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SUMMARY

Channel assignment in multi-channel multi-radio wireless mesh networks is a powerful resource management
tool to exploit available multiple channels. Channels can be allocated either statically based on long-term steady
state behavior of traffic or dynamically according to actual traffic demands. It is a common belief that dynamic
schemes provide better performance; however, these two broad classes of channel allocation schemes have not
been compared in detail. In this paper, we quantify the achievable performance gain and fairness improvement
through an optimal dynamic channel allocation scheme. We develop optimal algorithms for a dynamic and three
static schemes using mixed integer linear programming, and compare them in the context of QoS provisioning,
where network performance is measured in terms of acceptance rate of QoS sensitive traffic demands.

Our extensive simulations show that static schemes should optimize channel allocation for long-term traffic
pattern, and maintain max-min fairness to achieve acceptable performances. Although the dynamic and max-min
fair static schemes accomplish the same fairness, the dynamic channel allocation outperforms the static scheme
about 10% in most cases. In heavily overloaded regimes, especially when network resources are scarce, both have
comparable performances, and the max-min fair scheme is preferred since it incurs less overhead. Copyright c©
2010 John Wiley & Sons, Ltd.

KEY WORDS: Multi-Channel Multi-Radio Wireless Mesh Networks; Static Channel Assignment; Dynamic

Channel Assignment; Max-Min Fairness; Joint QoS routing and Channel Assignment

1. INTRODUCTION

Resource allocation is an essential issue in all communication networks. It specifies how network

resources are configured and shared among traffic demands. There are two broad classes of resource

allocation schemes: static and dynamic. In the former schemes, network resources are allocated for a

long time according to long-term steady state behavior of traffic in order to optimize a utility function,

e.g., aggregate network throughput. However, in the latter schemes, resource allocation frequently

changes over time according to dynamic traffic demands; at any given time, if needed, resource

allocation is reoptimized for the current flows in the network to meet their requirements.

∗Correspondence to: Bahador Bakhshi, Computer Engineering and Information Technology Department, Amirkabir University
of Technology, Hafez Avenue, Tehran, Iran.
†E-mail: bbakhshi@aut.ac.ir

Copyright c© 2010 John Wiley & Sons, Ltd.



2 B. BAKHSHI AND S. KHORSANDI

In general, dynamic resource allocation schemes provide better performance at the cost of updating

network configuration. This is because of the capability of dynamic schemes to adapt resource

allocations on-demand. Static schemes optimize resource allocation based on steady state traffic

pattern; therefore, when the actual traffic varies from the nominal case, these schemes cannot provide

sufficient resources for it that leads to performance degradation. However, dynamic schemes adapt

network resource allocation over time for the actually existing traffic demands to provide the required

resources of the demands that improves network performance.

In multi-channel multi-radio Wireless Mesh Networks (WMN), in order for a pair of nodes in

transmission range of each other to communicate, they need to configure their radios on a common

available channel. A common channel between each pair of neighboring nodes is considered as a

communication link. Two links interfere with each other if they are in interference range of each other

and use the same channel. Interference is the main factor that determines network available resources

because the available bandwidth of each link is determined by the interference pattern; that is, since

interfering links cannot transmit simultaneously, each link has to share physical channel capacity with

other interfering links. Therefore, the issue of resource management in WMN can be defined as the

channel allocation pattern in the network at any given time per link due to the fact that interference is

specified by channel assignment. In WMNs, channel assignment is a powerful resource management

tool in order to determine the available bandwidth of each link. Similar to other resource allocation

schemes, channel allocation can be either static or dynamic. In static channel allocation schemes

[1, 2, 3, 4, 5], channels are assigned to links for a long time, which is usually optimized for steady

state traffic pattern. In dynamic schemes [6, 7, 8, 9, 10, 11, 12, 13, 14], channel allocation pattern

changes over time; it is (re)optimized for time-varying traffic. Related work is reviewed in Section 2.

Static and dynamic channel assignments have been compared in previous studies [6, 7, 8, 11, 15]

that show that dynamic channel allocation schemes give better performance than static ones. However,

almost all the results either have been obtained by heuristic dynamic solutions and/or compared to

heuristic static mechanisms. Therefore, validity of these comparisons is influenced by the efficiency of

the heuristic solutions. To our best knowledge, there is not any comprehensive comparison between

optimal solutions for dynamic and static channel allocation schemes in multi-channel multi-radio

WMNs. Moreover, all the existing comparisons have been performed from the network performance

point of view. Fairness in resource allocation, which determines how network resources (available

channels) are shared among demands, has not been considered in the previous studies in spite of the

fact it is a key issue in all resource allocation schemes.

In this paper, we study the problem of quantifying the performance gain and fairness enhancement

achievable through an optimal dynamic channel allocation scheme in comparison to optimal static

schemes. The comparison is performed in the context of QoS provisioning. The reason why we compare

channel allocation schemes in this context and the formal specification of the context will be discussed

in more detail in Section 3.5. Briefly, the context is as follows. In this context, traffic is time-varying;

i.e., traffic demands arrive to the network randomly and each demand has a (random) limited lifetime.

The source and destination of each demand belong to a pre-defined set of source-destination pairs.

Each traffic demand requires a fixed amount of bandwidth from its source node to the corresponding

destination node as its QoS constraint. A demand is either completely accepted or rejected. If the

network can provide the required end-to-end bandwidth, i.e., can meet the QoS constraint, then the

demand is admitted. In this case, it transmits data at the fixed requested rate during its lifetime. If

the required bandwidth cannot be guaranteed, the demand is rejected. A higher number of accepted

demands implies better resource utilization and higher performance; hence, in the QoS provisioning

context, the network performance is usually measured in terms of the acceptance rate of the traffic
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demands [16, 17, 18, 19, 20]. Consequently, to perform the desired comparisons between channel

allocation schemes in the context, we need to measure acceptance rates obtained by dynamic and static

channel allocation schemes. These measurements are performed as follows.

In static channel allocation schemes, channels are assigned at the beginning before demands arrive.

This channel assignment pattern is fixed and is not changed later. For each demand, if the required

bandwidth can be routed from its source to the destination, which QoS routing algorithm is responsible

for, then the demand is accepted; otherwise, it is rejected. The static channel allocation is performed

based on the available information about long-term traffic pattern, which is specified by the pre-defined

set of source-destination pairs since as mentioned, source and destination of all traffic demands belong

to the set. In dynamic schemes, channel assignments in the network are continuously adapted according

to the actual traffic load. For a given demand, channel assignment pattern is modified in order to

provide sufficient available bandwidth from the source of the demands to its destination. If the network

can provide the required bandwidth through an appropriate channel (re)assignment and routing, which

is performed by joint QoS routing and channel assignment algorithm, then the demand is accepted;

otherwise it is rejected. Through comparing the numbers of accepted demands by each scheme, we

measure the performance gain of dynamic schemes over static mechanisms. Moreover, we investigate

the fairness of the schemes in terms of the number of accepted demands per source-destination pair.

