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Abstract

The performance of QoS-aware data networks is measured in terms of accep-
tance probability of traffic demands requiring an amount of end-to-end band-
width, which is determined by Call Admission Control (CAC) policy and QoS
routing algorithm. In this paper, we characterize the theoretical upper bound
on the network performance under the greedy CAC policy. Whereas similar
problems have been studied in teletraffic networks, the existing approaches con-
sider a specific routing algorithm and obtain its performance. They cannot be
used to find performance bound in data networks using complex dynamic QoS
routing algorithms. We obtain the bound through modeling the network as a
multidimensional Markov chain, which does not depend on a particular rout-
ing algorithm. Since this model is computational intensive, the greediest online
routing algorithm is developed to estimate the performance bound with lower
computational complexity through simulation. In single rate traffic condition,
we show that resources allocated by this algorithm for each traffic class is ap-
proximately weighted max-min fair. Using this observation, we develop a novel
technique to estimate the bound in which an individual loss system is considered
per traffic class. Simulation results show that the technique provides an accu-
rate estimation of the bound in a wide range of traffic and network parameter
settings.

Keywords: Network performance bound, QoS routing, Blocking probability,
Multidimensional Markov chain, Max-Min fairness

1. Introduction

Characterizing network performance has been the subject of many studies.
Wide variety of performance metrics have been used in the literature, e.g., ag-
gregate network throughput, end-to-end delay, and bandwidth acceptance ratio.
These metrics can be classified into two broad categories. The first category is
the metrics used for elastic flow, where network traffic does not have QoS re-
quirements. Aggregate network throughput is an example of these metrics. The
metrics in the second category are used in QoS-aware networks. In these net-
works, traffic demands have QoS requirements; each demand is admitted to
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the network if its QoS requirements are met; otherwise, it is rejected. In these
networks, performance measures directly depend on the acceptance probabil-
ity of traffic demands. Call acceptance probability and bandwidth acceptance
ratio are examples of the metrics used in QoS-aware networks. In this paper,
we consider QoS-aware data networks, and assume that each traffic demand
requires a fixed amount of bandwidth. Hence, each traffic demand is accepted
if the network can provide the required bandwidth from demand’s source node
to its destination. In the remaining, we consider the acceptance probability of
traffic demands requiring an amount of end-to-end bandwidth as the network
performance measure.

Resource allocation scheme is the main factor affecting the achievable net-
work performance. In the problem studied in this paper, bandwidth constrained
routing algorithm is the resource allocation scheme since each demand requires
an amount of end-to-end bandwidth. To accept a demand, this algorithm is re-
sponsible to find a path that has sufficient available bandwidth, which is called
feasible path. In general, similar to other resource allocation algorithms, band-
width constrained routing algorithms can be off-line or online. In off-line al-
gorithms, the information about all traffic demands is known and given to the
algorithm at the beginning. However, in online algorithms, it is assumed that
this information is not available; traffic demands arrive one-by-one and there is
not any information about future demands. In real networks, the bandwidth
constrained routing algorithm needs to be online since in many applications,
the exact information about future traffic demands is not known, and cannot
be predicted precisely. In this paper, we also consider online bandwidth con-
strained algorithms, and characterize the achievable network performance by
these algorithms. We seek to obtain a theoretical upper bound on the network
performance rather than compute the acceptance probability given by a particu-
lar practical routing algorithm. Note that since we consider only the bandwidth
requirement, in this paper, terms ‘QoS routing’ and ‘bandwidth constrained
routing’ are interchangeable.

In addition to the bandwidth constrained routing algorithm, Call Admission
Control (CAC) policy also influences the achievable acceptance probability. The
admission policy is either greedy or non-greedy [1]. In the former policy, each
demand is accepted if and only if there is a feasible path for it. However, in the
latter, in spite of existence of a feasible path, the CAC policy may decide to reject
a demand for some reasons, e.g., because the demand is very resource consuming.
In this paper, we consider the greedy policy since first, it is widely used in both
data and telecommunication networks (see the references in [1, 2]); second, most
of existing non-greedy policies need information about future demands [1], which
is not available in online scenarios; and third, non-greedy CACs may lead to
unfair resource allocation [1].

In summary, in this paper, we study the problem of characterizing the per-
formance of QoS-aware data networks, where traffic demands require a fixed
amount of end-to-end bandwidth, and the network performance is measured in
terms of the acceptance probability of the demands. Our goal is to obtain an
upper bound on the performance of online bandwidth constrained routing al-
gorithms under the greedy CAC policy. By the bound, we mean the maximum
achievable acceptance probability.

This problem has already been studied in both teletraffic and data networks.
In the teletraffic networks, since each call requires a predefined amount of band-
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width, this problem is the fundamental issue to study the network performance.
It has been studied in the context of loss networks [3]. In the data networks, this
problem has been considered in design and performance evaluation of dynamic
QoS routing algorithms, especially in MPLS networks [2, 4–6].

In loss networks, Erlang Fixed Point Approximation (EFPA) is widely used
to estimate the blocking probability of demands (calls). The key step in this
method is to compute the load on each link which is determined by routing
algorithm. Since deriving analytical models for the complicated dynamic band-
width constrained routing algorithms used in data networks is challenging, it
is not straightforward to use this method in data networks. Moreover, EFPA
method computes the blocking probability given by a specific routing algorithm,
while we aim to obtain a theoretical performance bound and do not consider a
particular routing algorithm.

In data networks, most of the previous work has focused on design of effi-
cient bandwidth constrained routing algorithms to maximize the network per-
formance. However, there has not been considerable research on analyzing the
achievable network performance or finding an upper bound on the demand ac-
ceptance probability.

To sum up, there is not an efficient method to obtain performance bound of
QoS-aware data networks. In this paper, we study this problem, and develop
techniques to compute or estimate the bound under the greedy CAC policy. In
this problem, we assume that there is a set of traffic classes, which are specified
by source-destination pair and traffic parameters. Each demand belongs to a
traffic class. Our contributions to the problem are as follows.

• A multidimensional Markov chain model is developed to represent the
maximum number of admissible demands per traffic class under the greedy
CAC policy. This model yields a closed-form formula to compute the
performance bound.

• By assuming that flows are reroutable, we develop the greediest online
bandwidth constrained routing algorithm. It is shown that this algorithm
exactly visits the states which are represented by the multidimensional
Markov chain. Hence, it provides a simulation-based technique to estimate
the bound.

• The greediest online algorithm is analyzed from the fairness point of view.
In single rate traffic, where all traffic classes require the same amount of
bandwidth, it is shown that this algorithm yields to weighted max-min
fair resource allocation among traffic classes.

