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Abstract

The interest in network virtualization as a solution to the current ossification
of the Internet has been recently revived. Virtual Network Embedding (VNE)
is the central problem in network virtualization that determines mapping of
Virtual Networks (VN) on the physical substrate network while satisfying VN
requirements and the substrate network resource constraints. Much research
has been conducted on the VNE problem with the assumption that the VN
requirements are known beforehand. Nevertheless, the precise amounts of the
requirements are uncertain in practice. The limited research that has consid-
ered the uncertainty focused on obtaining conservative solutions that increase
embedding cost in terms of substrate network resource consumption. In this
paper, we examine the VNE problem with the objective of minimizing embed-
ding cost via obtaining a non-conservative solution in the case of the bandwidth
requirements of virtual links are expressed as random variables with known dis-
tributions. For the first time, we formulate the problem using the stochastic
programming framework and utilize the sample average approximation tech-
nique to solve it. To tackle its complexity, we decompose the problem based on
Benders method which is accelerated by four proposed techniques. Extensive
simulation results show that the proposed approach outperforms the conserva-
tive solution by about 40-45%, and it is up to 7.5 times faster than the branch
and bound method.

Keywords: accelerated Benders decomposition, stochastic programming,
uncertainty, virtual network embedding, online algorithms, optimization

1. Introduction

Ever increasing demand for customized services with varying requirements
and different level of Quality-of-Service guarantees, leads to escalating demand
for networks with customized topologies. In this trend, Internet Service Providers
(ISPs) need to change their traditional architecture to satisfy the various re-
quirements. One of the solutions to achieve this goal is virtualization of net-
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work infrastructure that enables ISPs to deploy virtual networks with desired
topologies without changes in the underlying network infrastructure. Its advan-
tages are twofold [1]. First, because of isolation of virtualized resources, each
customer would be able to administer his/her virtual network independent of
other virtual networks. Second, utilization of substrate resources increases as
well due to resource sharing.

In this paradigm, ISP’s business model is changing, and ISP role would be
decoupled into two roles: Service Provider (SP) and Infrastructure Provider
(InP). InPs administer the substrate network and put it at the disposal of SPs,
on which they could define and deploy Virtual Networks (VNs) and render
services to customers thereby [1]. A customer’s Virtual Network Request (VNR)
is composed of a set of virtual nodes, virtual links, and their required capacities.
InP is responsible to map virtual nodes on physical nodes and virtual links to
existing paths in the substrate network considering substrate network resource
limitations and VNR requirements. The problem of embedding VNR on the
substrate network is called the Virtual Network Embedding (VNE) problem [1].

Typically, the main requirements of VN’s nodes and links are respectively
processing power and bandwidth. They have been usually assumed to be ex-
actly known fix parameters beforehand [2]. However, on one hand, determining
the exact amount of these requirements is quite difficult due to variable bit rate
traffic of network applications. On the other hand, they may fluctuate over
time [3] and even follow specific patterns such as cycle-stationary traffic pattern
[4]. Generally, to guarantee QoS, these requirements are overestimated that in-
creases InP cost. Therefore, in this paper, the focus is centered on investigating
the VNE problem with the aim of minimizing embedding cost wherein band-
width requirements of virtual links are uncertain. The uncertainty implies that
the exact amounts of the required bandwidths are not known when a VNR is
given to InP, and also may change over time periods. However, at the beginning
of each period, when actual traffic is injected into the VN, the exact amounts
of the bandwidths will be known. We assume that the uncertain bandwidth
requirements follow known probability distributions.

Very little research has been conducted on the VNE problem considering the
uncertainty of VNR requirements [2, 3, 5]. In [5], only the normal distribution
of uncertain parameters was considered. Using the Robust Optimization Frame-
work in [2, 3], conservative solutions are obtained that increase the OPEX of
the InP in terms of substrate network resource consumption. In this paper, we
use Stochastic Programming Framework to obtain a non-conservative solution
to the problem.

1.1. Research Objective

This paper aims to answer the following research question: “A VNR with
exact processing requirements of virtual nodes is given. The bandwidth require-
ments of each virtual link can change over time and is described by a specific
probability distribution. What is the embedding of the VNR to obtain the
lowest embedding cost over time?” This problem is called the stochastic VNE
problem.

1.2. Contributions

Here, by assuming that a) migrating the mapped virtual nodes is not practi-
cal, and b) the required bandwidth of each virtual link is described by a known
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probability distribution, we formulate the stochastic VNE problem in the form
of two-stage mixed integer linear programming model. In this formulation, VNR
embedding is conducted in two stages. In the first stage, the mapping of the
virtual nodes is determined. This mapping is coordinated with link mapping,
i.e., it is performed in such a way that not only the virtual node mapping cost
but also, the average cost of mapping of virtual links is minimized. The second
phase is performed when the exact amounts of required bandwidths are spec-
ified in each period, and only (re)maps virtual links. By changing bandwidth
requirements over time, only the links mapping will be changed because the
mapping of virtual nodes in the first stage has been made with respect to the
probability distribution of random variables describing the required bandwidth
of the virtual links.

We use Sample Average Approximation (SAA) technique [6] to solve the
stochastic VNE problem. Each sample is consists of one or more scenarios
where a scenario represents a realization of the random variables. Increasing the
number of generated scenarios makes the solution to be more accurate; however,
it leads to a large Mixed Integer Linear Programming (MILP) problem which
is not tractable by the commercial solvers. To improve the scalability of the
technique, we utilize the Benders method [7] and decompose the problem into
two smaller and tractable sub-problems. Despite of improving the scalability,
the Benders method may increase the problem solving time in comparison with
classical techniques e.g., the Branch & Bound method [8]. For this reason, we
propose a novel iterative algorithm that significantly reduces the problem solving
time via four new acceleration techniques applied on the Benders method.

In summary, the major contributions of this paper are as follows:

• For the first time, the stochastic VNE problem is formulated using Stochas-
tic Programming Framework.

• By exploiting the available information about the statistical distribution
of the required bandwidths via the SAA technique, we achieve a non-
conservative solution of the problem.

• To tackle the complexity raised by increasing the sample size, the prob-
lem is decomposed into two problems using the Benders decomposition
algorithm.

• In order to reduce the problem solving time, a new algorithm is proposed
to accelerate the Benders method; it reduces the solving time by 7.5 times
compared with the Branch & Bound method.

1.3. Paper Organization

The rest of this paper is organized as follows. In Section 2, the VNE problem
and related research are reviewed in terms of uncertainty modeling and solution
methods. System model and problem formulation are discussed in Section 3,
where InP decision-making procedure for each stage is expounded. Section 4
focuses on the solution method; decomposition of the problem based on the
Benders algorithm is discussed. Then, in Section 5, we propose techniques to
accelerate the decomposition, and develop our algorithm based on them. Section
6 is devoted to evaluate the performance of the proposed solution algorithm.
Finally, Section 7 concludes this paper.
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2. Related Research

Network virtualization has been considered as a key enabler in the cloud-
computing paradigm. It plays a crucial role in enabling infrastructure resource
sharing and providing IaaS services[9, 10].Nevertheless, when resource sharing is
utilized many challenges including privacy and confidentiality of information[11–
14], as well as the utilization of shared infrastructure resources [15] should be
considered. In this section, we focus on research that has been devoted to
the efficient allocation of infrastructure resources to customers’ VNR requests.
This section first focuses on studies wherein all requirements of VNR are certain;
then, approaches to address uncertainty in the VNE problem are reviewed.

Many studies have been carried out concerning modeling and solution of the
VNE problem [1]. Since it is a NP-Hard problem [16], [17], different techniques
like column generation or heuristic algorithms lead to differences in solution time
and quality. Regarding modeling, previous studies can be classified according to
the a) online vs. offline position, b) requested resources, and c) InP objectives in
VNR embedding. In online problems, as soon as a VNR is received, the decision
is made regarding its embedding. However, in offline problems, InP makes a
decision by considering a set of VNRs. In the following, previous research are
reviewed regarding the aforementioned aspects.