In the remaining of this paper, our goal is to compare the maximum achievable acceptance rates

by the optimal static and dynamic channel allocation schemes. For this purpose, dynamic and static

schemes are implemented using mathematical optimization models. For ease of discussion, at the first

step, the optimization models are developed for static demands, wherein all demands arrive at the same

time. Then, in the second step, we consider dynamic demands, in which traffic demands arrive to and

leave from the network randomly over time, and extend the optimization models to implement the

dynamic and static channel allocation schemes for this case. Through comparing the acceptance rates

obtained by the optimization models in the case of dynamic demands, we measure the performance

and fairness gain of the dynamic scheme. More specifically, our contributions to the problem are the

following:

• In the case of static demands, QoS routing and joint QoS routing and channel assignment

optimization models are formulated using the well-known constraints in the literature. We show

that these models provide an upper bound on the acceptance rate in this case.

• For dynamic demands, we develop optimal online QoS routing and joint QoS routing and channel

assignment algorithms by extending the optimization models developed for static demands and

using the idea of rerouting existing flows in the network.

• We develop a max-min fair static channel assignment algorithm based on our proposed mixed

integer linear programming (MILP) optimization model.

• Through extensive simulations in different topologies and various traffic parameter settings, we

compare the maximum achievable acceptance rate, fairness index [21], and overhead of the

dynamic and static channel allocation schemes.

The remainder of this paper is organized as follows. Related work is briefly reviewed in Section 2. In

Section 3, models and problem formulation are discussed. We give an overview of solution approach

in Section 4. The MILP models of the QoS routing and joint QoS routing and channel assignment

problems in the case of static demands are developed in Section 5. The optimal static and dynamic

channel allocation schemes in the case of dynamic demands are developed in Section 6. We present

the static channel assignment algorithms in Section 7. Simulation results are presented and analyzed in

Section 8, and Section 9 concludes this paper.
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2. RELATED WORK

Channel allocation problem in multi-channel multi-radio WMNs is an active research area. The existing

studies on this problem can be classified as shown in Fig. 1. In static channel allocation category,

channel assignment pattern is static, which is performed based on topological information and/or

long-term prediction of traffic pattern [1, 2, 3, 4, 5]. In these schemes, radios can switch between

channels; however, the pattern of the switching should be static and independent of instantaneous

actual traffic load. On the other hand, dynamic schemes modify the channel assignment pattern over

time [6, 7, 8, 9, 10, 11, 12, 13, 14].

Dynamic channel allocation schemes are either opportunistic or non-opportunistic. In the former

schemes, the channel assignment algorithm aims to mitigate interference from external sources, e.g.,

coexisting networks [6, 7, 8]. For this purpose, each node measures interference periodically, and

switches to the least interfered channel if the level of interference exceeds a threshold. In dynamic

non-opportunistic schemes, channels are assigned according to interference in the network, which is

proportional to the offered load. These schemes adapt channel assignment pattern for the load offered

to the network at any given time in an either a centralized or a distributed manner.

In the distributed approaches [12, 13, 14], each node locally measures the load on each of its links.

In the case of detecting an overloaded link, the link is switched to a lesser interfered channel. The

main goal of these approaches is to maximize the total one-hop capacity of the network using the local

information. In the global non-opportunistic schemes, the global routing and traffic information is used

to optimize channel assignment. These schemes either assume that flow routes are given [9, 10, 11] or

jointly optimize channel assignment and routing [22, 23, 24, 25, 26] (and scheduling [27, 15] and power

level [28]). In [9, 10], channels are assigned according to congestions in the network. The authors in

[11] proposed a maximum fair bandwidth approach for channel assignment. For a given traffic matrix,

the joint algorithms [15, 22, 23, 24, 25, 26, 27, 28] find an efficient network configuration including

routes and channel assignments (and scheduling and power levels) to maximize the aggregate network

throughput subject to a fairness constraint. When the traffic matrix changes, these algorithms find a

new (near) optimal feasible configuration for the new traffic demands.

3. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, after description of assumptions and system models, we formulate the problem

considered in this paper. Notations used throughout the paper are shown in Table I; we use bold symbols

for vectors.

3.1. Assumptions

We consider contention based, e.g., IEEE 802.11, multi-channel multi-radio WMNs. In the networks,

all nodes are static and have qu radios. All the radios have the same transmission range TR and the

same interference range IR (> TR). It is assumed that the RTS/CTS mechanism is enabled. There are

κ orthogonal channels with the same physical capacity c Mb/s. To maintain network connectivity and to

exchange information among nodes, it is assumed that in addition to the κ channels, a control channel

exists. In addition to the qu radios, there is a dedicated radio for the control channel. This channel and

radio are not considered in the optimization models since they are not used for data transmission.

Traffic demands are from specific source nodes to their corresponding destinations. These source-
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Figure 1. Classification of channel allocation schemes

Table I. Notations
Notation Description Notation Description

u and v Node V Set of nodes, |V | = n

(u, v) Link E Set of edges, |E| = m

k Channel K Set of channel, |K| = κ

c Physical channel capacity TR Transmission range

IR Interference range (s, d) Source-Destination pair

∆ Pairs set, ∆ = {(si, di)} b The required bandwidth

t Arrival time e Exit time

F Demands, F = {(si, di, bi, ti, ei)} qu The number of radios of node u

lk(u,v) Load on link (u, v) on channel k f i
(u,v) Flow of demand i on link (u, v)

Qi Maximal clique in interference graph Φ Maximal cliques set, Φ = {Qi}
pi Profit of demand i p Profit vector, p = [pi]1×|F |

βi Allocated flow for demand i Ψ Channel assignment, Ψ = [xk
(u,v)]κ×m

xk
(u,v) Fraction of time link (u, v) transmits on channel k

destination pairs are predetermined by set ∆ = {(si, di)}, where si and di are the ith source and

destination, respectively. Flows are splittable; hence, multi-path routing is used. Similar to previous

work, we assume that radios are capable to switch between channels with a negligible delay [15, 29],

which is called fast switching. Although this assumption may seem unrealistic considering off-the-shelf

wireless NICs, we believe that this technological issue will be addressed in the future. For example,

in [29] (and the references therein), it is argued that the channel switching time could be decreased to

40-80 µs in commercial IEEE 802.11 interfaces. It is supposed that channels can be reassigned and

flows can be rerouted at any given time. The last assumption, the rerouting capability, is necessary to

develop optimal QoS routing algorithm, as we explain in Sections 3.5 and 6.

3.2. Network Model

Network is modeled by a digraph G = (V,E), where V is a set of n vertices and E is a set of m edges.

Each v ∈ V corresponds to a node in the network. For a given pair of nodes u and v, there is a link

(u, v) ∈ E if d(u, v) ≤ TR, where d(u, v) is the Euclidean distance between u and v.