• For single rate traffic, we develop a novel technique to estimate the per-
formance bound that is based on the max-min fair feature of the greediest
online algorithm. In this technique, an individual loss system is considered
per traffic class whose capacity is proportional to the maximum possible
flow of the class, and the load is scaled by the sharing factor of the class,
which is defined according to the amount of the max-min fair flow allo-
cated to the class.

The remainder of this paper is organized as follows. Related work is re-
viewed in Section 2. In Section 3, assumptions, system models and problem
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formulation are presented. The Markov chain model is presented in Section 4.
We develop the greediest online algorithm in Section 5. The fairness analysis
of this algorithm and the max-min fairness based estimation technique are dis-
cussed in detail in Section 6. Computational complexity of these techniques are
analyzed in Section 7. Simulation results to evaluate the proposed techniques
are presented in Section 8. Finally, this paper is concluded in Section 9.

2. Related work

EFPA, also known as the reduced load approximation, is the method used
for more than two decades to estimate call blocking probability in loss networks
[3, 7]. Two main assumptions are made in this method: 1) blocking occurs
independently from link to link, and 2) demands arrive to each link as a Pois-
son process. Under these assumptions, the blocking probability at each link
is computed by the Erlang-B formula, where the load on the link is thinned
due to blocking in other links along the route of the flows passing through the
link. EFPA has been applied for various versions of loss networks, e.g., in sin-
gle rate demands with fixed routing [3], multi-rate demands with fixed routing
[8], sequential alternative routing [9], dynamic alternative routing [10], state-
dependent routing in fully connected symmetric networks [11], fully connected
asymmetric network [12], non-fully connected networks [13], and multi-rate de-
mands with least loaded routing [14]. This method also has been extended
to compute the blocking probability in hierarchical networks with hierarchical
routing [15–17].

It was shown in [18] that the Poisson arrival assumption may not hold in some
cases, which leads to inaccurate estimation of blocking probability obtained by
EFPA. Assuming the identical holding time for all demands, the authors in [18]
proposed an alternative method; instead of using the EFPA method directly for
a given loss system, it is applied on a system with a priority structure which is
derived from the original system.

Whereas the EFPA method has a well-developed theoretical foundation, it
cannot be easily used in current data networks using complex dynamic (multi-
path) routing algorithms. The key step in EFPA is to approximate the reduced
load on each link, which is determined by routing algorithm. For some basic
routing algorithms, e.g., fixed routing or sequential alternate routing, the effect
of the routing algorithm on reduced load of links has been modeled through a set
of nonlinear fixed-point equations in [8, 9, 14]. However, modeling the recently
proposed dynamic bandwidth constrained routing algorithm such as MIRA [4],
VFD [19], and IMIRA [20], which use complex routing metrics, is very difficult.
Another limitation of EFPA to be used to approach the problem considered in
this paper is that the method does not provide network performance bound.
It considers a specific routing algorithm and computes reduced loads according
to the decisions made by the algorithm; in other words, it computes the per-
formance of the algorithm. However, in this paper, we aim to characterize the
network performance bound under the greedy CAC policy rather than compute
the performance of a particular routing algorithm.

In data networks, as mentioned, designing bandwidth constrained routing
algorithms has been mainly studied [4–6, 21, 22]. Almost, all the proposed
solutions evaluated their efficiency through simulation.
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The problem of computing (estimating) the acceptance probability in QoS-
aware data networks using dynamic QoS routing algorithms was studied in [2]
and [23]. In [23], the authors focused on the precomputation perspective of QoS
routing; in the first step, resources are allocated for each source-destination
pair, and in the second phase, an adequate path from the predetermined paths
is selected for each demand. They compute the acceptance probability in the
case of proportional fair resource allocation. In this paper, we do not consider
any particular precomputation scheme, and analyze network performance under
the greedy CAC policy.

The most closely related work to this paper is [2], where the authors de-
veloped an optimization model that takes information about all demands, and
finds the maximum number of admissible demands under the greedy CAC pol-
icy1. Since the optimization problem is a large Mixed Integer Programming
(MIP) model, it is tractable only in small networks. They proposed an alter-
native method to obtain a loose estimation of the bound. In that method, the
acceptance probability is computed by the multi-class Erlang-B formula whose
capacity is a lower bound on the capacity of the multi-commodity minimum cut
in the network. This method has a drawback. It yields very loose estimations
of network performance in most cases. This issue is discussed in more detail in
Section 8.5.

3. System model, problem formulation, and solution approach

3.1. System model and assumptions

The network is modeled as a directed graph G = (V,E), where V is the set
of vertices, and E is the set of directed edges. Each vertex v ∈ V corresponds
to a node in the network, and each edge (u, v) ∈ E corresponds to the link
from node u to node v. The (physical) capacity of link (u, v) is c(u,v) units of
bandwidth. Set C = {c(u,v) ∀(u, v) ∈ E} denotes the capacity of all the links
in the network. The notations used throughout this paper are summarized in
Table 1.

In the problem considered in this paper, each traffic demand arrives at time
ts and requests b units of bandwidth from source node s to destination node d.
If the demand is accepted (under the given CAC policy), it consumes network
resources until time te, then leaves the network; i.e., the holding time of demand
is te−ts units of time. Therefore, each traffic demand can be denoted by 5-tuple
δ = (s, d, b, ts, te). The set of all demands is ∆, which is sorted in ascending
order of arrival times. Both arrival time ts and holding time te− ts are random
variables. In this paper, we assume that both these times are exponentially
distributed; therefore, the demand arrival is a Poisson process.

Traffic demands are classified according to the source, destination, and
stochastic parameters of traffic. Each traffic class is denoted by τ = (s, d, b, λ, µ−1),
where λ is the arrival rate, and µ−1 is the average holding time. The previous
assumption implies that demands, which belong to traffic class τ , arrive accord-
ing a Poisson process with mean λ demands per unit of time, and the holding
time of the demands is exponentially distributed with mean µ−1 units of time.

1They modeled greedy CAC policy by adjusting the benefit associated to each demand.
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Table 1: Notations
Notation Description

u, v Nodes in the network

V Set of nodes

(u, v) Directed link from u to v

E Set of edges

c(u,v) Capacity of link (u, v)

C Set of link capacities

δ = (s, d, b, ts, te) Demand for bandwidth b from s to d

during time ts to te

∆ Set of demands

τ = (s, d, b, λ, µ−1) Traffic class from s to d with bandwidth b,
arrival rate λ, and average holding time µ−1

D Set of traffic classes

ρ Load of traffic class, ρ = λµ−1

Fi Flow of class τi
f i
(u,v) Flow of class τi on link (u, v)

n = (n1, . . . , n|D|) State of network

Ω Set of feasible states

p(n) Probability of state n

n0 n0 = (0, 0, . . . , 0)

n
i
0 n

i
0 = (n1, . . . , ni−1, 0, ni+1, . . . , n|D|)

F ∗
i,ni

0

Maximum flow for τi in state n
i
0

Ni,ni
0

Maximum # of demands of τi in state n
i
0

n
i

n
i = (n1, . . . , ni−1, Ni,ni

0

, ni+1, . . . , n|D|)

w Weight of τ

W Set of traffic classes’ weights

z Weighted max-min fair flow of τ

Z Set of weighted max-min fair allocated flows

The load of traffic class τ is denoted by ρ which is ρ = λµ−1. The set D contains
all the traffic classes.