In [18], VNR embedding is performed in two separate stages. First, virtual
nodes are mapped to substrate nodes using a heuristic algorithm. After that,
embedding of virtual links is carried out by reducing it to the Multi-Commodity
Flow (MCF) problem. Since uncoordinated embedding of virtual nodes and
links lead to a low quality solution, in [19], coordinated embedding of virtual
links and nodes is considered. The authors assumed only a subset of substrate
nodes can be used for mapping each virtual node, which are located within a
certain radius from them. Considering this limitation, an augmented graph is
constructed from substrate network; afterwards, the VNE problem is formulated
using MILP framework as a MCF, and solved through LP relaxation. Finally,
rounding techniques are applied to produce integer solutions. Authors in [20]
constructed an augmented graph from substrate network by connecting each
virtual node to the set of substrate nodes that satisfies the virtual node capacity
constraint. Having this graph, the VNE problem is reduced to an MCF problem.
Its LP relaxation is solved by column generation technique, and finally, using
the B&B algorithm, integer solutions is derived. Similarly, in [21], also an
augmented graph is constructed; and VNE is formulated as MCF. Using the dual
variables of the restricted problem, the augmented graph links are weighted, and
virtual links are mapped using the shortest paths between virtual nodes.

In [22], the authors considered the offline VNE problem and applied column
generation technique to the relaxed version of the problem. Afterwards, inte-
ger solution was derived using the B&B algorithm and rounding technique. In
[23], the authors first, constructed a graph from VNR wherein each node rep-
resents a candidate path for mapping a virtual link. A link between two nodes
in the constructed graph means that it is possible to use both corresponding
paths. Using the constructed graph, the authors transformed the VNE problem
into the minimum cost maximum clique problem, and provided a heuristic so-
lution. In [24], the authors focused on distributed VNE solution by suggesting
a consensus-based auction mechanism that guarantees a 1− 1

e optimal approx-
imation. Investigated studies have focused on wired networks while in [25], a
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Table 1: Summary of Related Research

#Ref. Solution Approach Objectives Resources Online/Offline Uncertainty Uncertainty Approach
[18] Heuristic Revenue BW & CPU Online — —

[19]
LP relaxation-

Rounding
Revenue-

Load Balancing
BW & CPU Online — —

[20]
LP relaxation-

Column Generation-B&B
Cost BW & CPU Online — —

[21] Feasible region reduction Load Balancing BW & CPU Online — —

[22]
LP relaxation-Column

Generation-B&B-Rounding
Revenue BW & CPU Offline — —

[23] Finding the maximal clique — BW & CPU Online — —
[5] Heuristic Cost BW & Capacity Online BW (Normal RV.) Stochastic link packing

[3] Approximation
Utilization of the

most congested link
BW Online BW (Bounded RV.) Robust Optimization

[2] Heuristic Profit BW & CPU Offline BW (Bounded RV.)
Chance Constrained Programming-

Robust Optimization

This paper
Accelerated Benders

Decomposition
Cost BW & CPU Online BW (Bounded RV.)

Stochastic Programming-
SAA

mobility aware virtual network embedding algorithm was presented.
Mentioned studies are summarized in Table 1. In the conducted research,

the entire VNR requirements are assumed to be known. However, bandwidth
and processing requirements may not be exactly known beforehand. Few studies
have been carried out regarding uncertainty in VNE problem. In [5], uncertainty
in virtual links bandwidth is modeled as normal random variables with known
average and variance. Assuming the probability of physical link capacity lim-
itation does not surpass a certain quantity, the problem was formulated as a
stochastic link-packing problem. The authors constructed an augmented graph
and modeled the problem as an MCF problem. They presented a heuristic al-
gorithm wherein virtual nodes are initially mapped based on degree; and then,
virtual links are mapped on the least costly paths. The authors in [3] mod-
eled bandwidth uncertainty as a bounded random variable. The VNE problem
is formulated as a robust optimization problem and its approximate version is
solved.

In [2, 26], the required bandwidth of each virtual link was considered as
a random variable whose values are taken from a symmetric interval. The
authors initially presented a chance constraint formulation of the VNE problem
wherein probability of violating bandwidth of substrate links and processing
resources was limited to 1− ε. The authors also presented Γ-robust formulation
of the problem. Eventually, considering the hardness of the problem, a heuristic
algorithm was proposed.

As summarized in Table 1, previous research mainly focused on uncertainty
in the bandwidth of virtual links. In this paper, we also consider the bandwidth
uncertainty which can be any bounded random variable that is different from
[5] wherein uncertainty was modeled as a normal random variable. The main
difference between the present study and articles [3] and [2], is using Stochastic
Programming Framework to model the problem. Since Robust Optimization
tries to optimize over worst-case condition [27], the solution obtained is more
conservative than the optimal solution. In the present study, the stochastic VNE
is formulated as a two-stage stochastic programming problem and by utilizing
the SAA technique [6], a good approximate solution to the original problem is
obtained.

3. System Model and Problem Formulation

In this section, we formulate the stochastic VNE problem. After explaining
the assumptions, the decision making procedure is elaborated through an illus-
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trative example, finally problem formulation based on the Stochastic Program-
ming Framework is presented. The notations used in the paper are summarized
in Table 2.

3.1. Assumptions

The stochastic VNE problem considered in this paper is embedding a VNR
on the substrate network with the objective of minimizing total embedding costs.
It is investigated in an online manner, i.e., each time the problem is solved, it
decides on the mapping of a single VNR without any information about future
requests. Inputs to the stochastic VNE problem are the substrate network and
a VNR; the problem outputs are mapping of each virtual node to a physical
node, and similar to [18], mapping of each virtual link on one or several paths
in substrate network1. Similar to most studies carried out [1], each substrate
node is used at most once for a VNR, and each node in a VNR can be embedded
on any node in the substrate network.

Substrate network resources, including processing capacity and bandwidth,
are assumed to be exactly known. Each virtual node has a known and fixed
processing requirement to be fulfilled by one substrate node. We assume that
migrating the embedded virtual nodes in the substrate network is not practical
because significant configuration changes are needed in the substrate network;
moreover, it disturbs the services provided inside the virtual network.

We say that virtual links required bandwidth is time-varying and uncertain,
and make the following assumptions about it. The traffic in a VN, i.e., the
required bandwidths of virtual links, can change over arbitrary number of time
periods. The required bandwidths during each time period are fixed whose
exact amounts are not known upon arrival of the VNR. However, they can be
represented by bounded continuous random variables with known distributions,
which are independent of each other. Later, when traffic is injected into the
VN, the actual amount of the bandwidths are known2 at the beginning of each
period. An example of this traffic pattern is Cycle-Stationary Traffic [4].

3.2. Substrate Network Model

Substrate network is modeled as a directed graph G = (V,E) wherein V
represents the set of substrate network nodes and E stands as the set of substrate
links. Each substrate node i ∈ V has a specified processing capacity denoted
by Cap (i). Each directed link from node i ∈ V to node j ∈ V is modeled as a
pair (i, j) ∈ E; its bandwidth capacity is denoted by BW(i,j).

3.3. VNR Model

Similar to the substrate network, a VNR is modeled as a directed graph
Gv = (V v, Ev). Each virtual node u ∈ V v has a specified processing requirement
shown as CapD (u) which is a certain quantity. Bandwidth demand of each

1Though multi-path routing may leads to packet reordering, there are advantages here
like a better use of substrate resources. Packet reordering effect can be substantially reduced
utilizing hash based splitting and packet tagging [18].