3.3. Interference Model

Interference is modeled by Interference Graph IG. Each link (u, v) ∈ E is represented by a vertex

in IG. If two links interfere with each other, there is an edge between their corresponding vertices in
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IG. Since we assume channels are orthogonal to each other, only links assigned to the same channel

interfere with each other. To construct the interference graph, we use the widely used interference

range model [2, 6, 27, 15, 28, 30, 31, 32], which is a special case of the protocol model [33]†. This

model, in conjunction with the RTS/CTS mechanism, yields that two links (u1, v1) and (u2, v2) on a

common channel interfere with each other if d(u1, u2) ≤ IR or d(u1, v2) ≤ IR or d(v1, u2) ≤ IR or

d(v1, v2) ≤ IR [2, 27].

3.4. Available Bandwidth Model

The authors in [34] proposed two sufficient conditions for feasibility of bandwidth allocation in multi-

hop wireless networks: the row constraint and the scaled clique constraint. In this paper, we use the

scaled clique constraint. It imposes that the aggregate load on the links in each maximal clique of the

interference graph must be at most the scaled physical channel capacity. The physical capacity should

be scaled since without scaling, this constraint is a sufficient condition only in perfect interference

graphs [34].

It is known that the value of the scale depends on the imperfection ratio of the interference graph

[34]. A recent simulation based study on the imperfection ratio of interference graphs [35] showed

that scale 1.0 is a good approximation; however, to be more conservative, scale 1
1.21 = 0.826 should be

used. We use scale 0.826 in this paper, but it must be noted that our approach and results do not depend

on the exact value of the scale.

The number of cliques in another issue. Theoretically, it can be exponential in an arbitrary graph;

however, in practice, in interference graph of multi-hop wireless networks, the number is limited, and

all maximal cliques can be found very easily. In our experiments, all maximal cliques of interference

graph of a 50-node network were found in less than one second on an Intel Pentium IV 3.0GHz

machine‡.

3.5. Problem Statement

Our goal is to measure differences between optimal static and dynamic channel allocation schemes

in multi-channel multi-radio WMNs in three aspects: performance, fairness, and overhead. Three

requirements need to be met to carry out these measurements. First, we need to know the long-term

behavior of traffic because static schemes optimize channel assignment based on it. The long-term

behavior can be expressed as a set of source-destination pairs, ∆ = {(si, di)}, where all the actual

traffic in the network will only be from these sources to their corresponding destinations. Second,

it is required that traffic load changes over time but changes must be consistent with the long-term

behavior. A change can be considered as arrival of a new traffic demand whose source and destination

belong to ∆. Third, we need a metric to measure network performance, which does not affect the

achievable performance gain. A metric could be the maximum aggregate throughput subject to a

fairness constraint. However, in this case, the fairness constraint is an issue; various constraints may

yield different performance gains. To deal with this issue, instead of measuring aggregate network

throughput, we assume that traffic is QoS sensitive that implies each traffic demand has a specific end-

to-end bandwidth requirement. Resource allocation schemes either accept a demand if they can provide

the required end-to-end bandwidth or reject it, otherwise. The required bandwidth of each demand

†Although this model is not as accurate as the physical interference model [33], it leads to more tractable optimization problems.
‡We used MACE program [36] to enumerate maximal cliques.
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depends on the traffic characteristics and multiplexing strategy in the network. If traffic is CBR or

the peak rate allocation strategy is desired, the maximum required bandwidth should be guaranteed

for each demand. However, if statistical multiplexing is used and traffic is stochastic, e.g., on-off

or VBR traffic, the required bandwidth is the effective bandwidth of the traffic [37]§. With these

assumptions, the problem studied in this paper is very similar to the bandwidth constrained routing

in wired networks, where a demand is accepted if and only if the network can provide the required

bandwidth. The problem was studied in the context of LSP routing in MPLS networks, wherein the

number of accepted demands (or equivalently, demand acceptance rate) is a widely used measure of

the network performance [16, 17, 18, 19, 20].

These three requirements and their corresponding assumptions yield that the desired measurements

should be made in the context of QoS provisioning. In this context, there is a set of dynamic demands,

F = {(si, di, bi, ti, ei)} where (si, di) ∈ ∆. Demand i arrives at time ti, needs end-to-end bandwidth

bi from node si to node di. If the required bandwidth can be routed from si to di, the demand is

accepted, which later, at time ei, leaves the network. Otherwise, the demand is rejected. For QoS

provisioning in multi-channel multi-radio WMNs, channel allocation schemes either statically or

dynamically optimize channel assignments to maximize the number of accepted demands. In the

following sections, we develop optimal static and dynamic channel assignments, and compare their

provided acceptance rates to measure the performance gain.

In addition to channel assignment algorithms, we need to develop a QoS routing algorithm because

the requirement bandwidth must be routed. Since acceptance rate of demands is affected by the

efficiency of the QoS routing algorithm, a heuristic algorithm influences our analyses. To avoid this

problem, an optimal QoS routing algorithm needs to be used. This algorithm in conjunction with

the optimal channel assignment algorithms yields two optimal schemes: static scheme and dynamic

scheme.

In the static scheme, the QoS routing and channel assignment algorithms are applied separately.

The channel assignment is an off-line algorithm. It finds an optimal fixed channel assignment pattern

before loading the network. Then, upon arrival of each demand, the online QoS routing algorithm

attempts to route the required bandwidth of the demand. In the dynamic scheme, these algorithms are

combined with each other that creates an online joint QoS routing and channel assignment algorithm.

This algorithm is applied at the arrival time of each demand to find a feasible routing and channel

assignment. With these optimal algorithms in hand, we are interested to answer the following questions:

• What is the achievable performance gain (improvement in demand acceptance rate) of the

dynamic allocation scheme in comparison to the static schemes?

• How fairly do these schemes share resources among source-destination pairs?

• How much is the extra overhead of the dynamic scheme to update channel assignments?

4. SOLUTION OVERVIEW

To answer the questions in the previous section, we need to develop the aforementioned static and

dynamic allocation schemes. As explained, the dynamic scheme is, in fact, the optimal online joint

§Effective bandwidth and statistical multiplexing are well-developed techniques, especially in the ATM networks. For further
details refer to [38, 39].
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Figure 2. Solution Overview: Starting from the case of static demands, an optimization model is developed for the
QoS routing problem and another for joint QoS routing and channel assignment. They are extended to consider the
case of dynamic demands that yield the online QoS routing and online joint QoS routing and channel assignment
algorithms. Two static channel assignments are implemented by modifying STATICQRCA. The dynamic scheme

is the OQRCA algorithm. Each static scheme is a combination of OQR and a channel assignment algorithm.

QoS routing and channel assignment algorithm. The static scheme is implemented by the optimal

online QoS routing algorithm and the optimal off-line static channel assignment. Development of these

algorithms, which is shown in Fig. 2, is as follows.

We start from a simple problem, named static demands problem, in Section 5. In this problem, all

demands arrive at the same time. We assume that each demand has a profit, and our goal is to find

the maximum profit of admissible demands. For this problem, we develop two MILP models; a model

for QoS routing named STATICQR, and the other for joint QoS routing and channel assignment, the

STATICQRCA model. Then in Section 6, we consider the case of dynamic demands, where demand i

arrives at time ti and leaves the network at time ei. We use the STATICQR and STATICQRCA models

to develop the optimal QoS routing (OQR) and optimal joint QoS routing and channel assignment

(OQRCA) algorithms for this case.

