizing the cost of mapping. Both the

acceptance probability and the mapping cost are

proportional to the amount of substrate resources needed

for mapping a request; and it is mainly influenced by

virtual links because each virtual node is always mapped

on a single substrate node but a virtual link can be

mapped on a path in substrate network where its length

determined by the embedding algorithm. To take this fact

in consideration, SVE sorts VN requests according to the

total number of virtual links in descending order. In this

way, large requests that make more revenue are processed

before other requests; therefore, their acceptance

probabilities increase that enhances the revenue, and

since substrate links have not been consumed by the other

VNs, their large number of virtual links are mapped on

short paths, that reduces the mapping cost.

Based on these ideas, the SVE algorithm, after sorting

the requests, maps each VN in three stages. At first step,

the location of network controller is specified wherein

mapping the nodes around the controller is taken in

consideration. In the second step, it maps the nodes while

reflects the cost of link mapping. Finally, at the third step,

the links are mapped. The details and design

considerations of these steps are explained in the

following subsections.

A. Controller Placement Stage

Controller placement has significant impact on both the

NaaS provider’s and customer’s objectives. More

precisely, resource availability around the controller’s

location in the substrate network determines both the

acceptance probability and the switch-controller delay. If

controller is mapped on a node where there is not enough

resource in the neighbor, the VN request is likely rejected

or the virtual nodes of the request have to be mapped

away from the controller that increases the delay and also

the mapping cost.

To locate a suitable place for controller and switches, in

this paper, we use the stress index as the load measure.

The node and link stress indexes are defined in [23]; and

redefined for SDN paradigm in [14]. In this paper, we use

the same definition of the node and link stress indexes.

For a substrate node , its stress is a weighted sum

of the number of virtual nodes mapped on it (), and

the number of virtual links traversing that node ().
More formally, the stress of substrate node , denoted by

 , is

where and are design parameters that determine the

importance of each factor of the node stress.

The stress of the substrate link is the sum of

data and control traffic loads. Since we assumed that

control plane traffic is negligible in comparison to the

data plane, it is not taken into account. Let

denotes the virtual links mapped on substrate link ;

the stress of the link is

 ∑ ∑

To measure the availability of resources around a

substrate node, we used the concept of neighborhood

resource availability (NR) which is defined in [23] as

follows:

 (

)

(∑ (
)

)

where
 and

 are respectively the maximum node

and link stress of the substrate network. is the set of

substrate links adjacent to s. A high value

indicates that node and its adjacent links are lightly

loaded.

 reflects the NaaS provider’s objective in

controller placement stage. However, to take the

customer’s objective into account, the delay between

node and other substrate nodes should also be

considered. For this purpose, another metric named k-hop

delay, denoted by is defined. Let is the

 -hop bounded neighbors of , i.e., the set of substrate

nodes that are connected to node through at most

 hops, and then we have

∑

| |

The value of depends on node and VN request
 . It

should be large enough to be able to map all
 on

the neighbors. More formally,

 {|
 | | |

 is different from the estimation used in [14],

where the average delay to all substrate nodes is

obtained. However, the idea behind is that the

substrate nodes which are unlikely be used for mapping

 in the case of selecting for hosting the controller

of
 , should not affect the placement of the controller.

For placing the controller, SVE calculates for all

nodes ; the node with the largest is selected to

place the controller. If there are several nodes with the

same value of , the node with the lowest is

selected.

B. Nodes Mapping Stage

The main question of the node mapping stage is to find

a substrate node to map a given virtual node. However, in

SVE, at first, we try to find the proper order of the virtual

nodes for mapping. To clarify the importance of this

issue, consider mapping of two virtual nodes
 ,

where the required bandwidth between them,
 , is

very high. If after mapping on , nodes other than

 are mapped, likely the substrate nodes around are

used. Hence, there is not any room to map near ; so,

must be mapped on a node away from that increases the

length of the path for mapping virtual link ; and

consequently increases the mapping cost.