2Uncertainty can be resolved through various events. For instance, the user presents a
more accurate estimation of links bandwidth demands, or InP could wait for user traffic to
enter the virtual network.
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Table 2: Notations Summary

Parameters

Substrate network nodes V

Substrate network links E

Virtual network nodes V v

Virtual network links Ev

Cost of embedding u ∈ V v on i ∈ V
in a time period

Cu
i ∈ R+

Virtual nodes embedding cost matrix C =
[
Cu

i

]
|V v|×|V |

Cost of each unit of allocated bandwidth

on link (i, j) ∈ E in a time period
D(i,j) ∈ R+

Virtual links embedding cost matrix D =
[
D(i,j)

]
|V |×|V |

Node u ∈ V v processing demand CapD (u) ∈ R+

Processing capacity of node i ∈ V Cap (i) ∈ R+

Available bandwidth of link (i, j) ∈ E BW(i,j) ∈ R+

Bandwidth matrix of substrate network BW =
[
BW(i,j)

]
|V |×|V |

Random variable represents bandwidth

demand of link (u, v) ∈ Ev b̃w(u,v)

Matrix of bandwidth random variables b̃w =
[
b̃w(u,v)

]
|V v|×|V v|

A realization of b̃w(u,v) bw(u,v)

A realization of matrix b̃w bw =
[
bw(u,v)

]
|V v|×|V v|

Set of a generated samples of b̃w S

A realization of b̃w(u,v) in sample s ∈ S bws
(u,v)

Set of outgoing links from node u δ+ (u)

Set of incoming links to node u δ− (u)

Variables

xui = 1 if u ∈ V v is mapped on i ∈ V xui ∈ {0, 1}
Matrix of first stage decision variables X =

[
xui
]
|V v|×|V |

Bandwidth allocated to link

(u, v) ∈ Ev on link (i, j) ∈ E y
(u,v)
(i,j)

∈ R+

Matrix of the second stage

decision variables
Y|V v|×|V v|×|V |×|V |

Bandwidth allocated on link (i, j) ∈ E
for link (u, v) ∈ Ev in sample s

y
s,(u,v)
(i,j)

∈ R+

Dual variable corresponding to

the first constraint in the SA-VNE-S
λ
s,(u,v)
i ∈ R

Dual variable corresponding to

the second constraint in the SA-VNE-S
µs
(i,j)

∈ R+

The variable used in the

Benders decomposition algorithm
ρ ∈ R

Set of the known extreme points P

Set of the known extreme directions R
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virtual link in a period follows a bounded continuous random variable with a
known probability distribution such as uniform or bounded normal distribution.
Matrix of random variables describing bandwidth of virtual links is shown by

b̃w whose entry in row u and column v, i.e., b̃w(u,v), is a random variable if link

(u, v) ∈ Ev exists, otherwise it is equal to zero. A realization of matrix b̃w in a
period, i.e. a scenario, is denoted by bw.

3.4. Cost Model

Similar to [19], the objective of the VNE problem is to minimize the OPEX of
InP which is comprised of the cost of mapping virtual nodes and links. Cui is the
cost of mapping virtual node u on substrate node i which is a given parameter
obtained based on the processing requirement u and resource i. D(i,j) is the
cost of allocating a unit on bandwidth on the substrate link (i, j). The cost of
mapping of a virtual link is the total cost of the allocated bandwidth for the
link on paths in the substrate network, which is determined by the required
bandwidth of the link and the routing of the paths. The exact formulation of
the cost will be presented in the following in Section 3.7.

It should be note that we assume that the node and link mapping costs are
time independent; i.e., Cui and D(i,j) are fixed values that does not change over
time periods and the costs do not depend on the length of time periods.

3.5. Decision Making Procedure

Each VNR comprises of Gv = (V v, Ev), CapD (u) ∀u ∈ Ev, and b̃w. InP
first decides whether to accept or reject the request by investigating if the sub-
strate network resources are sufficient to fulfill the requirements of the VNR.
To do this, InP can replace each random variable with its maximum value and
solve the problem deterministically, or use other methods such as [28], which is
out of the scope of this paper.

In case the request is acceptable, then decisions for mapping the virtual
nodes and links are made in two different stages: before and after resolution of
the uncertainties. In the first stage, upon arrival of the VNR, when the exact
values of the random variables are not yet specified, the decision is made for

mapping of virtual nodes, which is optimized based on CapD (u) and b̃w. More
precisely, InP solves the stochastic VNE problem, formulated in Section 3.7,
to determine the mapping of virtual nodes in such a way that the total cost of
virtual node mapping and the average cost of virtual link mapping is minimized.
This node mapping which is coordinated by link mapping does not change over

the time as long as the random variables, b̃w, do not change. In the second
stage, at the beginning of a time period when the uncertainty in the required
bandwidth of virtual links is resolved, InP makes decisions of embedding virtual
links on the substrate network paths. With a given node mapping, obtained
in the first stage, virtual links embedding is obtained through solving the link
embedding problem, formulated in Section 3.7, in polynomial time. In the case
of time-varying traffic pattern, at the beginning of each time period, InP can
change the link mapping by rerouting the path of virtual links in the substrate
network according to the realized bandwidth in that period.

The reason behind this two-stage coordinated procedure is that node map-
ping is substantially different from link mapping both in theoretical and practi-
cal aspects. First, node mapping is a NP-Hard problem [19] while link mapping
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can be performed in polynomial time via linear programming (LP). Second, as
stated, migrating virtual nodes because of traffic changes is not straightforward
due to practical challenges. However, modification of the paths of virtual links
in the substrate network can be performed in a reasonable time by only chang-
ing the routing rules3. Third, most importantly, the node mapping is optimized
with respect to the given probability distributions; therefore, it is a reasonable
solution as long as the probability distributions do not change.

In summary, in the proposed approach, node mapping is not postponed
until every realization of random variables since it is optimized based on the
provided probability distributions and changing the mapping over the time is
cost intensive; on the other hand, by postponing link mapping, we can exploit
the accurate information in each realization for the optimal link mapping4.

The decision-making procedure offered in this paper is different from previ-
ously mentioned articles in terms of the time interval between decision-making
stages. In [2, 3, 5], links and nodes embedding are conducted in a conservative
manner that leads to cost increase. In the proposed procedure, the mappings
are conducted in two separated but coordinated phases. Whereas links embed-
ding is not conducted in the first stage, it is not completely ignored. In the first
stage, node mapping is coordinated with link mapping as InP minimizes the
average cost of link mapping besides the cost of node embedding.

3.6. An Illustrative Example

To clarify the assumptions and decision making procedure, in this section,
an example is illustrated. Consider a situation wherein a user requests for a
virtual network comprising of three nodes shown in Figure 1a. Traffic in the
VN, changes over N time periods. Naturally, the user does not know the exact
amount of required bandwidth for all the periods in advance. However, she/he
can describe the required bandwidth for each link in each time period by a
random variable. For example, if the random variable is uniform [a− b], it
means that the bandwidth of the link in the time period could be fixed amount
between a and b based on the uniform distribution. In Figure 1a, assuming
that the distributions does not change over time periods, the numbers shown on
links indicate random variables describing bandwidth demand of the links, and
the numbers inside filled circles express processing requirement of each virtual
node. Numbers inside hollow circles show nodes indices.

Figure 1b shows the substrate network situation when InP receives the user’s
request. In this figure, there are two numbers inside each node. The first number
in black indicates available processing resources, and the second number in red
specifies the cost of a unit of utilized processing resource5. As an example, node

3Technologies like SDN facilitate path modification even more via programming interfaces
to modify forwarding rules.

4Please note that the mapping of the nodes can be modified whenever the user traffic

behavior is changed and cannot be described with the given probability distributions b̃w or
in the case of changes in substrate network resources, e.g. node/link failure. In these cases,
InP can apply the proposed algorithm in this paper to reoptimize node mapping based on the
new condition however at the cost of virtual node migration. This is out of the scope of this
paper.

5In this example, Cu
i is equal to required processing units of node u multiplied by the cost

of a unit in node i.
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(b) Substrate network

Figure 1: An example of a VNR and a substrate network.

1 possesses four processing units each costs 70 units. Capacity and cost of each
link in each direction are written above the link and near the source node of
the link. For instance, the capacity of link (1, 5) is 31 units and the cost of
allocating a unit of bandwidth on the link is 18, and link (5, 1) has a capacity
of 65 unit with the bandwidth unit cost of 9.

As mentioned, for admission control, InP can solve the deterministic em-
bedding problem using the maximum value of random variables, i.e., 35 and
70. In this example, the problem is feasible and its optimal objective value, i.e.,
the cost of mapping, as explained in Section 3.4, that encompasses the cost of
allocating required processing units and the over estimated required bandwidth,
is 4061. Therefore, InP knows that it can fulfill the VNR. As per the solution
obtained, InP could conduct embedding of the VNR right at this stage. In
this case, InP does not consider the uncertainty and the solution is called the
conservative solution.

Considering the fact that the random variables describe required bandwidth
for N time periods in the future, InP can conduct node mapping, but postpones
link mapping until realization of the random variables when the exact amount
of required bandwidth in each period is specified. In this decision making pro-
cedure, InP has three alternative approaches to map the virtual nodes:

1. Worst-case approach where InP conducts node mapping based on the
conservative solution.

2. Average-case approach where InP carries out node mapping using a de-
terministic VNE problem in which every random variable is replaced by
its average value, i.e., 22.5 and 60 in this example.