In addition to the assumption of exponential distribution of arrival and hold-
ing times, in Section 6, we assume that traffic is single rate; which implies that
all traffic classes require the same amount of bandwidth. Moreover, we assume
that flows are splittable that means the required bandwidth b can be divided
and sent over multiple paths from source node to destination at any arbitrary
granularity.

3.2. Problem formulation

In general, bandwidth provisioning problem in QoS-aware data network is
as follows. A set ∆ of demands and a network G with capacity C are given. De-
mands arrive one-by-one and the goal is to accept as much as possible demands
under the given CAC policy subject to the capacity constraint. This constraint
implies that the amount of flow on each link (u, v) cannot be greater than the
link capacity c(u,v).

In more detail, upon arrival of a demand δ ∈ ∆ at time ts, call admission
controller decides whether to accept the demand or reject it. It must reject the
demand if there is not enough free capacity to allocate the required bandwidth b
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from s to d, i.e., when the capacity constraint is not satisfied. For this purpose,
bandwidth constrained routing algorithm attempts to find a path that allocating
the required bandwidth b along the path does not volatile the capacity constraint
of any link in the network. If such a path exists, it is called a feasible path.
In the case of existence of a feasible path, call admission controller can accept
the demands that creates a flow from s to d at rate b until time te. At time
te, the demand leaves the network and frees the allocated bandwidth. In this
problem, the network performance is measured in terms of demand acceptance
probability. Higher probability (rate) implies more efficient network resource
utilization and better performance.

In this paper, we focus our attention on the greedy CAC policy and as men-
tioned, assume that flows are splittable. This assumption implies that instead
of finding a single feasible path, bandwidth constrained routing algorithm can
divide the required bandwidth b and allocate it along multiple feasible paths.
Greedy CAC policy means that each demand is accepted if and only if there is
feasible path(s) for it. Here, we consider online bandwidth constrained routing
algorithms that implies to find feasible path(s) for a demand δi, these algorithms
can only use the information of previous demands, i.e., {δj s.t. t

s
j ≤ t

s
i}; in other

words, they do not know any information about future demands.
Under these assumptions (splittable flows, greedy CAC policy, and online

routing), our goal in this paper is to obtain a theoretical upper bound on the
network performance, that is the maximum achievable acceptance probability
through online bandwidth constrained routing algorithms under the greedy CAC
policy.

3.3. Solution approach

The steps taken in the following sections to obtain the network performance
bound are shown in Fig. 1. The problem studied in this paper, in some ways, is
similar to the classical problem of finding rejection (blocking) probability in loss
systems. Borrowing ideas from the queuing theory, at the first step, we model
the network and its state as a multidimensional Markov chain in Section 4. The
solution of the chain provides an upper bound on the achievable acceptance
probability under the greedy CAC policy. However, constructing the Markov
chain and finding the state probabilities are very computationally intensive.

At the second step, in Section 5, we develop a bandwidth constrained rout-
ing algorithm, which is the greediest online algorithm. It accepts each demand
if and only if there is a feasible configuration of flow routes in the network. It
is shown that the stochastic process corresponding to the number of demands
accepted by the algorithm is, in fact, the multidimensional Markov chain. There-
fore, the algorithm can be used to estimate the acceptance probability through
simulation.

In Section 6.1, which is the third step, under the assumption of single rate
traffic, by analyzing the behavior of the greediest online algorithm, we show
that its resource allocation policy is weighted max-min fair. Finally, at the
fourth step, which is discussed in Section 6.2, we consider a single loss system
and restate the Erlang-B formula to show the role of weighted max-min fair
resource allocation in computing the blocking probability of the system. Putting
these analyses altogether, we propose a technique to estimate the acceptance
probability achievable under the greedy CAC policy.
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Figure 1: The steps of the proposed approach for the performance bound of QoS-aware data
network under the greedy CAC policy

It is important to note that in the following sections, we develop algorithms
to obtain a theoretical upper bound on the network performance. Most practical
online QoS routing algorithms, e.g., [4–6, 21, 22, 24, 25], use greedy CAC policy
and due to practical limitations, find a single-path route for each demand which
is fixed during the holding time of the demand. In this paper, we also consider
the greedy CAC policy; however, to find a theoretical upper bound, we relax
the fixed-single-path-route constraint. In Section 4, we assume that flows are
splittable and use multi-path routing. Moreover, in Section 5, in the greediest
online algorithm, we assume that flows are reroutable. From optimization theory
point of view, these relaxations imply that the results obtained in this paper
are theoretical upper bounds on the maximum performance (acceptance rate)
achievable by practical online QoS routing algorithms under the CAC policy.

4. Markov chain model

In this section, we derive an analytical formula for the network performance
bound that is the maximum demand acceptance probability under the greedy
CAC policy. For this purpose, the maximum number of admissible demands
under this policy, disrespect of QoS routing algorithm is modeled as a multi-
dimensional Markov chain. In this model, the state of the network at time t
is specified by n(t) =

(

n1(t), n2(t), . . . , n|D|(t)
)

, where ni(t) is the number of
existing flows (accepted demands) from traffic class τi at time t. State n is a
feasible state if there is a flow allocation in the network that provides bini units
of bandwidth for every traffic class τi while satisfies the capacity constraint.
The set of all feasible states is denoted by Ω. There are two key observations
about Ω and its relation to the greedy CAC policy. First, if ni > 0 demands
from traffic class τi are admissible, then obviously, ni − 1 demands from the
class must also be acceptable since it needs lesser resources. Formally, for each
traffic class τi if n ∈ Ω where ni > 0, then n − ei ∈ Ω, where ei is defined
as the |D| dimensional vector with a ‘1’ at the ith coordinate and ‘0’ at the
other components. This observation implies that Ω is a convex set. Second,
we know that under the greedy CAC policy, demand δ = (si, di, bi, t

s
i , t

e
i ) from

traffic class τi is accepted if and only if n(tsi ) + ei ∈ Ω. Hence, by definition,
since Ω is a convex set, greedy CAC is a coordinate convex policy [26].