We introduce the correlation coefficient metric to

determine the appropriate order of virtual nodes mapping

that minimizes the cost. For a given request
 , the

correlation coefficient for every non-mapped virtual node

 with respect to the mapped nodes of the request is

defined as

where,

 is a set of the virtual nodes that mapped

before . This metric measures the correlation between a

non-mapped node and the mapped nodes
 in terms

of required bandwidth between them.

indicates that required bandwidth between and the

mapped nodes is greater than the corresponding

bandwidth for ; so, as explained before, to minimize the

cost of the virtual link mapping in the substrate network,

node should be mapped before . Based on this idea, in

the node mapping stage, SVE dynamically ranks virtual

nodes based on in descending order
1
.

This node ranking mechanism is different from the

procedures proposed in [24-26] that determine a static

order of virtual node mapping at the beginning. In SVE,

the order of unmapped nodes depends on the mapped

nodes. In this way, it considers the resources that will be

used by virtual links and makes coordination between the

node mapping and the link mapping stages. Moreover,

since this metric reflects the required virtual links

bandwidth, SVE maps bandwidth intensive links on

shorter paths to reduce the cost.

Ranking substrate nodes for mapping a virtual node is

the second issue in the node mapping stage. SVE ranks

the substrate nodes according to the weight metric. The

weight for a substrate node with respect to virtual

node
 is defined as follows:

1
 For mapping the first node, where

 is empty, the node with the largest

degree is selected.

 ∑

where, and is the substrate node that virtual node is

mapped on, and is the number of hops between

the substrate nodes and . By this definition, the

weight of for mapping is the lower bound on the total

bandwidth which will be used in the substrate network for

mapping the virtual links if is mapped on . By

selecting a substrate node with the minimum weight,

SVE coordinates the node and link mapping stages even

more to minimize the cost.

Similar to the ranking of the virtual nodes, substrate

nodes’ ranking should also consider the NaaS customer’s

objective, i.e., minimizing the switch-controller delay.

For this purpose, we define the Distance of substrate

node with respect to virtual node
 as

follows:

 (

) (

)

where,
 is the set of substrate nodes that are not

used for mapping virtual nodes
 up to now,

 is

the delay between and the substrate node that the

controller of
 is mapped on it; and is a coefficient

between 0 to 1. By changing the value of , the

importance of each term is controlled. Small value of

reduces the importance of the switch-controller delay

while its large value reduces the importance of substrate

resource consumption. To select the proper substrate

node for mapping , is calculated for all

substrate nodes
 that have enough CPU and flow

table resources, then the node with the smallest Distance

value is selected to map this virtual node.

C. Link Mapping Stage

In this paper, each virtual link is mapped on a single

path in the substrate network; therefore mapping all

virtual links of a given VN is an instance of the integer

multicommodity flow problem, which is NP-hard [27].

To tackle its complexity, in SVE algorithm, the K-

Shortest Path algorithm is used to map the virtual links.

To map
 , the minimum-delay paths are

found from to in the substrate network and is

mapped on the shortest feasible path, i.e., has sufficient

residual bandwidth. The flowchart of the SVE algorithm

is illustrated in Fig. 2.

Fig. 2. The Overall flowchart of the SVE algorithm

V. EVALUATION AND NUMERICAL RESULTS

In this section, the performance of SVE is compared

with the SBE and DME algorithms [14] and the bounds

obtained from the optimization models. SBE aims to

balance stress on substrate nodes and links while

guaranteeing the worst switch-controller delay. On the

other hand, DME tries to minimize the average switch-

controller delays while limiting the stress.

A. Simulation Settings

For evaluations, the ALEVIN simulator
10

 was used

[15]. The simulations were performed in 10 substrate

networks with different topologies and sizes, depicted in

Table II. The Waxman Generator was used to create the

virtual network requests, where the number of nodes is

10

 ALEVIN does not support SDN by default. It is extended for this

purpose which is available at ceit.aut.ac.ir/~bakhshis/papers/alevin-

fork.zip

between 5 to 18, parameter α is randomly selected from

interval [0.3, 0.7], and .