3. Stochastic approach where instead of using the average values of the ran-
dom variables, the probability distribution functions are used to generate
scenarios. InP conducts node mapping by solving the stochastic VNE prob-
lem, formulated in Section 3.7, that minimizes the cost of node mapping
and the average cost of link mapping based on the generated scenarios.

Applying these approaches in this example leads to the node mappings shown
in Table 3.

With these given node mappings, virtual links are mapped in each period
by solving the Link Embedding problem formulated in Section 3.7. For 10 re-
alizations of the required bandwidths, N = 10 time periods, the embedding
cost, described in Section 3.4, are shown in Table 4. As evident, node mapping
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Table 3: Node mapping by different approaches in Figure 1

Virtual Node
Mapped Substrate Node

Worst-case Average-case Stochastic-case
1 2 4 4
2 4 5 5
3 3 3 1

Table 4: The total cost of embedding in Figure 1 using different node mapping approaches

N
Requested
bandwidth

Worst
case

Average
case

Stochastic
(1,2) (2,3)

1 14 58 3638 3499 3551
2 24 67 3892 3965 3848
3 30 54 3750 3723 3771
4 11 62 3669 3563 3539
5 62 69 4034 4217 4082
6 31 65 3937 3985 3886
7 25 54 3695 3643 3691
8 14 57 3622 3491 3542
9 30 65 3926 3969 3870
10 30 70 4006 4199 4055

Average
Cost

- - 3816.9 3825.4 3783.5

based on the average-case solution leads to less cost than other approaches in
periods 1, 3, 7 and 8. This situation is also the case for the worst-case solution
in periods 5 and 10. On the contrary, if InP conducts node mapping according
to the stochastic approach, shall have less cost in periods 2, 4, 6, and 9. More
importantly, the average cost of 10 periods by the stochastic approach is less
than the others. This shows that approaches that do not pay attention to the
distribution of random variables, and only consider the upper limit have a more
conservative behavior and therefore, their average cost will be higher than the
stochastic approach. Finally, as indicated, the average cost of InP in all three
approaches is less than the conservative solution i.e., 4061, which shows the
advantage of the two-stage decision making procedure.

Note that although in the stochastic approach, the mapping of links and
nodes is performed in two different stages, but since the mapping of the nodes is
done according to the generated scenarios of possible realizations of bandwidth
requirement, it is coordinated with link mapping. In fact, if there is little
difference between the requested bandwidth in the future and the generated
scenarios, the solution obtained by the stochastic approach would be very close
to the optimal solution that has the lowest average cost over time. This can be
achieved by increasing the number of generated scenarios. However, it increases
computational complexity that will be discussed in the following sections.

3.7. Problem Formulation

Using Stochastic Programming Framework, the stochastic VNE problem is
formulated as a two-stage stochastic mixed integer linear programming problem.
In the first and second stages, respectively, decisions are made for node and link
mapping. Formulation of the stochastic VNE problem is given below.
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The objective function is the minimization of the total virtual nodes embed-
ding cost and the average cost of virtual links embedding.

Stochastic VNE Problem:

Z̃ = min
X

∑
i∈V

∑
u∈V v

Cui x
u
i + E

[
Q
(
X, b̃w

)]
s.t. ∑

i∈V
xui = 1 ∀u ∈ V v (1)∑

u∈V v

xui ≤ 1 ∀i ∈ V (2)

CapD (u)xui ≤ Cap (i) ∀u ∈ V v, ∀i ∈ V (3)

xui ∈ {0, 1} ∀i ∈ V,∀u ∈ V v

The first constraint ensures that all virtual nodes are mapped on the substrate
network. Constraint (2) enforces that no two nodes from a VNR are embed-
ded on the same substrate network node. The third constraint guarantees that
substrate node processing resources fulfill processing requirement of the virtual

node mapped on it. E
[
Q
(
X, b̃w

)]
is the average cost of the second stage de-

cisions, i.e., virtual links embedding, and stands for the expectation of function

Q
(
X, b̃w

)
with respect to the probability distribution of b̃w. The Q (X, bw) is

the optimal value of the second stage decisions with respect to the first stage
decision variables X and a realization of uncertain values; it is defined as follows:

Link Embedding Problem:

Q (X, bw) = min
Y

∑
(i,j)∈E

∑
(u,v)∈Ev

D(i,j)y
(u,v)
(i,j)

s.t.∑
(i,j)∈E

y
(u,v)
(i,j) −

∑
(j,i)∈E

y
(u,v)
(j,i) = bw(u,v) (xui − xvi ) (4)

∀ (u, v) ∈ Ev,∀i ∈ V∑
(u,v)∈Ev

y
(u,v)
(i,j) ≤ BW(i,j) ∀ (i, j) ∈ E (5)

y
(u,v)
(i,j) ∈ R+ ∀ (u, v) ∈ Ev,∀ (i, j) ∈ E

Constraint (4) states that if xui is equal to 1, bandwidth of virtual link (u, v),
denoted by bw(u,v), is reserved on the outgoing links from node i ∈ V . Alterna-
tively, If xvi is equal to 1, the bandwidth is reserved on incoming links to node
i ∈ V . Finally, constraint (5) expresses that the total bandwidth of virtual links
mapped on a physical link must not surpass its available bandwidth.

It should be noted that for the sake of simplicity, here, the stochastic VNE
problem is formulated only for one time period. However, since the mapping
of nodes, xui , and distribution of the random variables do not change over time
and the costs of using substrate resources, Cui and D(i,j), are time independent,

E[Q(X, b̃w)] can also be interpreted as expectation of Q(X, bw) over multiple
time periods.

In general, there are some challenges in calculating the quantity of E
[
Q
(
X, b̃w

)]
,

e.g., for continuous distributions, accurate value of the expectation cannot be
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evaluated numerically [29]. Therefore, we resort to approximate the quantity of

E
[
Q
(
X, b̃w

)]
rather than direct calculating it. One of the common methods

is the SAA technique [6], which comprises of two stages as follows:

1. Generate a sample set S that includes |S| scenarios. Each scenario is a

realization of matrix b̃w.

2. Instead of solving the stochastic VNE problem, solve the following prob-
lem:

min
X

∑
i∈V

∑
u∈V v

Cui x
u
i +

1

|S|
∑
s∈S

Q (X, bws)

s.t.
(1) , (2) , (3)

Defining variable y
s,(u,v)
(j,i) as the value of y

(u,v)
(j,i) in scenario s, and bws(u,v) as

the realization of the random variable b̃w(u,v) in scenario s, Q (X, bws) can be
rewritten as follows, which is called the Second-Stage problem.

Second-Stage Problem:

Q (X, bws) = min
Y

∑
(i,j)∈E

∑
(u,v)∈Ev

D(i,j)y
s,(u,v)
(j,i)

s.t.∑
(i,j)∈E

y
s,(u,v)
(i,j) −

∑
(j,i)∈E

y
s,(u,v)
(j,i) = bws(u,v) (xui − xvi ) (6)

∀ (u, v) ∈ Ev,∀i ∈ V∑
(u,v)∈Ev

y
s,(u,v)
(i,j) ≤ BW(i,j) ∀ (i, j) ∈ E (7)

y
s,(u,v)
(i,j) ∈ R+ ∀ (u, v) ∈ Ev,∀ (i, j) ∈ E

On this basis, the stochastic VNE problem can be rewritten as below titled as
Sample Averaged VNE (SA-VNE) problem:

SA-VNE Problem:

Ẑ = min
X,Y

∑
i∈V s

∑
u∈V v

Cui x
u
i + 1

|S|
∑
s∈S

∑
(i,j)∈Es

∑
(u,v)∈Ev

D(i,j)y
s,(u,v)
(j,i)

s.t.

(1) , (2) , (3) , (6) , (7)

xui ∈ {0, 1} ∀i ∈ V,∀u ∈ V v

y
s,(u,v)
(i,j) ∈ R+ ∀ (u, v) ∈ Ev,∀ (i, j) ∈ E, ∀s ∈ S

Since the VNE problem in the deterministic case is an NP-Hard problem [19],
therefore, the SA-VNE is NP-Hard as well. In the next section, we propose a
solution to deal with its complexity.

4. Solution Methodology

It could be shown that by increasing the sample size, the optimal solution
of the SA-VNE, Ẑ, and the first stage decision variables, X, converge with
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probability one, to their true values obtained from solving the stochastic VNE
problem [6]. However, increasing the number of scenarios leads to increasing
the size of the SA-VNE. To improve the scalability in solving the problem, the
Benders decomposition method is utilized, and SA-VNE is decomposed into two
problems. To clarify it, a brief summary of the Benders method is presented;
then, the decomposition of the SA-VNE problem is explained based on it.