Since each static scheme needs a fixed channel assignment pattern, we develop two optimal off-line

algorithms for this purpose in Section 7. We use set ∆ as the available information about the long-

term steady state behavior of traffic, and optimize the channel assignment pattern for it. For a given

set of source-destination pairs, we assume a flow for each pair. The first channel assignment algorithm

(MAXTHROUGHPUTCA) finds a channel assignment that maximizes the aggregate throughput of the

flows. The second one (MAXMINFAIRCA) intends to provide max-min fair (end-to-end) bandwidth

allocation among the flows. Both these algorithms are developed by extending the MILP model we

build for the joint QoS routing and channel assignment problem in Section 5.

In the following sections, in addition to the notations in Table I, we will use the following variables

in the optimization models. Binary variable αi denotes admission of demand i,

αi =

{

1, if demand i is accepted

0, otherwise.

Variable βi is the total flow rate allocated for demand i. In the QoS routing problem where the required

bandwidth bi must be guaranteed, we have βi = bi, however in general, βi can be more or less than bi.
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5. STATIC DEMANDS PROBLEM

In this section, we develop MILP models for the QoS routing and joint QoS routing and channel

assignment problems in the case of static demands. By static demands, we mean all demands arrive at

the same time, ti = 0 ∀i ∈ F , and have a fixed bandwidth requirement bi. We assume that each demand

has its own profit. It is not specified by the demand set F ; we will use it in the following sections to

control acceptance probability of each demand. The objective in the following MILP models is to

maximize the aggregate profit of the accepted demands through finding feasible routes (and channel

assignments).

5.1. QoS Routing Optimal Model

In the optimization model of QoS routing, it is assumed that a static channel assignment of the network

is given. As mentioned, we assume that radios are capable to switch between channels. Hence, a given

channel assignment Ψ = [xk
(u,v)]κ×m specifies for each link-channel pair (u, v) and k, the fraction of

time that the link transmits on that channel, which is denoted by xk
(u,v).

In this model, we want to maximize the aggregate profit of the accepted demands through finding

feasible routes for each demand i ∈ F , which are specified by f i
(u,v) ∀(u, v) ∈ E. The objective

function of the model is

maximize
∑

i∈F

αipi, (1)

where p = [pi]1×|F | is the profit vector, and pi is the profit of demand i. The following constraints

must be satisfied to maintain feasibility of bandwidth allocation and routing.

Load transmitted by link (u, v) on channel k, which is denoted by lk(u,v), is bounded by the physical

channel capacity c, and the fraction of time the link actives on the channel, xk
(u,v); in other words,

lk(u,v) ≤ xk
(u,v)c ∀k ∈ K, ∀(u, v) ∈ E. (2)

Total load transmitted by a link on different channels, which is
∑

k∈K lk(u,v), must be equal to the

aggregate flow offered by the demands in the network on the link; so, we have
∑

i∈F

f i
(u,v) =

∑

k∈K

lk(u,v) ∀(u, v) ∈ E. (3)

As we mentioned in Section 3.1, available bandwidth is modeled by the scaled clique constraint that

imposes
∑

(u,v)∈Qi

lk(u,v) ≤ 0.826c ∀k ∈ K, ∀Qi ∈ Φ. (4)

It means that for each maximal clique Qi in the interference graph, the aggregate load on the links in the

clique that transmit on channel k must not exceed the scaled physical capacity. Finally, the routing and

flow conservation constraints must be satisfied if demand is accepted, which are modeled as follows.

∑

(u,v)∈E

f i
(u,v) −

∑

(v,u)∈E

f i
(v,u) =











βi, if u = si

−βi, if u = di

0, otherwise

∀u ∈ V, ∀i ∈ F, (5)

and

βi = αibi ∀i ∈ F. (6)
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The model of optimal QoS routing for a set F of static demands with profits p under a given channel

assignment Ψ is obtained by putting (1)–(6) altogether as follows.

Model: STATICQR(F,p,Ψ)
Objective: (1)

Subject to: (2)–(6).

5.2. Joint QoS Routing and Channel Assignment Optimal Model

We develop a MILP model for joint QoS routing and channel assignment in the case of static

demands by extending the STATICQR model. In this model, in addition to flow routes, f i
(u,v), channel

assignments, xk
(u,v), are also decision variables, which are obtained by solving the model. The objective

function is again to maximize the aggregate profit of the accepted demands, (1). Additional constraints

must be considered to maintain feasibility of channel assignment. The first constraint is the upper

bound of xk
(u,v); obviously, this variable cannot be greater than one, so

xk
(u,v) ≤ 1 ∀k ∈ K, ∀(u, v) ∈ E. (7)

The second constraint is the radio constraint. There are qu radios in each node u. When a link of

node u, either (u, v) or (v, u), uses channel k, xk
(u,v) > 0, in fact, a radio in the node is tuned to the

channel, and utilized for that transmission for xk
(u,v) fraction of time. Clearly, the total utilization of

radios of a node cannot exceed the number of radios of the node; in other words,

∑

k∈K

(

∑

(u,v)∈E

xk
(u,v) +

∑

(v,u)∈E

xk
(v,u)

)

≤ qu ∀u ∈ V. (8)

These additional constraints in conjunction with the STATICQR model provide an optimal model for

joint QoS routing and channel assignment as follows.

Model: STATICQRCA(F,p)
Objective: (1)

Subject to: (2)–(8).

There is an important issue about this model; this model provides an upper bound because the

solution of this model may not be schedulable. An example of unschedulable solution is depicted in

Fig. 3. In this example, in the first time-slot, nodes a and b activate channel 1 on their radios to transmit

the load on link (a, b). The length of this time-slot is half of the scheduling frame, x1
(a,b) = 0.5, because

the load on the link is 5 and the physical channel capacity is 10. In the second time-slot, channel 2 is

activated on the radios of nodes b and c to transmit the load on link (b, c). The length of this time-slot

is also half of the scheduling frame, x2
(b,c) = 0.5. It is easy to verify that all the constraints of the

STATICQRCA model are satisfied; however, there is not any time-slot to transmit the load on link

(c, a) on channel 3.

As this example shows the solution obtained from this model may not be feasible. In general,

infeasibility may lead to a loose approximation of the optimal feasible solution. However, our

simulations in [40] showed that this is not the case for the joint QoS routing and channel assignment

problem. We compared the solutions of STATICQRCA to the optimal feasible solutions obtained by

another model, which does not assume fast switching capability and uses the row constraint. The results

showed that STATICQRCA gives a tight bound on the number of admissible demands; the gap between
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Figure 3. An example of unschedulable solution. Label of each link is (channel, load) pair, label of each node is
the schedule of channel activation on the radio of the node, c = 10, and qu = 1. Whereas all the constraints of

STATICQRCA are satisfied, there is not any feasible scheduling.

two solutions is less than 5% on average. Moreover, this model tremendously improves the solution

time, e.g., STATICQRCA is solved in less than one second while the optimal feasible model may not

be solved in 10 hours.