In the following figures, the horizontal axis is the

number of VN requests, which is the measure of

network load. In the simulations, for each number of

requests, we created five different equal-size sets of

VNs. The sets of VNs are mapped on 10 different

substrate networks. Therefore, the results in the

following figures are the average of 50 different

embedding experiments, which is sufficient for about

94% confidence interval in the results.

In these simulations, we assumed that all substrate

nodes are capable to host the controller, i.e.,
 moreover, all substrate nodes can be used for

mapping each request, i.e.,
 . The

simulation settings are summarized in Table III.

Since the SBE and DME algorithms do not consider

the node and link capacity constraints and consequently

always accept VN requests, we made modifications to

enforce the resource constraints in the algorithms.

Start

Is there any VN
Request to map?

End

Calculate NR for all nodes in and
map the controller on node with
highest NR. If there are multiple
nodes, map the controller on node
with smaller average k-hop delay.

Choose next virtual node according to
node degree and correlation factor.

Is there any
unmapped virtual

node?

Map virtual node according to node
weight and Distance value.

No

Yes

Yes

NoMap virtual links using k-
shortest path alghorithm

Is node mapping
successful?

Is virtual links
mapping successful?

VN request is acceptedVN request is rejected

Sort VNs based on size (number of
virtual links) in descending order.

Yes

No

No

Yes

Table II. Substrate Networks in Simulation

Substrate network # of nodes # of links

1 39 172

2 37 114

3 40 178

4 54 162

5 65 216

6 50 176

7 37 164

8 34 166

9 33 132

10 32 116

Table III. Simulation Settings

Parameter Value

Virtual Network Generator Waxman Generator

Waxman α parameter Randomly in [0.3, 0.7]

Waxman parameter 0.5

Number of nodes per VNR [5, 18]

SVE parameter 0.25

 50 ms

SVE parameter 1

SVE parameter 1

 SVE parameter 50

 100

 100

 1

In addition to the heuristic algorithms, the results of

the optimization models are also presented as the

benchmark to evaluate the efficiency of the algorithms.

Since the problem is NP-Hard, the models cannot be

solved even for small instances; so, in the following

results, the upper-bounds for the revenue and lower-

bounds for the switch-controller delay were obtained by

relaxing the binary variables
 and

 .

B. Numerical Results

In this section, we use the acceptance rate, revenue,

and revenue-to-cost ratio metrics to evaluate the

algorithms; these are the commonly used evaluation

criteria of VNE algorithms. Moreover, the average and

maximum of the switch-controller delay, the particular

metric of software-defined virtual networks, are also

evaluated.

B.1. Acceptance, Revenue and Cost

Fig. 3 shows the acceptance rate of the SVE, SBE, and

DME algorithms. The results show that SVE achieves

better acceptance rate than the others since it considers

the substrate resource consumption by means of the

correlation coefficient and distance metrics. The

efficiency of SVE increases as more load offered to the

network, i.e., increasing the number of VN requests,

because of the proper ordering of VN requests according

to their size by this algorithm. The performance of SVE

is comparable to the upper bound especially in the

lightly loaded networks.

The revenue generated by each VNE algorithm is

important for the NaaS provider. The comparison

between the revenue of the algorithms and the

mathematical upper bound, i.e., the value of the

objective function of the LP relaxation of the first stage

model, is depicted in Fig. 4. These results show that, not

only SVE accepts more requests, which is depicted in

Fig. 3, but also, it generates more revenue since it

exploits the available information about the requests to

order and map them accordingly. Moreover, it has a

comparable performance with respect to the

mathematical bound. The gap between SVE and the

bound increases by the number of VN request which is

in part due to looseness of the bound.

Revenue to cost ratio is another important metric from

the NaaS provider’s business point of view, since two

algorithms can have the same revenue and acceptance

rate but in different amount of substrate network

resource consumption. This ratio shows how well the

substrate network resources are used. The results are

shown in Table IV. As it shown, the SVE algorithm

achieved considerably higher revenue-to-cost ratio. The

reason is the coordination between node and link

mapping stages in this algorithm. It tries to map adjacent

nodes near each other by using the correlation

coefficient and distance metrics that decreases the cost

of mapping.