4.1. Benders Decomposition Method

We describe the Benders decomposition method based on the following gen-
eral problem called the original problem:

min
X,Y

cTX + bTY

s.t. (original problem)
AX ≥ d

BX +DY ≥ h
X ∈ X, Y ≥ 0

where X ⊆ Rm and may contain integer variables and Y ∈ Rn and contains only
continuous variables. In this formulation, all quantities are certain, and there is
no uncertain value. In the Benders decomposition method, the original problem
is broken into two problems, i.e., the master problem and the sub-problem. The
sub-problem is defined as follows:

min
Y

bTY

s.t. (sub-problem)
Π : DY ≥ h−BX̄

Y ≥ 0

wherein X̄ is obtained from the master problem solution and Π represents the
dual variables corresponding to the sub-problem constraints. The dual of the
sub-problem is:

max
Π

ΠT
(
h−BX̄

)
s.t. (dual of sub-problem)

DTΠ ≤ b
Π ≥ 0

The master problem is:

min
X,ρ

cTX + ρ

s.t. (master problem)

AX ≥ d
Π̄T
opt (h−BX) ≤ ρ ∀Π̄T

opt ∈ Extreme Points
(Optimality Cut)

Π̄T
feas (h−BX) ≤ 0 ∀Π̄T

feas ∈ Extreme Directions
(Feasibility Cut)

X ∈ X, ρ,∈ R
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where set Extreme Points includes all extreme points and set Extreme Directions
includes all extreme-direction defined by the feasible region of the dual of the
sub-problem. Since identifying all members of these sets is not initially possi-
ble, in the Benders method, the members are gradually identified in an iterative
manner. Instead of solving the master problem, the restricted master problem
is solved which is

min
X,ρ

cTX + ρ

s.t. (restricted master problem)

AX ≥ d
Π̄T
opt (h−BX) ≤ ρ ∀Π̄T

opt ∈ P (Optimality Cut)

Π̄T
feas (h−BX) ≤ 0 ∀Π̄T

feas ∈ R (Feasibility Cut)

X ∈ X, ρ ∈ R

In which, P is a subset of the extreme-points and R is a subset of the extreme-
directions which are constructed as follows.

After solving the restricted master problem, its solution, X̄, is substituted
in the dual of the sub-problem. If it turns out to be feasible and bounded, the
dual vector ΠT is added to set P , which is denoted by Π̄T

opt. Otherwise, if the
dual of the sub-problem turns out to be unbounded, then the sub-problem is
infeasible. In this case, an extreme direction is derived and added to set R,
which is shown by Π̄T

feas.
Assuming that the original problem is feasible and has a bounded optimal

value, the Benders algorithm for solving it is shown in Algorithm 1. In this
algorithm, UB and LB are respectively the upper and lower bounds for the
optimal value of the original problem and k is a counter. The termination
condition in Algorithm 1 is defined in terms of the difference between the upper
bound and the lower bound. However, if the optimality is not the main concern,
then other termination conditions, such as limitation on the number of times
the while loop is executed, can be used to obtain sub-optimal approximated
solution.

Since the number of extreme points and extreme directions in any polyhe-
dron is finite, this algorithm generates a limited number cuts and eventually
converges to the optimal value of the original problem. To prove correctness
and convergence, readers may refer to [7].

4.2. Decomposition of the SA-VNE problem

In this section, we decompose the SA-VNE problem according to the Ben-
ders method. More precisely, the “SA-VNE problem,” which correspond to
the “original problem” in the Benders method, is decomposed into the “SA-
VNE-RM,” and “SA-VNE-S” problems which respectively correspond to the
“restricted master problem,” and “sub-problem” in the method. As explained,
these problem are linked and solved iteratively via substituting the solution of
the restricted master problem in the sub-problem and adding the cuts obtained
from the “dual of sub-problem” to the “restricted master problem.” In the SA-
VNE case, the dual of the sub-problem is the “SA-VNE-DS.” These problems
are formulated in the followings.
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Algorithm 1 Benders Decomposition Algorithm

1: UB ← ∞, LB ← −∞, k ← 0, P0 ← ∅,
2: R0 ← ∅, T ermination Condition← (UB − LB ≤ ε)

While:
3: k ← k + 1;
4: Solve the restricted master problem, and
5: LB ← optimal objective function value
6: X̄ ← optimal decision variables

DSP :
7: Use X̄ to solve the dual of the sub-problem.
8: if the dual of the sub-problem is unbounded then
9: Save the returned Π̄T

feas

10: Rk ← R(k−1) ∪ {Π̄T
feas} and go to While.

11: else
12: Save optimal objective Z*

DSP and decision variables Π̄T
opt

13: Pk ← Pk−1 ∪ {Π̄T
opt}

14: if Z∗DSP + cT X̄ < UB then
15: UB ← Z∗DSP + cT X̄
16: Calculate Ȳ using Π̄T

opt

17: if the Termination Condition is satisfied then
18: Go to Exit
19: else
20: Go to While.

Exit :
21: Return X̄, Ȳ as the optimal solution and exit.
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The SA-VNE-S problem is as follows:

SA-VNE-S Problem:

min
Y

1

|S|
∑
s∈S

∑
(i,j)∈E

∑
(u,v)∈Ev

D(i,j)y
s,(u,v)
(j,i)

s.t.

λ
s,(u,v)
i :

∑
(i,j)∈E

y
s,(u,v)
(i,j) −

∑
(j,i)∈E

y
s,(u,v)
(j,i)

= bws(u,v) (x̄ui − x̄vi ) ∀ (u, v) ∈ Ev, ∀i ∈ V, ∀s ∈ S
µs(i,j) :

∑
(u,v)∈Ev

y
s,(u,v)
(i,j) ≤ BW(i,j) ∀ (i, j) ∈ E, ∀s ∈ S

y
s,(u,v)
(i,j) ∈ R+ ∀ (u, v) ∈ Ev,∀ (i, j) ∈ E,∀s ∈ S

In the SA-VNE-S, the first stage variables x̄ui is obtained by solving the SA-

VNE-RM and substituted in the SA-VNE-S. λ
s,(u,v)
i and µs(i,j) are dual variables

corresponding to the SA-VNE-S constraints. Note that the problem can be
treated as |S| independent problems, i.e., an LP per scenario.

The dual of the SA-VNE-S problem, which is used to obtain the optimality
and feasibility cuts, is formulated as below:

SA-VNE-DS Problem:

max
λ, µ

1

|S|
∑
s∈S

( ∑
(u,v)∈Ev

∑
i∈V

λ
s,(u,v)
i bws(u,v) (x̄vi − x̄ui )

−
∑

(i,j)∈E

µs(i,j)BW(i,j)

)
s.t.

D(i,j) + λ
s,(u,v)
i − λs,(u,v)

j + µs(i,j) ≥ 0

∀ (i, j) ∈ E,∀ (u, v) ∈ Ev,∀s ∈ S
λ
s,(u,v)
i ∈ R, µs(i,j) ∈ R+

Finally, the SA-VNE-RM, corresponding to the “restricted master problem”
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in the Benders method, is defined as follows:

SA-VNE-RM Problem:

min
X, ρ

∑
i∈V

∑
u∈V v

Cui x
u
i + ρ

s.t. ∑
i∈V

xui = 1 ∀u ∈ V v∑
u∈V v

xui ≤ 1 ∀i ∈ V

CapD (u)xui ≤ Cap (i) ∀u ∈ V v,∀i ∈ V
1

|S|
∑
s∈S

( ∑
(u,v)∈Ev

∑
i∈V

λ̄
s,(u,v)
i bws(u,v) (xvi − xui )

−
∑

(i,j)∈E

µ̄s(i,j)BW(i,j)

)
≤ ρ ∀

(
λ̄, µ̄

)
∈ P

1

|S|
∑
s∈S

( ∑
(u,v)∈Ev

∑
i∈V

λ̄
s,(u,v)
i bws(u,v) (xvi − xui )

−
∑

(i,j)∈E

µ̄s(i,j)BW(i,j)

)
≤ 0 ∀

(
λ̄, µ̄

)
∈ R

xui ∈ {0, 1} ∀i ∈ V, ∀u ∈ V v

ρ ∈ R

As discussed, instead of solving the SA-VNE directly, we solve the SA-VNE-
RM and the SA-VNE-DS by using Algorithm 1. Whereas the solutions obtained
from both approaches are the same, there are significant differences in running
time and scalability of the approaches, which are clarified in the next section.