We need to find all feasible states n ∈ Ω to compute the acceptance rate
using the state probabilities of the chain. To do this, consider state n

i
0 =
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(n1, . . . , ni−1, 0, ni+1, . . . , n|D|); let Ni,ni
0

denote the maximum number of ad-
missible demands from traffic class τi when the network is in this state. Con-
vexity of Ω implies that n

i + ei /∈ Ω and {n′ = n
i − jei, 0 ≤ j ≤ Ni,ni

0

} ⊂ Ω

where n
i = (n1, . . . , ni−1, Ni,ni

0

, ni+1, . . . , n|D|).

Therefore, to compose Ω, we need to find Ni,ni
0

∀τi, ∀n
i
0. It is obtained

through solving an optimization problem. Let Fi denote the amount of the flow
from si to di. Suppose that F ∗

i,ni
0

is the maximum of Fi when the network is

in state n
i
0 wherein njbj units of bandwidth is guaranteed for all τj ∈ D \ τi.

Clearly, we have Ni,ni
0

= ⌊F ∗
i,ni

0

/bi⌋, where ⌊x⌋ is the largest integer number

smaller than x. The maximum flow F ∗
i,ni

0

is obtained using the following opti-

mization model.
Our goal is to find the maximum flow; so, the objective function is

maximize Fi. (1)

Flow of each traffic class is specified by the well-known flow conservation con-
straint that implies for each traffic class τi, Fi amount of flow is sent out from
the source node and received at the destination while it is not consumed or
generated in intermediate nodes. More formally, the constraint is

∑

(u,v)∈E

f j(u,v) −
∑

(v,u)∈E

f j(v,u) =











Fj , if u = sj

−Fj , if u = dj

0, otherwise

∀u ∈ V, ∀τj ∈ D. (2)

Where f j(u,v) is the amount of flow from sj to dj which routed on link (u, v).

Obviously, flow cannot be negative; so, we have

f j(u,v) ≥ 0 ∀(u, v) ∈ E, ∀τj ∈ D. (3)

Moreover, note that f j(u,v) is a continuous real variable; hence, in this model,

flows are splittable, and we use multipath routing.
Since state ni must be feasible, we need to reserve the required resources for

the existing flows of traffic classes τj ∈ D \ τi, which is njbj units of bandwidth
for class τj . Hence, we have

Fj = bjnj ∀τj ∈ D \ τi. (4)

The capacity constraint needs to be satisfied to maintain feasibility of the flow
allocations; formally,

∑

τj∈D

f j(u,v) ≤ c(u,v) ∀(u, v) ∈ E. (5)

The optimization model to find F ∗
i,ni

0

is obtained by putting the aforementioned

objective function and constraints altogether as follows.

Model: MaxFlow(G,C,D,ni
0, τi)

Objective: (1)
Subject to: (2)–(5).
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The set Ω is composed using the MaxFlow model by the recursive StateS-

pace algorithm, which is depicted in Algorithm 1. The set of all feasible states
of the multidimensional Markov chain is obtained by creating an empty set Ω
and calling StateSpace(G,C,D,n0, 1,Ω), where n0 = (0, 0, . . . , 0).

Algorithm 1 : StateSpace(G,C,D,n, i,Ω)

1: F ∗
i,ni

0

← MaxFlow(G,C,D,ni
0, τi)

2: Ni,ni
0

← ⌊F ∗
i,ni

0

/bi⌋

3: if i = |D| then
4: Ω← Ω ∪ {n′ = n

i − jei, 0 ≤ j ≤ Ni,ni
0

}
5: else

6: for j = 0 to Ni,ni
0

do

7: n
′ ← n+ jei

8: StateSpace(G,C,D,n′, i+ 1,Ω)
9: end for

10: end if

In the multidimensional Markov chain with state space Ω, assuming that
{n,n + ei,n − ei} ⊂ Ω, the transition rate from n to n + ei is λi, and from
state n to n − ei is niµi. Let p(n) denote the probability of state n. In [27],
it is shown that if the CAC policy is coordinate convex, and the arrival and
service processes are both memoryless, then the detailed balance equations are
satisfied, p(n − ei)λi = p(n)niµi, and the Markov chain has a product form
solution. Hence, since the greedy CAC policy is coordinate convex, the arrival
process is Poisson, and the holding times are exponentially distributed, we have

p(n) = p(n0)
∏

1≤i≤|D|

ρni

i

ni!
, (6)

where

p(n0) =

(

∑

n∈Ω

(

∏

1≤i≤|D|

ρni

i

ni!

)

)−1

. (7)

The acceptance probability is obtained from the state probabilities. For
each state n ∈ Ω, we define blocked classes as B(n) = {τi ∈ D s.t. n+ ei /∈ Ω}.
This is the set of traffic classes that a new demand from them is rejected if
the network is in state n. The rejection rate in state n is r(n) =

∑

τi∈B(n) λi.
Therefore, the total acceptance probability is

PA = 1−
1

Λ

∑

n∈Ω

(

p(n)r(n)
)

, (8)

where Λ is the total arrival rate, Λ =
∑

τi∈D λi.
Equation (8) provides a closed-form formula to compute the acceptance prob-

ability. For a given G, C, and D, we can use the StateSpace algorithm to
compose Ω, and then compute PA by (8). Note that for two reasons, it is an up-
per bound on the network performance achievable through practical online QoS
routing algorithms nuder the greedy CAC policy. First, the maximum number of
admissible demands is used to construct the Markov chain while practical online
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algorithms perhaps cannot accept the maximum number of demands because
selected route for a demand by these algorithms may cause rejecting upcoming
demands due to lack of information about future demands in online operation
mode; this issue will be explained in more detail in the following section. Sec-
ond, multipath routing and flow splitting is used to compose the chain while
practical algorithms are single path; and as mentioned, multipath routing is the
relaxation of the single-path routing constraint.

However, this approach is impractical due to very intensive computational
requirements. To compute PA, we have to enumerate all the states n ∈ Ω that
was shown is #P-Complete [28]. In the following sections, we develop other
techniques to estimate the acceptance probability without enumerating all the
feasible states.

5. Simulation-based estimation

Simulation is an alternative method to estimate demand acceptance proba-
bility. It consists of the following steps. First, for each traffic class τi ∈ D, a
set ∆i of traffic demands is generated, ∆i = {δj = (si, di, bi, t

s
j , t

e
j)}, where the

arrival rate of the demands is Poisson with mean λi, and the holding time tej−t
s
j

is an exponential random variable with mean µ−1
i . The set of all demands is

∆ =
⋃

τi∈D ∆i, which is sorted in ascending order of arrival time. Second, an
online greedy bandwidth constrained routing algorithm is used to find feasible
paths for the demands one-by-one. An estimation of the acceptance probability
will be the number of accepted demands over the total number of demands.