Fig. 3. Acceptance rate of the algorithms and its upper bound

with respect to number of VN requests

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
c
c
e

p
ta

n
c
e

 R
a

te
 (

%
)

Number of VN requests

SVE

SBE

DME

Bound

Fig. 4. Revenue of the algorithm and its upper bound with

respect to number of VN requests

Table IV. Revenue-to-cost ratio of the algorithms and its upper

bound with respect to number of VN requests

The number

of requests

Approach

SVE SBE DME Bound

2 0.609 0.378 0.486 0.812

4 0.634 0.388 0.485 0.804

6 0.608 0.384 0.489 0.781

8 0.600 0.375 0.460 0.752

10 0.580 0.367 0.455 0.752

B.2. Switch-controller delay

The most important performance metric for the NaaS

customer, i.e., the switch-controller delay, is evaluated

in this section. The average and maximum of the delay

for the heuristic algorithms and the lower bounds are

depicted in Fig. 5 and Fig. 6, respectively.

The average switch-controller delay in the networks

mapped by SVE is less than the VNs which are mapped

by SBE, and it is comparable to DME. Note that results

obtained from DME are less than the results by SVE and

even by the optimization models, it is not surprising.

The algorithm only aims to minimize the delay and does

not consider NaaS provider’s profit therefore it accepts a

fewer requests and minimize the delay in the accepted

demands which can be less than the delay in the case of

accepting more requests, which is obtained by SVE or

the optimization model.

Therefore, it accepts a little number of requests (which is

shown in Fig. 3) and tries to map the nodes around the

controller to minimize the delay. On the other hand, the

average delay for SBE is very high since it does not

attempt to minimize it. The lower bound on the delay,

i.e., the value of the objective function of the second

stage model, is also depicted in the figure that shows the

efficiency of SVE. As shown in Fig. 6, similar to the

average switch-controller delay, the maximum of the

delay for SVE is much less than SBE and more than

DME. These results, in conjunction with the results in

the previous section, confirm that SVE can efficiently

satisfy both the provider and customer objectives.

Fig. 5. The average switch-controller delay in mapped VN

requests by the algorithms and optimization model

Fig. 6. The maximum switch-controller delay in mapped VN

requests by the algorithms and optimization model

B.3. Impact of design parameters

SVE is a parametric algorithm, where the parameters

and influence on the performance of the algorithm.

The parameter determines the number of hops which

are used to estimate the K-hop delay. In SVE, it is

claimed that bounding the number of hops leads to a

better estimation of delay, and consequently more

suitable location of controller is found that decreases the

delay between switches and controllers. This statement

is satisfied in Fig. 7 where the average delays of two

versions of SVE are depicted. In one version, depicted

by dashed lines, the K-hop bounding is used where is

determined by (23), while in the second version,

depicted by solid line, the K-hop bounding mechanism

is removed from the algorithm. As indicated, using the

0

1500

3000

4500

6000

7500

9000

10500

1 2 3 4 5 6 7 8 9 10

R
e

v
e

n
u

e

Number of VN requests

SVE

SBE

DME

Bound

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 S

w
it

c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y
 (

m
s
)

Number of VN requests

SVE

SBE

DME

Bound

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

M
a

x
im

u
m

 S
w

it
c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y

(m
s
)

Number of VN requests

SVE

SBE

DME

Bound

K-hop delay leads to decrease in the switch-controller

communication delay.

The second parameter is that balances between the

profit and the delay. The effect of this parameter is

shown in Fig. 8 that depicts the average switch-

controller delay by SVE for different values of . By

increasing the value of , SVE puts more attention to the

delay and tries to map virtual nodes as close as possible

to the controller. Increasing the value of causes that

SVE does make effort to map virtual nodes alongside

each other. Therefore, virtual links are mapped on longer

paths that increase the cost and consequently decrease

the revenue-to-cost ratio. This effect of on the ratio is

shown in Table V.