4.3. Advantages and Pitfalls of the Decomposition

As stated earlier, the solution of the SA-VNE approaches to the true solution
of the stochastic VNE problem by increasing the number of scenarios. Never-
theless, the solution is not scalable, i.e., it may not be possible to solve SA-VNE
directly because it gets a huge MILP problem that cannot be tackled by the
commonly used B&B methods. The main advantage of the proposed decompo-
sition is that the huge MILP is divided into a small MILP, i.e., the SA-VNE-RM
problem, and multiple independent LP problems, i.e., the SA-VNE-S problem.
Therefore, firstly, whereas SA-VNE-RM is still an NP-hard problem, however,
its size, specially the number of binary variables, does not increase by enlarging
the number of scenarios; hence due to the small size of the problem, not only
B&B method can solve it efficiently, but also, problem specific solutions such
as the explicit enumeration [30] method or specialized heuristic algorithm can
used. Secondly, the SA-VNE-DS is a linear programming problem which can
be solved using interior point methods such as the Karmarkar algorithm [31]
in polynomial time. Thirdly, since SA-VNE-S for each scenario is independent
of other samples, it can be solved for each sample in parallel that can greatly
reduce the effect of increasing sample size.

Despite of the advantages, the Benders algorithm in the early iterations
generates solutions that are far from the optimal solution. This is due to the

18



Table 5: The effect of the proposed methods on the convergence speed.

Technique
Reduction in the

number of iterations
Reduction in the

SA-VNE-RM solution time
Reduction in the number of times

the SA-VNE-RM is solved
Omission of infeasible solutions X

Initial heuristic solutions to the SA-VNE-RM X
Adding upper-bound to the SA-VNE-RM X

Generating Pareto-optimal cuts X

fact that the decomposition removes the linking constraint between the vari-
ables of the SA-VNE-RM and SA-VNE-S problems, i.e., constraint (6). In the
next section, we develop four techniques to tackle the problem and reduce the
convergence time of the Benders decomposition algorithm.

5. Accelerated Benders Decomposition

In this section, we present a novel algorithm to solve the SA-VNE problem
more efficiently. In the design of this algorithm, four techniques are used to
accelerate the Benders decomposition for SA-VNE which are summarized in
Table 5, where the effects of these techniques on the convergence speed algorithm
are clarified.

5.1. Omission of Infeasible Solutions

Decomposition of the SA-VNE removes the linking constraint between vari-
ables of stage one and two, i.e., constraint (6). As a result, substitution of the
optimal decision variables of the SA-VNE-RM, x̄ui , in the SA-VNE-S may make
it an infeasible problem. In this case, a new feasibility cut is added to the SA-
VNE-RM and then the problem is resolved; this causes an extra iteration in the
algorithm. In order to avoid such kinds of situation, we try to identify truly in-
feasible solutions and remove them from the solution space of the SA-VNE-RM
problem, which is achieved in two ways. First, two sets are defined as follows:

Inf+
deg =

{
(u, i) | u ∈ V v, i ∈ V, δ+ (u) > 0, |δ+ (i) | = 0

}
Inf−deg =

{
(u, i) | u ∈ V v, i ∈ V, δ− (u) > 0, |δ− (i) | = 0

}
where δ+ (j) is the set of outgoing links from node j and δ− (j) is the set of
incoming links to node j. Set Inf+

deg represents node pairs in which virtual node

u has outgoing links, but physical node i lacks it. Similarly, Inf−deg describes
pairs u and i in which node u has incoming link, while node i lacks it. In these
cases, virtual node u cannot be mapped on substrate node i. Therefore, in the
SA-VNE-RM problem, if xui ∀ (u, i) ∈ {Inf+

deg ∪ Inf
−
deg} is determined to be 1,

then the SA-VNE-S becomes infeasible, which must be avoided.

Second, we define bandwidth matrix bwmin based on matrix b̃w in which
each element is replaced with its least possible value. Then, we construct the
following sets:

Inf+
bw =

{
(u, i) | u ∈ V v, i ∈ V, β+ (u, bwmin) > β+ (i, BW )

}
Inf−bw =

{
(u, i) | u ∈ V v, i ∈ V, β− (u, bwmin) > β− (i, BW )

}
,
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where β+ (j, bw) and β− (j, bw) are respectively the total bandwidth of the out-
going and incoming links of node j based the bandwidth matrix bw. Inf+

bw is
a set of node pairs (u, i) in which sum of the minimum required bandwidth of
outgoing links of virtual node u is greater than available bandwidth of outgoing
links of substrate node i. Set Inf−bw represents the similar concepts for incom-
ing links. In these cases, virtual node u cannot be mapped on substrate node i.
Therefore, we should avoid xui = 1 ∀ (u, i) ∈ {Inf+

bw ∪ Inf
−
bw} in the SA-VNE-

RM problem that makes the SA-VNE-S problem infeasible. Putting together
all above defined sets, the following constraint is added to the SA-VNE-RM
problem:

xui = 0, ∀ (u, i) ∈
{
Inf+

bw ∪ Inf
−
bw ∪ Inf

+
deg ∪ Inf

−
deg

}
(8)

5.2. Initial Heuristic Solutions to the SA-VNE-RM

In the proposed decomposition, the SA-VNE-RM solution converges to the
optimal value in an iterative manner by gradually constructing the sets P and
R via the cuts derived from solving the SA-VNE-DS, where x̄ui are substituted
by the values obtained from the SA-VNE-RM solution in the previous iteration.
To reduce the convergence time, we propose that instead of directly solving the
SA-VNE-RM in each iteration, which is time consuming and provides only a
single solution, at the beginning a heuristic algorithm can find a few solutions
to the problem, which are independently substituted in the SA-VNE-DS to
generate multiple cuts. The cuts are placed in sets P or R before executing
the Benders algorithm that reduce the solution space of the SA-VNE-RM and
consequently the solution time of the algorithm. Moreover, since generating
cuts corresponding to each solution of the SA-VNE-RM is independent of other
solutions, the SA-VNE-DS can be executed for all solutions in parallel.

In the following, we develop an algorithm to find a set of possible solutions
to the SA-VNE-RM problem which is shown in Algorithm 2. Whereas we do not
seek for the optimal solution in this algorithm, minimizing the cost of embedding
improves the quality of the corresponding optimality cuts. Therefore, at the
beginning, if it is possible to map node u on node i, which is checked in Line 4,
its cost is estimated in Line 5; where

cost+(u, i) =
∑

(i,j)∈L+
i (δ+(u))

D(i,j)

in which, L+
i (n) is the set of n least-cost outgoing links of i according to D.

cost−(u, i) is defined in the similar way for incoming links of i and u.
According to the estimated costs, three kinds of node mapping (the solution

of the SA-VNE-RM) are conducted. In Lines 6–11 and Lines 12–17, virtual
nodes are respectively processed in ascending and descending order of degree;
and each node is mapped on the least cost physical node. In Lines 18–25, a few
random mappings are obtained. Finally, in Line 26, the cut corresponding to
each possible solution is obtained by solving the SA-VNE-DS.
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Algorithm 2 Heuristic for Initial Solutions

1: cost|V v|×|V | ←∞, k ← 1
2: for all i ∈ V do
3: for all u ∈ V v do
4: if

(
β+ (u, bwmin) ≤ β+ (i, BW )

)
and

(
β− (u, bwmin) ≤ β− (i, BW )

)
and(

δ+ (u) ≤ δ+ (i)
)
and

(
δ− (u) ≤ δ− (i)

)
then

5: cost(u, i)← cost+(u, i) + cost−(u, i) + Cu
i

6: L←Sort V v in ascending order of (δ+(u) + δ−(u))
7: X1 ← 0;
8: while L is not empty do
9: u← Pop(L.head)