In this technique, the used routing algorithm is an important issue. Various
algorithms lead to different acceptance probabilities. Ability of algorithms to
efficiently utilize network resources determines the achievable acceptance prob-
ability. Practical online bandwidth constrained routing algorithms may not be
able to use all available network resources. These algorithms are not aware of
future demands; therefore, the resource (path) allocation for a given demand
may cause of rejection of many subsequent demands, that reduces the accep-
tance probability. For example, assume that two feasible paths are available for
a given demand δi where the first path is a part of the only feasible path for a
future demand δj . Since an online routing algorithm does not know that δj will
arrive after δi, it may select the first path for δi. In this case, δj will be rejected
in spite of existence a path allocation, wherein δi is routed through its second
path, to accept both demands.

In general, due to significant overheads, practical online bandwidth con-
strained routing algorithms do not reroute flows. This causes that route selection
for each demand affects acceptance probability of future demands. Obviously,
this issue is resolved if it is assumed that routing algorithms can reroute all
existing flows. Reconsider the previous example, and assume that the first path
is selected for demand δi upon its arrival. When demand δj arrives, an online
routing algorithm with rerouting capability can reroute δi to the second path
that frees that first path to accept δj . An online bandwidth constrained routing
with rerouting capability in developed as follows.

Upon arrival of a new demand, we consider all the existing flows and the
new demand altogether, and attempt to find a feasible flow allocation for them.
If such allocation exists, the new demand is accepted; otherwise, it is rejected.
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More specifically, suppose that the network is in state n(ts) =
(

n1(t
s), ..., n|D|(t

s)
)

at time ts, which is the arrival time of demand δ = (si, di, bi, t
s, te) of traffic class

τi. The algorithm checks the feasibility of state n′ = n(ts)+ei, and accepts the
demand if n′ is feasible; otherwise, it rejects δ. Feasibility of state n′ is checked
using the MaxFlow optimization model. For this purpose, we find F ∗

i,ni
0

=

MaxFlow(G,C,D,ni
0(t

s), τi), where n
i
0(t) =

(

n1(t), . . . , ni−1(t), 0, ni+1(t), . . . , n|D|(t)
)

.
If F ∗

i,ni
0

≥ (ni(t
s) + 1)bi, the new demand is accepted since this inequality im-

plies that n′ is a feasible state. Note that transition from n(ts) to n
′ may cause

rerouting all the existing flows. This algorithm accepts each demand if and only
if there is a feasible flow allocation, i.e., n′ is feasible; hence, it implements the
greedy CAC policy. Indeed, it is the greediest online algorithm, since the exis-
tence of a feasible flow allocation is investigated by the MaxFlow optimization
model rather than a heuristic method.

It is worthwhile to mention that the greediest online algorithm yields an up-
per bound on the performance of practical online bandwidth constrained routing
for two reasons. First, practical algorithms are usually single path while greed-
iest online is a multi-path routing algorithm. It can accept a given demand by
dividing it into multiple sub-flows and routing them even if there is not any
single feasible path to accept the demand. Second, the greediest online algo-
rithm can reroute all existing flows to find a feasible path for a new demand;
however, practical algorithms usually are not allowed to reroute flows because
of overhead and limitations in real networks. This leads to rejection of demands
in spite of existing a routing to accept them, which is illustrated by the example
at the beginning of this subsection.

Assume that the stochastic process X(t) is the number of existing flows
per traffic class at time t, which have been accepted using the greediest online
algorithm. The following theorem shows the key attribute of the stochastic
process.

Theorem 1. Assume that demand arrival process is Poisson, and the holding
times are exponentially distributed. First, the stochastic process X(t) is Marko-
vian. Second, it is, in fact, the multidimensional Markov chain with state space
Ω, which is developed by the StateSpace algorithm.

Proof. The proof is in Appendix A.1.

This correspondence between the greediest online algorithm and the multi-
dimensional Markov chain implies that we can use the algorithm to estimate
the performance bound whose exact value is given by (8). Pseudo-code of the
estimation algorithm is shown in Algorithm 2. In this algorithm, A and B are,
respectively, the accepted demands set and working demands set (the set of
existing flows and the new demand). Function TrafficClass returns the traf-
fic class of a demand. Function GetN returns the number of existing flows of
each traffic class. The main body of GreediestOnline is the greediest online
algorithm. For each demand, GreediestOnline finds the maximum flow Fi

from the source to the destination of the demand, and accepts the demand if
the flow is sufficient. If demand is rejected, it is excluded from the working set
in line 17. Moreover, if a demand leaves the network before the next demand
arrives, it is also removed from the working set in line 8. This algorithm returns
|A|/|∆| as the estimation of the acceptance probability.
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Algorithm 2 : GreediestOnline(G,C,D,∆)

1: A← {}, B ← {}
2: for i = 1 to |∆| do
3: δi ← ∆[i]
4: τi ← TrafficClass(D, δi)
5: B ← B ∪ δi
6: for ∀δj ∈ B do

7: if tej < tsi then

8: B ← B \ δj
9: end if

10: end for

11: {ni
0, ni} ← GetN(B,D)

12: F ∗
i,ni

0

←MaxFlow(G,C,D,ni
0, τi)

13: if F ∗
i,ni

0

≥ (ni + 1)bi then

14: A← A ∪ δi
15: B ← B ∪ δi
16: else

17: B ← B \ δi
18: end if

19: end for

20: return |A|/|∆|

The key advantage of using the GreediestOnline algorithm over the mul-
tidimensional Markov chain based analysis is that we do not need to enumerate
all feasible states. This algorithm visits states according to demand arrivals
and leaves. In fact, this algorithm only visits the most probable states instead
of enumerating all the feasible states. This can significantly reduce the com-
putational complexity needed to find the acceptance probability, especially in
large networks with many traffic classes, where enumerating all the states is
infeasible.

Whereas this algorithm is a valuable tool to estimate the acceptance prob-
ability per scenario, it is a simulation-based technique. The estimation error
of this method is proportional to |∆|−1. To achieve a reasonable confidence
interval, we need to simulate quite large demand sets. This can be very time
consuming because this algorithm needs to solve an optimization problem per
demand arrival. In the following section, we develop an alternative estimation
technique with lower computational complexity.

6. Weighted Max-Min Fairness based estimation

In this section, we analyze the greediest online algorithm, and show that the
resource allocation strategy implemented by this algorithm can be approximated
by the weighted max-min fair allocation scheme. Based on this observation, we
propose a novel technique to estimate the upper bound of network performance.

6.1. Fairness analysis

The greediest online algorithm can be considered as a dynamic resource
allocation scheme that, on average, allocates an amount of bandwidth to every
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traffic class. Analysis of the allocated bandwidths helps us to understand the
long-term behavior of the algorithm, and consequently, to estimate its provided
acceptance probability. For the sake of simplicity of discussion, we start the
analysis from a very special case, wherein the following assumptions are made.