6. DYNAMIC DEMANDS PROBLEM

In this section, we develop the desired channel allocation schemes. The channel assignment part of

the static schemes will be discussed in the next section. In this section, we focus on the optimal QoS

routing (OQR) and optimal joint QoS routing and channel assignment (OQRCA) algorithms in the case

of dynamic demands.

As explained in Section 3.5, these algorithms run upon arrival a new demand, and attempt to find

a feasible network configuration (including routing and channel assignment) to accept the demand.

Both algorithms have the same skeleton, and can be implemented in the context of the Optimal Call

Admission Control (OCAC) algorithm. The OCAC algorithm does not know any information about a

demand before its arrival; in other words, it is an online algorithm. At the arrival time of a demand, it

decides whether to accept the demand or reject it. A demand is accepted if OCAC can find a feasible

network configuration; otherwise, the demand is rejected. OCAC guarantees the required bandwidth

of the accepted demands during their lifetime, ei − ti. The OCAC algorithm checks the existence of a

feasible configuration through solving an optimization model named ADMISSION.

The key observation in the development of OCAC is that ADMISSION is indeed a static demands

problem. When demand i arrives at time ti, the problem is to accept the demand, besides a set

of already admitted demands that exist in the network at the time, which are {j ∈ F s.t. αj =
1 and tj < ti and ej > ti}. Since we assume that flow routes and channel assignments can be

modified at any given time, this problem can be seen as a static demands problem in which demands

{(si, di, bi, ti, ei)} ∪ {j ∈ F s.t. αj = 1 and tj < ti and ej > ti} have just arrived at time ti, and we

want to accept all of them.

There is an important issue in OCAC that should be treated carefully. Flows are not preemptable.

This implies that we are not allowed to reject an already accepted demand j in order to accept a new

demand i. If demand j is accepted by solving an instance of ADMISSION corresponding to the arrival

of ith demands, it must be accepted in the instance corresponding to the arrival of kth demand where

tk > ti and ej > tk. To model the non-preemption of flows, we use the profit assignment vector
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12 B. BAKHSHI AND S. KHORSANDI

Algorithm 1 : OCAC(F , ADMISSION)

Require: F is sorted in ascending order of ti
1: Create two empty sets W and A
2: for i = 1 to |F | do
3: δ ← F [i]
4: Add δ to W
5: p← Assign profits according to (9)
6: α← ADMISSION(p, W )
7: if αi = 1 then
8: Add δ to A
9: else

10: Remove δ from W
11: for ∀j ∈W do
12: if ej < ti+1 then
13: Remove demand j from W
14: return A

p = [pi]. At the arrival of ith demand, profits are assigned as follows:

pj =

{

2, if j is an already accepted demand (αi = 1 and tj < ti and ej > ti)

1, if j = i.
(9)

This profit assignment implies that first, if not all demands can be accepted, the new one, demand i,

should be rejected. Rejecting demand i is sufficient because the set of demands without demand i were

considered in (i− 1)th instance and accepted. Second, if demand i is accepted at its arrival time where

pi = 1, it will not be rejected later where pi = 2; this is the behavior of the online call admission

control algorithms.

Algorithm 1 shows the pseudo-code of the OCAC algorithm. In this algorithm, W is the set of

working demands, which were accepted and have not left the network yet, and A is the set of accepted

demands. This algorithm assumes that demands are sorted in ascending order of their arrival times.

OCAC picks demands one-by-one; for each demand, adds it to W , searches a feasible configuration

for W , and accepts the demand if a feasible configuration exists. Note that demand i is removed from

set W either if it is rejected in the ith subproblem, line 10, or it does not overlap with the next demand,

line 13, that means it leaves the network before the next demand arrives.

The OQR and OQRCA algorithms are implemented by appropriate substitutions of ADMISSION

in OCAC. For the OQR algorithm, ADMISSION is the STATICQR model. In the OQRCA algorithm,

it is substituted by STATICQRCA. By these substitutions, we obtain the resource allocation schemes

explained in Section 3.5. Whereas OQRCA is a complete algorithm to find the maximum number

of admissible demands of a given set of dynamic demands, OQR needs a static channel assignment

as STATICQR supposes that a channel assignment Ψ is given. In the next section, we develop two

algorithms to find it.

7. STATIC CHANNEL ASSIGNMENTS

In this section, two algorithms are developed to find the static channel assignment Ψ, which is needed

by STATICQR. Since we assume that the source and destination of each demand belong to a given set
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of pairs, ∆, one of the most appropriate static channel assignments is to consider a flow for each pair

and maximize the rate of the flows that implies reserving as much as possible resources (bandwidth)

for demands of each pair. Note that this is the traditional multi-commodity maximum flow problem.

In multi-channel multi-radio WMNs, the multi-commodity maximum flow is achieved through jointly

optimizing routing and channel assignment. The solution of the joint problem specifies both optimal

routing and channel assignment, that the channel assignment part is the static channel assignment

that we need. Various objective functions can be optimized in the multi-commodity maximum flow

problem [41]; we consider two different objectives. The first one is to maximize the aggregate network

throughput without any fairness constraint, and the second objective is to provide max-min fairness

among the source-destination pairs.

The desired static channel assignment algorithms are obtained by appropriate modifications in the

STATICQRCA model, which are discussed in detail in the following sections, and using a special set of

static demands. In this set, as mentioned before, there is a demand (flow) for every source-destination

pair; more specifically, ∃(si, di, bi = 1, ti = 0, ei = 1) ∈ F ∀(si, di) ∈ ∆. Hence, in the remaining of

this section, terms ‘demand’ and ‘pair’ are used interchangeably.

7.1. Maximum Throughput Channel Assignment

In the maximum throughput channel assignment problem, the objective is to maximize the aggregate

network throughput regardless of any fairness. The optimal solution of this problem is found by

the following modifications in the STATICQRCA model. In this problem, since we do not want to

guarantee an amount of bandwidth for each demand, constraint (6) is removed. Moreover, the objective

function (1) is changed to

maximize
∑

i∈F

βi, (10)

where βi is the total flow rate from si to di. By these modifications, we get the following model for

maximum throughput channel assignment problem:

Model: MAXTHROUGHPUTCA(F )
Objective: (10)

Subject to: (2)–(5), (7), and (8).

7.2. Max-Min Fair Channel Assignment

In this channel assignment problem, we need to satisfy the max-min fairness constraint. It is known

that the max-min fairness is achieved through maximizing the utility function
∑

i∈F U(βi, ζ) where

U(βi, ζ) = (1−ζ)−1β
1−ζ
i and ζ → ∞ [42]. However, it is not practical since the optimization model is

non-linear in this case, which is not easily solvable using the available solvers [43, 44]. The progressive

filling algorithm is an alternative method to achieve the max-min fairness [45]. This algorithm starts

with all rates βi equal 0 and grows all the rates equally until rates of a set of source-destination pairs

cannot be increased anymore. These are called saturated pairs. The rates of the saturated pairs are

fixed at this value, and the algorithm continues to increase rates of unsaturated pairs until a new set of

saturated pairs is found, and so on. The algorithm terminates when all pairs are saturated.