10: i← argmin
j

{cost (u, j)}

11: X1 (u, i)← 1

12: L←Sort V v in descending order of (δ+(u) + δ−(u))
13: X2 ← 0;
14: while L is not empty do
15: u← Pop(L.head)
16: i← argmin

j
{cost (u, j)}

17: X2 (u, i)← 1

18: while k < MAX Iterations do
19: Xk+2 ← 0
20: L←Permuted list of elements of V
21: while L is not empty do
22: u← Pop(L.head)
23: i← argrandom{cost(u, j) <∞}
24: Xk+2 (u, i)← 1

25: k ← k + 1

26: Solve the SA-VNE-DS in parallel and generate feasibility or optimality cuts.
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5.3. Adding Upper Bound to the SA-VNE-RM

In the Benders algorithm, for the optimality cut generated in each iteration,
we have the following equations:

1
|S|
∑
s∈S

( ∑
(u,v)∈Ev

∑
i∈V

λ̄
s,(u,v)
i bws(u,v) (xvi − xui ) (9)

−
∑

(i,j)∈E
µ̄s(i,j)BW(i,j)

)
≤ ρ

and
UB ≥ LB =

∑
i∈V

∑
u∈V v

Cui x
u
i + ρ (10)

from (9) and (10), we conclude:

UB + 1
|S|
∑
s∈S

∑
(i,j)∈E

µ̄s(i,j)BW(i,j) ≥ (11)

1
|S|
∑
s∈S

( ∑
(u,v)∈Ev

∑
i∈V

(λ̄
s,(u,v)

i bws(u,v) + Cvi ) (xvi )

−(λ̄
s,(u,v)

i bws(u,v) + Cui ) (xui )
)

Adding cut (11) in each iteration, apart from the optimality cut, leads to a
better estimation of the upper bound value in the B&B algorithm [8], and
consequently improves solution time. In most commercial solvers, the constraint
can accelerate solving the SA-VNE-RM [19], [32].

5.4. Generating Pareto-optimal Cuts

In the Benders decomposition, when the “sub-problem” is degenerate, there
are several optimal solutions to the “dual of sub-problem;” and consequently,
different optimality cuts can be generated. It was shown that using the Pareto
optimal cut, defined in the following way, leads to a significant reduction in
the convergence time of the Benders algorithm [32]. We say that the cut gen-
erated by ΠT

opt,1 dominates the cut generated by ΠT
opt,2 if ΠT

opt,1 (h−BX∗) >
ΠT
opt,2 (h−BX∗), where X∗ is the optimal solution to the original problem. A

cut is called Pareto optimal if it is not dominated by any other cut.
Since X∗ is not known until the end of the solution process, Magnanti and

Wong designed a problem that leads to generating a Pareto-optimal cut [33]
without knowing the X∗. However, it suffers from two drawbacks. First, the
problem is dependent on the solution of the “dual of sub-problem,” and Pa-
padakos [34] proved that when the dual problem is solved sub-optimally, the
Magnanti-Wong problem might become infeasible. As a solution, he proposed
the independent Magnanti-Wong problem and proved that the cut obtained
through its solution is Pareto-optimal. Second, the Magnanti-Wong problem is
formulated based on valid core points6, while it was shown that finding the cor-
ner points is not an easy task [34]. To overcome the issue, Papadakos defined a
Magnanti-Wong Point and proved that the convex combination of a Magnanti-
Wong point with any other point in the feasible region of the master problem
is also a Magnanti-Wong Point [34].

6A core point is a point in the relative interior of the convex hull of the master problem
feasible region.

22



Based on these findings, Papadakos proposed an algorithm to improve the
Benders algorithm. In each iteration of the algorithm, a new Magnanti-Wong
point is obtained from convex combination of the current point and the solution
of the restricted master problem; this new point is used to solve the indepen-
dent Magnanti-Wong problem, and consequently to generate an optimality cut.
Then, the algorithm continues to solve the restricted master problem and the
dual of the sub-problem. By inspiration of the Papadakos algorithm, we design
our proposed algorithm in the next section.

5.5. Proposed Algorithm to Solve the SA-VNE

Putting all the proposed acceleration techniques together, the proposed al-
gorithm to solve the SA-VNE problem is described in Algorithm 3. In Line 2,
by using Algorithm 2, a set of possible solutions for SA-VNE-RM is generated.
Afterwards, the SA-VNE-DS is solved per possible solution Xi, and its corre-
sponding objective value is saved in Z∗DSP,i. In Lines 3 to 5, the UB quantity is
calculated and a Magnanti-Wong point is derived.

In continuation, the algorithm enters into the main while loop. In Line 7,
the SA-VNE-RM with additional constraints (8) and (11) is solved and then
the value of the LB and current solution X̄ are updated. In Line 11, the SA-
VNE-DS is solved. If the problem is unbounded, a feasibility cut is added
to the SA-VNE-RM and algorithm returns to the beginning of the while loop.
Otherwise, the UB value is updated. If the termination condition is satisfied, the
algorithm ends. Otherwise, in Line 24 the value of the Magnanti-Wong point is
updated. After that, the SA-VNE-DS is solved by using the updated Magnanti-
Wong point to generate a Pareto-optimal cut. After that, the generated cut is
added to the SA-VNE-RM.

The condition for termination of Algorithm 3 execution is the convergence
of the UB and LB values. Given the time constraint, the termination condition
can be stated in the terms of k, i.e. the number of times the algorithm generates
a new solution.

6. Numerical Results

In this section, after explanation of the evaluation environments and param-
eters, the result obtained by solving the SA-VNE is investigated and compared
with the solution of the worst-case and conservative problems. Then, the solu-
tion time of Algorithm 3 is compared with the B&B method.

6.1. Simulation Settings

The parameters used to generate substrate network topologies and VNRs are
shown in Table 6. In the topologies, directed links between every two nodes were
created with a probability of 0.5. Two substrate networks were used, named
Network 1 and Network 2, which have seven and eight nodes, respectively. In
each of the networks, processing and bandwidth resources were initialized using
uniform random variables with intervals indicated in Table 6 by U [x− y].

In order to assess the effect of uncertainty interval on solution quality and
time, two VNR requests with the same random topology with four nodes were
generated. The VNRs are different from each other in the random variables
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Algorithm 3 The Proposed Algorithm

1: UB ← ∞, LB ← −∞, k ← 0, P0 ← ∅, R0 ← ∅, T ermination Condition ←
(UB − LB ≤ ε)

2: Use Algorithm 2 and generate a few Xjs, solve the SA-VNE-DS in parallel, save
the optimal value as Z∗DSP,j , update P and R.

3: UB ← min
j

{
(CTXj + Z∗DSP,j)

}
4: Index← arg min

j

{
(CTXj + Z∗DSP,j)

}
5: MWP ← XIndex

While:
6: k ← k + 1
7: Solve the SA-VNE-RM with additional constraints (8) and (11).
8: if It returns a bounded optimal value Z∗MP then
9: LB ← Z∗MP

10: Save the optimal solution X̄ and go to SA-VNE-DS.

SA-VNE-DS :
11: Use X̄ to solve the SA-VNE-DS.
12: if SA-VNE-DS is an unbounded problem then
13: Save the returned Π̄T

feas

14: Rk ← R(k−1) ∪ {Π̄T
feas} and go to While.

15: else
16: Save the returned optimal value Z∗DSP and Π̄T

opt

17: if Z∗DSP + CT X̄ < UB then
18: UB ← Z∗DSP + CT X̄
19: Calculate Ȳ using Π̄T

opt

20: if Termination Condition is satisfied then
21: Go to Exit
22: else
23: Go to Core.

Core:
24: MWP ← 0.5MWP + 0.5X̄
25: Solve SA-VNE-DS using MWP , and set Pk ← P(k−1) ∪ {Π̄T

opt}
26: Go to While.

Exit :
27: Return X̄, Ȳ as the optimal solution and exit.
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Table 6: Simulation Parameters

Substrate Networks
Network 1 Network 2

Number of nodes 7 8
Link bandwidth (unit) U [1− 100]

Processing resources (unit) U [1− 50]
Processing cost (per unit) U [50− 100]
Bandwidth cost (per unit) U [5− 20]

Virtual Network Requests
VNR 1 VNR 2

Number of nodes 4
Processing demand (unit) U [1− 30]
Bandwidth demand (unit) U [1− 70] U [35− 70]

environments
Network 1 Network 2 VNR1 VNR2

environment 1 X X
environment 2 X X
environment 3 X X

intervals used for required resources. As per Table 6, links bandwidth require-
ments in VNR 1 and VNR 2 respectively follow U [1− 70] and U [35− 70] random
variables.