Fig. 7. The impact of “K-hop delay” in the SVE algorithm on the

switch-controller delay in the mapped VN requests

Fig. 8. The average switch-controller delay for different values of

parameter δ in the SVE algorithm

Table V. The revenue to cost ratio of SVE for different values of

The number of

requests

revenue-to-cost ratio

2 0.631 0.591 0.518

4 0.632 0.614 0.551

6 0.614 0.599 0.550

8 0.612 0.582 0.512

10 0.599 0.563 0.513

VI. CONCLUSION AND FUTURE WORK

In this paper, the VNE problem is formulated in SDN

ecosystem wherein a set of software-defined VN

requests are mapped on a SDN based substrate network

in order to maximize the profit of the NaaS provider and

minimize the delay between switches and controller in

the mapped VNs. The problem is solved by the proposed

algorithm which consists of three coordinated stages

namely the controller placement, virtual nodes mapping,

and virtual links mapping stages.

In the controller placement stage, SVE maps controller

to the node with most resources in its neighbor

according to the NR metric, and also considers the

switch-controller delay by the K-hop delay metric. In the

node mapping stage, it selects virtual nodes for mapping

in descending order of the correlation coefficient metric

that considers the amount of traffic volume between

virtual nodes; and maps them on the substrate node with

the minimum weight and distance. Finally, an instance

of the distributed hypervisor is installed in the nodes

where at least a controller mapped on.

In this paper, we considered several practical aspects

of VNE in SDN; the following issues can be

investigated in future work:

 Whereas we use the NR, correlation coefficient, and

distance metrics to coordinate controller placement,

virtual nodes mapping, and virtual links mapping;

these stages are carried out in three separate phases.

For the next step, to achieve higher efficiency, these

problems can be tackled as a joint problem.

 In this paper, the embedding problem was

considered in off-line mode, wherein the

information of all requests is available at the

beginning; at the next step, the problem can be

studied in on-line mode where whole VN requests

are not known in advance and arrive to the network

one-by-one.

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 S

w
it

c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y
 (

m
s
)

Number of VN requests

SVE With K-hop Delay

SVE Without K-hop Delay

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 S

w
it

c
h

-C
o

n
tr

o
ll

e
r

D
e

la
y
 (

m
s
)

Number of VN requests

δ=0

δ=0.5

δ=1

References

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S.

Azodolmolky, and S. Uhlig, "Software-defined networking: A

comprehensive survey," Proceedings of the IEEE, vol. 103, pp.

14-76, 2015.

[2] N. M. K. Chowdhury and R. Boutaba, "A survey of network

virtualization," Computer Networks, vol. 54, pp. 862-876,

2010.

[3] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L.

Dong, et al., "Forwarding and control element separation

(ForCES) protocol specification," 2070-1721, 2010.

[4] T. Lakshman ,T. Nandagopal, R. Ramjee, K. Sabnani, and T.

Woo, "The softrouter architecture," in Proc. ACM SIGCOMM

Workshop on Hot Topics in Networking, 2004.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, et al., "OpenFlow: enabling innovation in

campus networks," ACM SIGCOMM Computer

Communication Review, vol. 38, pp. 69-74, 2008.

[6] B. Heller, R. Sherwood, and N. McKeown, "The controller

placement problem," in Proceedings of the first workshop on

Hot topics in software defined networks, 2012, pp. 7-12.

[7] E. Amaldi, S. Coniglio, A. M. Koster, and M. Tieves, "On the

computational complexity of the virtual network embedding

problem," Electronic Notes in Discrete Mathematics, pp. 213-

220, 2016.

[8] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,

N. McKeown, et al., "Flowvisor: A network virtualization

layer," OpenFlow Switch Consortium, Tech. Rep, pp. 1-13,

2009.

[9] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, "Survey on

network virtualization hypervisors for software defined

networking," IEEE Communications Surveys & Tutorials, vol.

18, pp. 655-685, 2016.

[10] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X.

Hesselbach, "Virtual network embedding: A survey," IEEE

Communications Surveys & Tutorials, vol. 15, pp. 1888-1906,

2013.

[11] R. Trivisonno, I. Vaishnavi, R. Guerzoni, Z. Despotovic, A.