A1. bi = bj = ǫ, ∀τi, τj ∈ D.

A2. λi = λj , ∀τi, τj ∈ D.

A3. µ−1
i = µ−1

j =M , ∀τi, τj ∈ D, where M →∞.

A4. In each set of |D| successive demands, there is a demand from every traffic
class. This is possible due to assumption A2.

A5. Demand set is very large, |∆| → ∞.

Let Z = {z1, . . . , z|D|} be the max-min fair bandwidth allocation among
traffic classes, where zi is the max-min flow rate of traffic class τi, which is the
flow from si to di. Let yi be the bandwidth allocated to class τi at the end of the
GreediestOnline algorithm. Moreover, let Y = {y1, . . . , y|D|}. The following
theorem shows the relation between Z and Y .

Theorem 2. For a set D of traffic classes and its corresponding demand set
∆ that satisfy the assumptions A1–A5, if the GreediestOnline algorithm is
used to accept the demands, we have |zi − yi| < ǫ ∀τi ∈ D.

Proof. The proof is in Appendix A.2.

An important fact is that most of these assumptions may not hold in practice.
In the following, we analyze the effect of each assumption. If assumption A4

does not hold, then instead of exactly one demand per class in each |D| successive
demands, there is on average one demand per class. In this case, the bandwidth
allocation Y is statistically max-min fair, which implies |zi − E[yi]| < ǫ. If
assumption A2 is removed, and instated of it, we assume that λi is an integer
number, then the assumption A4 will be “there are λi demands from class
τi in each Λ successive demands.” In this case, the bandwidth allocation Y
is weighted max-min fair, where the weight of τi, which denoted by wi, is λi.
Because per ǫ bandwidth for class τi, ǫλj/λi amount of bandwidth is allocated
for class τj . If instead of assumption A3, we assume that the holding time of
each demand of traffic class τi is a random variable with mean µ−1

i ≪∞, where
µ−1
i may not equal to µ−1

j , then the allocated bandwidth for each class is freed
over the time. The free resources are shared among traffic classes equally, due
to assumption A1 and A2. However, traffic classes with longer holding time
acquire more bandwidth on average. In this case, the allocated bandwidths
change over time; hence, yi is considered as the time average of the allocated
bandwidth for class τi by the GreediestOnline algorithm. If the aggregate
offered load in terms of bandwidth,

∑

τi∈D ρibi, is not large enough to fully
utilize the network capacity, we have yi < zi for some classes. However, if the
network resources are completely utilized, the bandwidth allocation Y can be
considered statistically weighted max-min fair, where the weight is proportional
to the holding time. These analyses are summarized in Table 2, which yield the
following proposition.
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Table 2: Effect of the assumptions A1–A5 on max-min fairness of the greediest online algo-
rithm in the case of ǫ → 0

Assumptions Fairness
A1 A2 A3 A4 A5
√ √ √ √ √

Max-Min Fair√ √ √ × √
Statistically Max-Min Fair√ × √ √ √
Weighted Max-Min Fair, wi = λi√ √ × √ √
Statistically Weighted Max-Min Fair, wi = µ−1

i√ × × × √
Statistically Weighted Max-Min Fair, wi = ρi

Proposition 3. Under assumptions A1 and A5, if the network capacity is
fully utilized, then the long-term time average of bandwidth allocation by the
GreediestOnline algorithm is statistically weighted max-min fair, where the
weight of traffic class τi is ρi.

The assumptions A1 and A5 are crucial to achieve max-min fairness by the
greediest online algorithm. If assumption A5 is removed, the network resources
are not fully utilized; hence, the allocated bandwidth is less than the max-min
fair flow rate. If assumptionA1 does not hold, there may be a large gap between
Y and Z since different amounts of bandwidth are allocated for different classes
per accepted demand.

6.2. Estimation technique

In this section, we develop a technique to estimate the upper bound of the
acceptance probability; it is based on max-min fairness of the greediest online
algorithm. As discussed in Section 6.1, assumption A1 is needed to achieve
max-min fairness by the algorithm. Therefore, in the following, we assume that
traffic is single rate, which means all traffic classes require the same amount of
bandwidth.

The major complexity to estimate acceptance probability is to consider the
effect of different classes on each other. The idea in the proposed technique is
that if the effect is modeled, we can consider an individual loss system per traffic
class while taking the effect into account through adjusting the parameters of
the systems. In the following, we model the effect using the max-min fairness
feature of the greediest online algorithm.

For the ease of discussion, we start from a single loss system and restate the
Erlang-B formula from fairness point of view. Consider a system with C servers.
D types of customers use this system. Customers of type i arrive according to
a Poisson process with mean λi and need a server. The holding time of each
customer of type i is exponentially distributed with mean µ−1

i . Since all the
customers need the same number of servers, this system is, in fact, a loss system
with capacity C and total offered load ρ =

∑D

i=1 ρi. Therefore, according to the
Erlang-B formula, the blocking probability is

PB =
ρC

C!

(

C
∑

j=0

ρj

j!

)−1

.
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This probability can be rewritten as

PB =

D
∑

i=1

λi
Λ
pb,i, (9)

where Λ =
∑D

i=1 λi, and

pb,i =
(γiρi)

C

C!

(

C
∑

j=0

(γiρi)
j

j!

)−1

, (10)

where γi = ρ/ρi. The key observation is the relation between γi and the
weighted max-min fair resource (server) allocation in this system. It is easy
to see that if weight wi = ρi is considered for each traffic class τi, the weighted
max-min fair resource allocation is zi = Cρi/ρ. Moreover, note that the maxi-
mum possible available resource for each traffic class is C servers. Therefore, γi
is the maximum possible available resources for customer type i divided by the
weighted max-min fair allocated resource to it. Hence, (10) can be interpreted
as the blocking probability of a loss system with capacity C and load γiρi. This
discussion, in fact, proves the following lemma.

Lemma 4. Blocking probability of a loss system with C servers and D types of
customers, where all customers need one server, and the offered load by customer
type i is ρi, is the weighted sum (9) of the blocking probabilities of individual
loss systems considered per customer type. The system of customer type i has
C servers and load γiρi. Where, γi is the maximum number of available servers
for type i in isolation divided by the weighted max-min fair number of allocated
servers to the type.

Lemma 4 is the idea behinds the proposed estimation technique. In a single
loss system, where resource allocation is inherently weighted max-min fair, this
lemma provides a method to compute blocking probability. Hence, if resource
allocation in the network is weighted max-min fair, then we can use a similar
method to estimate the acceptance probability. The key point is that as shown
in Section 6.1, the bandwidth allocation by the greediest online algorithm is
approximately weighted max-min fair. Therefore, this idea is applicable here,
which is explicated in the following.