Three simulation environments, shown in Table 6, were designed to evaluate
the performance of the algorithms. In the first environment, VNR 1 is mapped
on Network 1. In the second environment, VNR 2 is mapped on Network 2,
and in the third environment, VNR 1 is mapped on substrate Network 2. CVX
version 2.1 with Mosek solver was used with their default parameters to solve the
SA-VNE and the other problems. All the problems were solved to optimality and
ε in Algorithm 3 was initialized to 10−3. In Algorithm 2, 20 initial solutions were
generated and optimality and feasibility cuts corresponding to these solutions
were generated in parallel. The evaluation was carried out on a system with
two cores operating at 3.3 GHz with 6 Gigabytes of memory.

6.2. Assessment of Solution Quality

In this section, the optimal value of the SA-VNE problem, which is obtained
for a VNR in a time period7, is compared with the solutions of the worst-case
and the conservative problems. The conservative problem is a one-stage de-
terministic problem where each random variable is replaced with its maximum
value. The objective function of the conservative problem is the total costs of
virtual nodes and links mapping. In the worst-case problem, InP maps vir-
tual nodes according to the solution of the conservative problem, but mapping
of virtual links is postponed until the uncertainty is resolved. Therefore, the
objective function of the worst-case problem is the total cost of virtual node
mapping and the average cost of link mapping based on the generated scenar-
ios. As a reminder, the objective function of the SA-VNE is the same as the
worst-case problem.

The mean values and the standard deviations of the objective function of
the problems in each environment are shown in Figure 2. Since the optimal

7In these simulations, the required bandwidths do not change over time, however, it is not
known in the node embedding stage and realized after when the link embedding is performed.
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objective value of the conservative problem is independent of the sample size
and substantially differs from the optimal solution of the other algorithms, its
optimal solution is separately depicted under the figures. As evident, there is
a significant difference between the optimal values of these problems, and the
optimal value of the SA-VNE is always less than the others. In addition, in all
environments, as the sample size increases, the standard deviation values and
fluctuations in the objective function values of the SA-VNE and the worst-case
problems decrease.

In the first environment in Figure 2a, the optimal value obtained from the
SA-VNE problem is on average up to 30% less than the conservative problem; it
shows the advantage of the two-stage decision making procedure that exploits
the available information of the realized bandwidth demands. Moreover, the
optimal value of the SA-VNE is up to 2% less than the worst-case problem. In
the SA-VNE, as the sample size increases from 10 to 500, the standard deviation
is lowered from 224 to 27 that indicates that the solutions are getting closer to
each other and to the true solution of the stochastic VNE problem.

When virtual links uncertainty interval is decreased, the difference between
optimal values of the SA-VNE and the worst-case problems decreases too. This
is the situation that occurs in the second environment, shown in Figure 2b,
where the uncertainty interval is decreased from 70 to 35 in comparing to the
first environment. It is evident that the optimal value of the SA-VNE shows
a difference of 0.5% and 17% with the worst-case and conservative problems,
respectively. In addition, by increasing the sample size from 10 to 500, the
standard deviation of the SA-VNE is reduced from 179 to 21.

By increasing the size of the substrate network in the third environment, the
difference between the optimal value of the SA-VNE and the other problems was
increased as well. As illustrated in Figure 2c, the optimal value of the SA-VNE
is lower up to 11% and 45% than the worst-case and the conservative problems,
respectively. It shows the effectiveness of considering the average link mapping
cost, in addition to the node mapping cost, in the first stage by the SA-VNE.

These noticeable difference between the SA-VNE in comparison with the
worst-case problem stimulates InP to use its solution in spite of higher com-
putational costs, which is also manageable as the result presented in the next
section.

6.3. Assessment of Solution Time

Increasing the sample size improves the quality of the solution at the cost
of increased solution time. Therefore, in this section, the solution time of the
SA-VNE through Algorithm 3 is compared to the time needed to solve the
problem by an off-the-shelf B&B based solvers. The running time of Algorithm 3
comprises the running time of the SA-VNE-RM, SA-VNE-DS, and Core sections
plus the time spent on generating initial cuts by Algorithm 2. The solution time
of the SA-VNE by Algorithm 3 and the B&B algorithm in all three environments
is compared in Figure 3.

As evident, by increasing the sample size from 10 to 500, the running time of
the B&B algorithm intensively increases. This increase is due to a sharp increase
in the number of the second stage variables, which are simultaneously considered
with the first stage variables in this algorithm. Although the computation time
of the B&B algorithm for sample size less than 100 is lower than Algorithm 3,
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Figure 2: Embedding cost, i.e., objective function values, of different algorithms with respect
to the sample size in each environment. Standard Deviations are shown in the form of error
bars.

https://www.overleaf.com/project/5bd009f876d7660fbd9e9831
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Figure 3: Solution time of the SA-VNE with respect to the sample size in different environ-
ments. Standard Deviations are shown in the form of error bars.
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Table 7: Details of running time of Algorithm 3 in a sample run of environment 3.

Running Time (s)
|S|
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s

10 32.1 10.8 10.9 10 0.2 0.2
50 49.9 10.7 19.6 18.9 0.2 0.4
100 53.4 8.8 22.7 21.1 0.2 0.6
200 74.6 7.7 35.5 30.3 0.2 1
300 96.3 6.9 45.5 42.4 0.2 1.5
400 106.8 6 52.9 45.8 0.2 2
500 169.9 8.1 86.2 72.5 0.3 2.7

but by increasing the sample size, it is observed that the computation time of
Algorithm 3 increases with a mild slope and the difference between the solution
times of the algorithms is increased. For instance, in the first environment, by
multiplying the sample size by 50, the solution time of Algorithm 3 and the B&B
become 4 and 276 times larger, respectively. Algorithm 3 in the first, second
and the third environments is up to 4.7, 7.1 and 7.5 times faster than B&B,
respectively. Putting the results in Figure 2 and Figure 3 together, indicates
the proposed algorithm can achieve the solution, using a sufficient large sample
size, in a reasonable time.

The breakdown of the running time of different sections of Algorithm 3 in a
sample run of the environment 3 is shown in Table 7. In order to eliminate the
effect of initial random solutions, the same set of initial solutions is used in all
the sample sizes to generate the cuts. The total running time of Algorithm 3 is
shown in column 2; it is seen that enlarging the sample size increase the running
time. The total time is broken according to the sections of the algorithm in
columns 3–5. As depicted, most of the time is spent in solving the SA-VNE-DS,
which could be drastically reduced by solving it in parallel. More importantly,
by increasing the sample size, the time spent on the master problem is remained
almost constant since the decision variables of the problem, X, are independent
of the sample size. Columns 6 and 7 show the average solution time of the
SA-VNE-RM and the SA-VNE-DS in each iteration. The average solution time
of the SA-VNE-RM does not change notably by increasing the sample size since
it does not change the number of binary decision variables of the SA-VNE-
RM, which are the main source of the complexity of the problem. The average
solution time of the SA-VNE-DS, as expected, increases by enlarging the sample
size.

7. Conclusion and Future Work

Uncertainty in the VNE problem is a research challenge that has received
little attention. The present study considered uncertainty in virtual links band-
width. To minimize embedding cost, it is aimed to find a non conservative
solution by exploiting the statistical distribution of the required bandwidths via
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formulating the problem as a two-stage MILP in the stochastic programming
framework.

It was shown by simulation that the embedding obtained from the Stochastic
VNE problem could reduce InP costs up to 40% compared with the conservative
approaches. In order to solve the stochastic VNE problem, we utilized the
sample average approximation technique, where by increasing the sample size,
a more precise estimation of the solution to the stochastic VNE problem could be
obtained. Nevertheless, it causes an increase in the problem size that intensively
increases the computation time. To tackle the complexity, a novel algorithm
based on the Benders decomposition method was proposed which could decrease
the running time by 7.5 times compared to the branch and bound method.

There are still challenges remaining that can be studied in the future. We
would like to improve the proposed heuristic algorithm to generate better ini-
tial solutions. An idea for this improvement can be the use of approximation
algorithms. Generating feasible solutions in the early stages of the proposed al-
gorithm leads to a faster convergence rate. Another point of interest to consider
is the possibility of migrating embedded virtual nodes due to traffic changes in
the stochastic VNE problem. This can lead to a lower embedding cost. However,
the cost of migration and disruption in the service should also be considered.
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