Hecker, S. Beker, et al., "Virtual Links Mapping in Future

SDN-Enabled Networks," in Future Networks and Services

(SDN4FNS), 2013 IEEE SDN for, 2013, pp. 1-5.

[12] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R.

Boutaba, "Design and management of dot: A distributed

openflow testbed," in 2014 IEEE Network Operations and

Management Symposium (NOMS), 2014, pp. 1-9.

[13] R. Guerzoni, R. Trivisonno, I. Vaishnavi ,Z. Despotovic, A.

Hecker, S. Beker, et al., "A novel approach to virtual networks

embedding for SDN management and orchestration," in

Network Operations and Management Symposium (NOMS),

2014 IEEE, 2014, pp. 1-7.

[14] M. Demirci and M. Ammar, "Design and analysis of

techniques for mapping virtual networks to software-defined

network substrates," Computer Communications, vol. 45, pp.

1-10, 2014.

[15] A. Fischer, J. F. Botero Vega, M. Duelli, D. Schlosser, X.

Hesselbach Serra, and H. De Meer, "ALEVIN-a framework to

develop, compare, and analyze virtual network embedding

algorithms," in Open-Access-Journal Electronic

Communications of the EASST, 2011, pp. 1-12.

[16] M. Yu, Y. Yi, J. Rexford, and M. Chiang, "Rethinking virtual

network embedding: substrate support for path splitting and

migration," ACM SIGCOMM Computer Communication

Review, vol. 38, pp. 17-29, 2008.

[17] Y. Zhou, Y. Li, D. Jin, L. Su, and L. Zeng, "A virtual network

embedding scheme with two-stage node mapping based on

physical resource migration," in Communication Systems

(ICCS), 2010 IEEE International Conference on, 2010, pp.

761-766.

[18] R. Riggio, F. De Pellegrini, E. Salvadori, M. Gerola, and R. D.

Corin, "Progressive virtual topology embedding in OpenFlow

networks," in Integrated Network Management (IM 2013),

2013 IFIP/IEEE International Symposium on, 2013, pp. 1122-

1128.

[19] M. Chowdhury, M. R. Rahman, and R. Boutaba, "ViNEYard:

virtual network embedding algorithms with coordinated node

and link mapping," IEEE/ACM Transactions on Networking

(TON), vol. 20, pp. 206-219, 2012.

[20] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, "Pairing SDN

with network virtualization: The network hypervisor placement

problem," in Network Function Virtualization and Software

Defined Network (NFV-SDN) ,IEEE Conference on, 2015, pp.

198-204.

[21] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer,

"Control plane latency with SDN network hypervisors: The

cost of virtualization," IEEE Transactions on Network and

Service Management, vol. 13 ,pp. 366-380, 2016.

[22] N. M. K. Chowdhury and R. Boutaba, "Network virtualization:

state of the art and research challenges," IEEE

Communications magazine, vol. 47, 2009.

[23] Y. Zhu and M. H. Ammar, "Algorithms for Assigning

Substrate Network Resources to Virtual Network

Components," in INFOCOM, 2006.

[24] J. Ding, T. Huang, J. Liu, and Y.-j. Liu, "Virtual network

embedding based on real-time topological attributes,"

Frontiers of Information Technology & Electronic

Engineering, vol. 16, pp. 109-118, 201 5.

[25] M. Feng, J. Liao, J. Wang, S. Qing, and Q. Qi, "Topology-

aware virtual network embedding based on multiple

characteristics," in Communications (ICC), 2014 IEEE

International Conference on, 2014, pp. 2956-2962.

[26] Z. Wang, Y. Han, T. Lin, H. Tang ,and S. Ci, "Virtual network

embedding by exploiting topological information," in Global

Communications Conference (GLOBECOM), 2012 IEEE,

2012, pp. 2603-2608.

[27] S. Even, A. Itai, and A. Shamir, "On the complexity of time

table and multi-commodity flow problems," in Foundations of

Computer Science, 1975., 16th Annual Symposium on, 1975,

pp. 184-193.