Let F ∗
i,n0

denote the maximum flow from si to di when the traffic class is
considered in isolation, i.e., network is in state n0. In the presence of other
traffic classes, when the network is fully utilized, the greediest online algorithm
allocates approximately zi amount bandwidth to class τi instead of F ∗

i,n0
. There-

fore, the effect of other classes on class τi can be considered as a reduction of
available capacity from F ∗

i,n0
to zi. Using Lemma 4, we take the effect into

account by scaling the offered load. In this case, γi is defined as γi = F ∗
i,n0

/zi.
We call γi the sharing factor of traffic class τi. It shows how traffic class τi
shares its maximum possible available capacity with other classes. Similar to
the lemma, to estimate acceptance probability, we consider an individual loss
system for each traffic class whose capacity is proportional to the maximum flow
F ∗
i,n0

and the offered load of the class is scaled by the sharing factor γi.
Algorithm 3 shows the pseudo-code of the WMMFestimate algorithm to

estimate the acceptance probability obtained by GreediestOnline in single-
rate traffic condition that is the network performance bound in QoS-aware
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data networks under the greedy CAC policy. In this algorithm, set W =
{w1, . . . , w|D|} denotes the weights of traffic classes, where wi = ρi. The
weighted max-min fair flow allocation Z is obtained by theWeightedMaxMin-

Fair algorithm, which is developed in Section 6.2.1. The maximum flow F ∗
i,n0

is given by the MaxFlow model. Note that the capacity of the loss system
for class τi is Ni,n0

← ⌊F ∗
i,n0

/bi⌋. This algorithm first finds pb,i ∀τi ∈ D, then
computes the acceptance probability according to the weighted sum (9).

Algorithm 3 : WMMFestimate(G,C,D)

1: W ← {wi = ρi ∀τi ∈ D}
2: Z ← WeightedMaxMinFair(G,C,D,W )
3: for ∀τi ∈ D do

4: F ∗
i,n0
← MaxFlow(G,C,D,n0, τi)

5: γi ← F ∗
i,n0

/zi
6: Ni,n0

← ⌊F ∗
i,n0

/bi⌋

7: pb,i ←
(γiρi)

Ni,n0

Ni,n0
!

(Ni,n0
∑

j=0

(γiρi)
j

j!

)−1

8: end for

9: PB ←
∑

τi∈D
λi

Λ pb,i
10: return 1− PB

6.2.1. Weighted max-min fair algorithm

The progressive filling algorithm [29] is the well-known approach to achieve
max-min fair flow allocation among traffic classes. It is an iterative algorithm
to compute the max-min flow rate when only a single path for each traffic
class is given. This algorithm starts with all flow rates equal zero, and grows
all the rates together equally until some links are saturated. The rate of the
flows (traffic classes) passing through the saturated links cannot be increased
anymore. These are called saturated classes. The algorithm fixes the rates of
these saturated classes at the current value; and continues to increase rates of
unsaturated classes until new saturated links and traffic classes are found, and
so on. The algorithm terminates when all classes get saturated. In the problem
studied in this paper, routing is not given; and we seek to find the weighted
max-min fair flow allocation.

A few algorithms have been proposed to compute max-min fair flow alloca-
tion when routing is not given under both single-path and multi-path routing
schemata (see the references in [30]). In this section, we use the idea of the
progressive filling algorithm [29] to obtain the weighted max-min fair flow al-
location. In the proposed algorithm, two optimization models are solved itera-
tively. These optimization problems perform the two basic operations in each
iteration of the progressive filling algorithm. The first model equally grows the
normalized flow rates of the unsaturated traffic classes, where the flow rates are
normalized by the class weights wi. The second model is used to find saturated
classes in each iteration. Both these models are developed through modifica-
tions in the MaxFlow model. Two additional parameters σi and φi are used
in these models. Saturation of class τi is denoted by σi, where
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σi =

{

1, if class τi is not saturated

0, otherwise.

As mentioned, in the progressive filling algorithm, allocated flow rate for each
class is updated in each iteration of the algorithm. The current allocated flow
rate for class τi in an iteration of the algorithms is denoted by φi.

The first model, that equally grows the normalized flow rates of unsaturated
classes in each iteration of the progressive filling algorithm, is obtained by the
following modifications in the MaxFlow model. The objective function is
replaced by

maximize β, (11)

where β is specified by
Fi

wi

≥ βσi ∀τi ∈ D. (12)

This means that if class τi is not saturated, σi = 1, its normalized flow rate,
Fi/wi, must be at least β, which is the equal normalized rate for all the unsat-
urated classes. Note that if a traffic class is saturated, σi = 0, then (12) does
not impose any constraint. Therefore, we need another constraint in this model
to reserve the current allocated flow rate φ, which is

Fi ≥ φi ∀τi ∈ D. (13)

This constraint allocates at least φi amount of flow for each traffic class τi
disrespect of its saturation σi.

By these modifications in MaxFlow, we obtain the Fairness model to
equally grow the normalized flow rates of unsaturated class, which are specified
by set Σ = {σ1, . . . , σ|D|}, whose current allocated flow rates and weights are
given by Φ = {φ1, . . . , φ|D|} and W = {w1, . . . , w|D|}, respectively.

Model: Fairness(G,C,D,Σ,W,Φ)
Objective: (11)
Subject to: (2), (3), (5), (13), and (12).

The second required optimization model to implement the progressive filling
algorithm finds unsaturated classes in each iteration. A traffic class τi is not
saturated if we can allocate a flow rate Fi for it that is greater than its current
flow rate φi while reserving other classes’ allocated rates. In other words, if the
following constraint where ψi = 1 is satisfied, then τi is not saturated.

Fi > φiψi ∀τi ∈ D. (14)

Therefore, to examine saturation of a set of traffic classes which are specified
by Ψ = {ψ1, . . . , ψ|D|}, we need to investigate existence of a feasible solution
for the following optimization model. If the Saturation model has a feasible
solution for a given set Ψ, then none of traffic classes τi whose corresponding
ψi = 1 is saturated.

Model: Saturation(G,C,D,Φ,Ψ)
Objective: No Objective Function
Subject to: (2), (3), (5), (14), and (13).
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The Saturation and Fairnessmodels are solved iteratively in theWeight-

edMaxMinFair algorithm to obtain the weighted max-min fair rate allocation.
Pseudo-code of the algorithm is shown in Algorithm 4. This algorithm at the
beginning initializes Φ and Σ with proper values. Then, until there is an unsat-
urated class, in each iteration, grows rates of unsaturated classes in lines 4–9.
New unsaturated classes are found in lines 10–19. Where, we create a tempo-
rary set Σ′, then examine saturation of each traffic class using a proper set Ψ,
and finally update Σ according to new saturated classes.