Growing rates of all source-destination pairs equally is achieved by a few modifications in

STATICQRCA, which will be explained later. However, the problem to implement the progressive

filling algorithm is that the STATICQRCA model does not determine which source-destination pairs

are saturated and which are not. Therefore, we develop an auxiliary model to find the unsaturated pairs.
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14 B. BAKHSHI AND S. KHORSANDI

First, we introduce the variables and parameters used in the model. Saturation of demand i is denoted

by binary variable δi,

δi =

{

1, if demand i is not saturated

0, otherwise.

Parameter ri is the current allocated flow rate for demand i in an iteration of the progressive filling

algorithm, and parameter ǫ is a very small real number.

We use the following observation to develop the auxiliary model. If demand i is not saturated, its

maximum achievable flow rate, βi, can be more than the current allocated rate ri. Hence, setting δi = 1
satisfies this inequality

βi ≥ riδi(1 + ǫ) ∀i ∈ F. (11)

To find unsaturated demands, we need to force δi to be non-zero for all of them. This is achieved by

the following objective function

maximize
∑

i∈F

δi. (12)

However, if demand i is saturated, where δi must be zero, its current allocated rate ri should be reserved

in this model, that means

βi ≥ ri ∀i ∈ F. (13)

Using these constraints and the new objective function, we build the following model to find the

unsaturated demands. In this model, the current allocated bandwidths are as input parameters and are

represented by vector r. The vector δ obtained by solving the SATURATION model, specifies which

pairs are saturated and which are not.

Model: SATURATION(r)
Objective: (12)

Subject to: (2)–(5), (7), (8), (11), and (13).

As explained above, in each iteration of the progressive filling algorithm, rates of unsaturated

demands are grown equally. This is accomplished by replacing the objective function (1) and constraint

(6) of STATICQRCA as follows. The new objective function is

maximize γ (14)

and constraint (6) is converted to

βi ≥ γδi ∀i ∈ F. (15)

This means if demand i is not saturated, δi = 1, its flow rate must be at least γ, which is the equal rate

for all the unsaturated demands and is maximized through the objective function (14). Similar to the

SATURATION model, we should maintain the current allocated rates for the saturated demands which is

achieved by adding constraint (13) to this model. Therefore, in each iteration of the progressive filling

algorithm, the following model is solved to equally grow flow rates of unsaturated demands, which are

specified by δ.

Model: FAIRNESS(δ)
Objective: (14)

Subject to: (2)–(5), (7), (8), (13), and (15).
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The SATURATION and FAIRNESS models are solved iteratively in the MAXMINFAIRCA algorithm

to obtain the max-min fair rate allocation among demands. Pseudo-code of the algorithm is shown in

Algorithm 2. In this algorithm, 0 and 1 are a vector with all coordinates equal to 0 and 1, respectively.

This algorithm at the beginning, initializes vectors r and δ with proper values. Then in lines 3–6, it

grows rates of unsaturated demands equally until there is an unsaturated demand, which is checked by

δ > 0; finally, in line 7, the algorithm finds new unsaturated demands.

Three points should be noted about the MAXTHROUGHPUTCA and MAXMINFAIRCA channel

assignment algorithms. First, the worst case computational complexity of MAXMINFAIRCA is

proportional to O(|F |). However, in practice, the average case complexity is much lower. In our

simulations for |F | = 50, the average number of iterations of the algorithm is about 2–3. Second,

these algorithms solve the multi-commodity maximum flow problem in the context of joint routing

and channel assignment. Their solutions provide both optimal routing, f i
(u,v) ∀i ∈ F, ∀(u, v) ∈ E,

and channel assignments, xk
(u,v) ∀k ∈ K, ∀(u, v) ∈ E. We use only the channel assignment part,

Ψ = [xk
(u,v)]κ×m, in the static channel allocation schemes. Third, these algorithms were developed

based on the fast switching capability assumption. Therefore, in the channel assignment obtained

by them, each link may need to switch between multiple channels. In spite of this, these channel

assignments are considered as static allocations because the switching pattern does not depend on the

instantaneous actual traffic demands, and does not change over time.

8. SIMULATION RESULTS

This section is intended to answer the questions mentioned in Section 3.5 through extensive

simulations. We study the effect of various parameters including the number of channels, the number

of source-destination pairs, and traffic load on the performance and fairness of the dynamic and static

channel allocation schemes.

Let Ai be the number of accepted demands with source-destination pair (si, di). We use the

acceptance rate metric to measure the network performance, which is defined as

AR =

∑

i∈∆ Ai

|F |
.

Fairness is measured in terms of Jain’s fairness index [21], which is

FI =

(

∑

i∈∆ Ai

)2

|∆|
∑

i∈∆ A2
i

.

Algorithm 2 : MAXMINFAIRCA(F )

1: r ← 0 and δ ← 1

2: while δ > 0 do
3: γ ← FAIRNESS(δ)
4: for each i ∈ F do
5: if δi = 1 then
6: ri ← γ
7: δ ← SATURATION(r)
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Table II. Static Channel Allocation Schemes. b0 = 1, t0 = 0, and e0 = 1.
Name Channel Assignment F Used in Channel Assignment

Static-Thr MAXTHROUGHPUTCA ∀(si, di) ∈ ∆ ∃(si, di, b0, t0, e0) ∈ F
Static-MaxMin MAXMINFAIRCA ∀(si, di) ∈ ∆ ∃(si, di, b0, t0, e0) ∈ F
Static-Uniform MAXMINFAIRCA ∀(u, v) ∈ E ∃(u, v, b0, t0, e0) ∈ F

This parameter measures how fairly a resource allocation scheme accepts demands from different

source-destination pairs. Absolute fairness is achieved when FI = 1, which implies that the same

number of demands is accepted from all pairs. When all the accepted demands belong to only one

source-destination pair, which means absolute unfairness, we have FI = 1
|∆| .

8.1. Simulation Setup

We evaluated four channel allocation schemes. One of them, named Dynamic, is the dynamic scheme,

which is implemented by the OQRCA algorithm. The others are static schemes, which are shown

in Table II. Static-Thr and Static-MaxMin use the given set ∆ and find the optimal static channel

assignment for the set by MAXTHROUGHPUTCA and MAXMINFAIRCA, respectively. Static-Uniform

is a special case of Static-MaxMin in which, it is assumed that no information is available about traffic

pattern. This scheme assumes a uniform traffic pattern wherein all links have the same load. It optimizes

the max-min fair one-hop capacity of the network by considering a demand (u, v, 1, 0, 1) for each link

(u, v) ∈ E.

We used a flow-level event-driven simulator developed in Java. Optimization problems were solved

by ZIB Optimization Suite [43]. We carried out simulations in two topologies: Grid and Random. In

the Grid topology, there were 25 nodes and distance between nodes in each row (column) was 200m.

In the Random topology, 50 nodes were spread uniformly in 1000× 1000m2 area. In both topologies,

TR = 200m, IR = 400m, c = 100Mb/s, κ = 12, and the number of radios per node is a uniform

random variable in {2, . . . , 5}. In each experiment, we generated a set of random source-destination

pairs, ∆ = {(si, di)}, and a demand set F = {(si, di, bi, ti, ei)} where (si, di) ∈ ∆, bi = 10Mb/s,

the demand arrival rate was a Poisson random variable with mean λ demands per minute, and the

lifetime of the demands was exponentially distributed with mean 10 minutes. In each experiment, we

used |F | > 500 demands, and there was an equal number of demands per source-destination pair. The

results presented in the following subsections are the average of 10 experiments with different sets ∆
and F .

In the following sections, in each topology, the Dynamic scheme is compared to the static schemes

over a wide range of parameter settings. In each topology, we study the effect of the number of source-

destination pairs, the network load (demand arrival rate), and the number of channels. Please note that

the Grid and Random topologies are not compared to each other. Comparisons between the schemes

in a topology are independent of the comparisons in the other topology. To carry out comprehensive

comparisons in each topology, we simulated the schemes from lightly loaded regimes (AR ∼ 1.0)

to highly overloaded regimes (AR ∼ 0.2). These regimes are obtained through appropriate setting of

the parameters (λ, κ, |∆|) in each topology; obviously, since the underlying physical topologies are

different, we needed to use different parameters for the Grid and Random topologies to generate the

desired regimes in each topology.
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Figure 4. Acceptance rate and fairness index in the Grid topology versus the number of source-destination pairs.
λ = 7 demands/min.
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Figure 5. Acceptance rate and fairness index in the Random topology versus the number of source-destination
pairs. λ = 8 demands/min.

8.2. Effect of the Number of Source-Destination Pairs

The dynamic channel allocation scheme does not use set ∆ explicitly but the performance of the static

schemes completely depends on it since they optimize channel allocation based on the set. The number

of source-destination pairs, |∆|, has two effects. First, it influences load distribution in the network; for

a given aggregate demand arrival rate λ, arrival rate of each source-destination pair is λ
|∆| . Second, it

affects how network resources are allocated by the static schemes. In these schemes, network resources

are reserved for every source-destination pair in the channel assignment phase; therefore, the number

of pairs affects the amount of reserved resources for each source-destination pair.

Acceptance rate and fairness index of the simulated schemes in the Gird and Random topologies are

depicted in Fig. 4 and Fig. 5, respectively. Note that in Fig. 4(a) and Fig. 5(a) the scale of the horizontal

axis is logarithmic. In Fig. 4(b) and Fig. 5(b), “Min” is the minimum possible value of the fairness

index, 1
|∆| , corresponds to the absolute unfairness.

These results show the followings: (i) From the acceptance rate point of view, Dynamic outperforms

the best static scheme, Static-MaxMin, about 10–15% in most cases. In Fig. 5(a), the gap between

Dynamic and Static-MaxMin increases by increasing |∆|. This is due to the irregularity of the Random

topology. When |∆| is very small, the links in the center of this topology become bottlenecks and

limit the maximum achievable performance gain. But in the case of a large |∆|, the links cause

little effect on the acceptance rate since load is distributed throughout the network. Consequently,
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Figure 6. Acceptance rate and fairness index in the Grid topology versus demand arrival rate. |∆| = 25.

in the latter case, the dynamic scheme can exploit available resources to improve the achievable

performance gain. (ii) Acceptance rate is an increasing function of |∆|. Load distribution in the

network, through increasing |∆|, avoids congestion and results in increase of acceptance rate. (iii)

Achievable fairness is independent of the number of pairs; Static-MaxMin and Dynamic provide almost

absolute fairness regardless of the number of source-destination pairs. (iv) The poor performance of

Static-Uniform is caused by the uniform traffic assumption in this scheme. When there are very few

source-destination pairs, there is a considerable difference between this assumption and the actual

traffic pattern. Therefore, the channel allocation, which is optimized according to this assumption,

is not suitable for the actual traffic pattern. (v) The unexpected behavior of Static-Thr, reduction of

acceptance rate by increasing |∆|, is due to the resource reservation strategy by the scheme. Contrary

to Static-MaxMin, this scheme does not guarantee a reserved resource for every pair. When there are

many source-destination pairs, this scheme may not allocate any resource for some pairs in favor

of allocating more resources to others that increase the aggregate network throughput. This can be

verified by the fairness index; when this scheme gives low acceptance rates, it is also unfair. The small

values of FI imply that the low acceptance rates are due to rejection of many demands from a subset

of source-destination pairs. This subset is the pairs that the MAXTHROUGHPUTCA model has not

reserved sufficient resources for them.

8.3. Effect of Network Load

Network performance depends on the load offered to the network; high loads lead to low acceptance

rates. The load is determined by the arrival rate, lifetime, and required bandwidth of traffic demands.

Since we have fixed the required bandwidth, bi = 10Mb/s ∀i ∈ F , and the average lifetime, we control

the offered load by arrival rate λ. Acceptance rate and fairness index of the channel allocation schemes

versus demand arrival rate in the Grid and Random topologies are plotted in Fig. 6 and Fig. 7.

It can be seen from these figures that: (i) The Dynamic scheme improves acceptance rate about 10%

in comparison to Static-MaxMin in both topologies when the networks are loaded moderately (λ ≥ 8
in the Grid topology) or heavily. (ii) Fairness index decreases as demand arrival rate increases, which

is more clear in the Random topology as depicted in Fig. 7(b). The reason is as follows. In the high

demand arrival rates, network is overloaded, and its resources are not sufficient to accept all demands;

so, resource-intensive demands are rejected. Whereas all demands request the same bandwidth 10Mb/s,

they do not consume network resources equally. Resource consumption of each demand is proportional

to the number of hops it traverses, which depends on the location of the source and destination
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Figure 7. Acceptance rate and fairness index in the Random topology versus demand arrival rate. |∆| = 50.

of the demand. If source and destination are far away from each other, traffic demands from this

source to the destination will be resource-intensive; hence, they are rejected with higher probability

in overloaded regimes. This leads to the unfair acceptance rate among source-destination pairs. (iii)

The poor performance of Static-Thr in Fig. 7(a) is due to the large number of source-destination pairs

used in these simulations. Referring to Fig. 5(a), we see that |∆| = 50 leads to a low acceptance rate

of Static-Thr.

8.4. Effect of the Number of Channels

Channels are the resources which our proposed schemes manage. Increasing the number of channels

implies more resources and as a result gives better performance. We plotted acceptance rate and fairness

index versus the number of available channels, κ, in Fig. 8 and Fig. 9 for the Grid and Random

topologies, respectively. In these figures, the scale of the horizontal axis is also logarithmic. As we

expect, acceptance rate is an increasing function of the number of channels.

Similar to the previous results, Dynamic outperforms Static-MaxMin about 10% in most cases.

However, contrary to them, there are conditions, e.g., κ ∈ {2, . . . , 8} in the Grid topology, wherein

Static-Thr has a satisfactory performance and even outperforms the other schemes. The reason is that

network resources are very scarce in these conditions. Therefore, if a scheme accepts a resource-

intensive demand, it cannot accept many subsequent demands because there are not sufficient resources

to handle them. This is the behavior of Dynamic that attempts to accept every demand disrespect of

its resource consumption. The low acceptance rate of Static-MaxMin in these conditions is due to

the fact that this scheme distributes resources almost equally among source-destination pairs. When

the network resources are very scarce, the allocated resources for each pair are such little that most

demands are rejected. However, Static-Thr does not consider resource-intensive source-destination

pairs and shares resources among a limited number of pairs that leads to a bit improvement in

acceptance rate. There is another issue besides the low acceptance rate in these conditions; none of

the schemes can provide good fairness as depicted in Fig. 8(b) and Fig. 9(b). The reason is that we

explained in the previous section; the allocation schemes cannot accept the same number of demands

from every source-destination pair because some of them are very resource-intensive. This issue

becomes more significant when network resources are scarce.

In the Grid topology, Fig. 8(a), Static-Uniform is the worst scheme because demand arrival rate

is very high, λ = 20 demands/min. It is straightforward to see in Fig. 6(a) that Static-Uniform is

outperformed by the other schemes in high demand arrival rates.
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Figure 8. Acceptance rate and fairness index in the Grid topology versus the number of channels. |∆| = 25 and
λ = 20 demands/min.
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Figure 9. Acceptance rate and fairness index in the Random topology versus the number of channels. |∆| = 40
and λ = 15 demands/min.

Resource allocation schemes cannot exploit all available channels due to two constraints: a limited

number of radios in each node and the underlying network topology. At each node u, at most qu
channels are simultaneously usable. The network topology limits the amount of maximum possible

flow per source-destination pair. These are the reasons that Dynamic cannot achieve higher acceptance

rates by increasing κ beyond κ = 16 in the Grid topology.

8.5. Overhead

As mentioned before, the superiority of dynamic resource allocation schemes comes at the cost of

updating network configuration over time. In this subsection, our goal is to measure the extra overhead

caused by dynamic channel assignment in comparison to static channel allocation schemes.

There is an important point about the static schemes studied in this paper. Although channel

assignment pattern is fixed in these schemes, routing changes over time. At the arrival time of each

demand, these schemes may reroute all existing flows in the network to accept the new demand.

In other words, if routing variables f i
(u,v),j and f i

(u,v),j+1 are obtained by solving two instances of

STATICQR corresponding to the arrival of jth and (j + 1)th demands, respectively, then in general

f i
(u,v),j 6= f i

(u,v),j+1. The Dynamic scheme has extra overheads to update channel assignment in

addition to routing.

Both routing and channel assignment are expressed in terms of attributes of links, f i
(u,v) and xk

(u,v).
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Table III. Overhead of channel allocation schemes in term of the number of updated links.

Parameter Settings Dynamic Static-MaxMin

Topology κ λ |∆| Rerouting Total Rerouting

Grid 12 15 10 73.85 74.62 69.29

Grid 12 10 20 73.63 75.02 69.07

Grid 30 5 25 77.12 77.44 59.51

Random 12 5 30 185.89 188.63 88.26

Random 12 10 20 182.41 184.98 104.99

Random 40 15 20 206.52 208.26 150.15

Hence, the cost of updating network configurations, including signaling and processing overheads, is

proportional to the number of links that their associated variables are updated. The average number

of links updated by the Static-MaxMin and Dynamic schemes in various parameter settings are shown

in Table III. In this table, column “Rerouting” is the average number of links that f i
(u,v) is updated,

and column “Total” is the average number of links that f i
(u,v) or xk

(u,v) is modified. It can be seen that

the difference between the numbers of updates due to rerouting can be quite big. For example, in the

Random topology, the overhead of Dynamic is significantly more than Static-MaxMin. Comparing the

“Rerouting” and “Total” subcolumns in the Dynamic column shows that dynamic channel assignment

by itself does not increase the number of updated links significantly. In fact, the updated links through

rerouting or channel reassignment are the same in most cases. Because when f i
(u,v) is modified, the

aggregate load on the link changes according to (3), and consequently, xk
(u,v) is modified to maintain

(2). The main overhead of the dynamic channel assignment is its effect on rerouting. When it is

combined with rerouting increases degree of freedom that results in the high overhead of rerouting.

It must be noted that the overhead of practical resource allocation schemes can be considerably

less than the overhead of Dynamic and Static-MaxMin. Because the STATICQR and STATICQRCA

optimization models used in these schemes have not been designed to minimize the overhead. These

models only find a feasible network configuration to accept a newly arrived demand, and the new

configuration may need a lot of updates.

8.6. Concluding Remarks

Here, we summarize our observations in the previous subsections. The main results are the following.

• Static-MaxMin is far superior to other static schemes. This implies that availability of precise

information about long-term steady state behavior of traffic pattern and maintaining fairness are

crucial issues in static schemes.

• Dynamic in comparison to Static-MaxMin does not achieve any noteworthy fairness improvement

independent of network and traffic parameter settings.

• Dynamic outperforms Static-MaxMin in most cases about 8–10%.

• When the network is heavily overloaded (AR < 0.4–0.5), all schemes are rather unfair.

• The performance gain of Dynamic becomes more significant when there are many source-

destination pairs, especially in the Random network.

• When a network with scarce resources (κ ≤ 4) is very heavily overloaded (AR < 0.2–0.3), static

schemes perform as well as Dynamic.

• The overhead of the Dynamic scheme can be much more than Static-MaxMin; in our simulations

in the Random topology, Dynamic’s overhead is about 2–2.5 times more than Static-MaxMin.
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9. CONCLUSIONS

In this paper, we quantified the maximum achievable performance gain and fairness enhancement

by an optimal dynamic channel allocation scheme in comparison to optimal static schemes. The

comparisons were carried out in the context of QoS provisioning. The dynamic scheme is indeed

the online joint QoS routing and channel assignment algorithm. The static schemes are implemented

by two separated algorithms: an off-line static channel assignment and online QoS routing. All

these algorithms were developed based on MILP models. We developed three static schemes and

compared them to the dynamic scheme. Simulations showed the following. First, static schemes

achieve acceptable performance only if precise information is available about long-term traffic pattern,

and the channel assignment is optimized for the pattern subject to max-min fairness constraint. Second,

the dynamic scheme is superior (about 8–10%) to the max-min fair static scheme in most cases;

however, both achieve almost the same fairness. Third, in the case of a heavily overloaded network with

very scarce resources, static schemes are better solutions because their performances are comparable

to the dynamic scheme and incur less overhead.
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