Algorithm 4 : WeightedMaxMinFair(G,C,D,W )

1: Σ← {σi = 1, ∀τi ∈ D}
2: Φ← {φi = 0, ∀τi ∈ D}
3: while ∃σi ∈ Σ s.t. σi = 1 do

4: β ← Fairness(G,C,D,Σ,W,Φ)
5: for ∀τi ∈ D do

6: if σi = 1 then

7: φi ← βwi

8: end if

9: end for

10: Σ′ ← {σ′
i = 0, ∀τi ∈ D}

11: for ∀τi ∈ D do

12: if σi = 1 then

13: Ψ = {ψj | if j = i then ψj = 1, else ψj = 0}
14: if Saturation(G,C,D,Φ,Ψ) has a feasible solution then

15: σ′
i ← 1

16: end if

17: end if

18: end for

19: Σ← Σ′

20: end while

21: return Φ

7. Computational complexity analysis

In this section, we analyze the computational complexity of the different
approaches discussed in this paper. All proposed algorithms (StateSpace,
GreediestOnline, WMMFestimate, and WeightedMaxMinFair) need
to solve at least a linear programming (LP) problem; therefore, the computa-
tional complexity of solving LP is a major factor in the running time of the
algorithms. Karmarkar’s algorithm solves LP problems in polynomial running
time O(n3.5L2), where n is the number of variables and L is the number of
bits required to encode the coefficient in binary format [31]. The LP problems
which are solved in these algorithms are instances of MaxFlow or its vari-
ations. There are |D||E| variables in the MaxFlow model, which are f i(u,v)
∀τi ∈ D, ∀(u, v) ∈ E. Hence, its complexity is O

(

(|D||E|)3.5L2
)

, where L is a
fixed value depends on computing machine architecture.

In the following subsections, we first formally analyze the worst case compu-
tational complexity of each method; then discuss about average case complexity
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of the algorithms and their comparison.

7.1. Complexity of multidimensional Markov chain

The Markov chain that is constructed by the StateSpace algorithm is a |D|-
dimensional chain. In ith dimension, there are at mostNi,n0

= ⌊F ∗
i,n0

/bi⌋ states.
Therefore, the computational complexity of enumerating the chain, which is

needed to compute p(n0) in (7), is O
(

∏

1≤i≤|D|Ni,n0

)

. Moreover, the computa-

tional complexity of StateSpace to construct the chain isO
(

∏

1≤i<|D|

(

Ni,n0
O(MaxFlow)

)

)

=

O
(

∏

1≤i<|D|

(

Ni,n0
(|D||E|)3.5L2

)

)

. In summary, the complexity of the multi-

dimensional Markov chain based approach is

O
(

∏

1≤i≤|D|

Ni,n0
+

∏

1≤i<|D|

(

Ni,n0
(|D||E|)3.5L2

)

)

.

This complexity grows exponentially with the number of traffic classes and net-
work capacity; as mentioned, in fact, it is #P-Complete. Therefore, this tech-
nique is applicable only in the case of small |D| in low capacity networks, where
Ni,n0

is very small.

7.2. Complexity of simulation based estimation

The GreediestOnline algorithm estimates the acceptance rate by simu-
lating arrival of |∆| demands. For each demand, its corresponding traffic class is
found by TrafficClass with complexity O(|D|), set B is updated whose max-
imum size is O(|∆|), GetN finds the current number of flows per class which
can be implemented with complexity O(|D|), and an instance of MaxFlow is
solved whose complexity is O

(

(|D||E|)3.5L2
)

. Putting these complexities alto-
gether yields that the computational complexity of simulation based method
is

O
(

|∆|
(

|D|+ |∆|+ (|D||E|)3.5L2
)

)

= O
(

|∆|2 + |∆|(|D||E|)3.5L2
)

.

7.3. Complexity of weighted max-min fairness based estimation

The complexity of this estimation technique is the running time of WMM-

Festimate which isO(WeightedMaxMinFair)+|D|O(MaxFlow)+|D|Ni,n0
.

The worst case complexity of WeightedMaxMinFair is follows. At each itera-
tion of this algorithm, at least one traffic class is saturated; hence, the main loop
of the algorithm runs at most |D| times. In each iteration, an instance of Fair-
ness is solved and saturation of unsaturated classes, whose maximum number is
|D|, is examined through solving Saturation. In summary, the complexity of

WightedMaxMinFair isO
(

|D|
(

O(Fairness)+|D|O(Saturation)+|D|
)

)

=

O
(

|D|
(

O(MaxFlow)+|D|O(MaxFlow)
)

)

= O
(

|D|2O(MaxFlow)
)

. There-

fore, the computational complexity of the weighted max-min fairness based es-
timation is

O(WMMFestimate) = |D|2O(MaxFlow) + |D|O(MaxFlow) + |D|Ni,n0
.

20



7.4. Average cases complexities

In this section, we provide an insight into the average case complexity of the
simulation based and weighted max-min fairness based estimation techniques.2

In the GreediestOnline algorithm, in practice, the number of active flows,
|B|, is much less than the total number of demands, |∆|, because simulation is
performed for a very large number of demands while each demand has a lim-
ited holding time. Therefore, the complexity of the simulation based method is
O
(

|∆|(|B| + (|D||E|)3.5L2)
)

= O
(

|∆|(|D||E|)3.5L2
)

that is the total computa-
tional complexity to solve |∆| LP problems with |D||E| variables.

In WMMFestimate, practically |D|Ni,n0
≪ |D|2(|D||E|)3.5L2; hence, we

can ignore |D|Ni,n0
. In the worst case analysis, we assumed that only one

traffic class is saturated in each iteration of WeightedMaxMinFair; however,
in practice, multiple classes may get saturated in an iteration; thus, the main
loop in the algorithm runs less than |D| times. For the sake of presentation of
WeightedMaxMinFair, we examine saturation of traffic classes one-by-one in
lines 11–18; however, it is possible to examine saturation of multiple classes at
the same time or even examine saturation in a binary search fashion that reduces
the number instances of Saturation needed to be solved. Moreover, we don’t
need to examine saturation of |D| traffic classes in each iteration since some
classes have been saturated in previous iterations. Therefore, the average case
complexity of weighted max-min fairness based method is O

(

|D|ǫ(|D||E|)3.5L2
)

where 0 < ǫ≪ 2. This is the total computational complexity of solving |D|ǫ LP
problems with |D||E| variables.

Comparison of the average case complexities shows that WMMFestimate

reduces the complexity of estimating network performance by |∆|/|D|ǫ times
that is significant speed up. Simulation results on the average case practical
complexity of the algorithms are presented in Section 8.6, which also show this
speed up.

8. Simulation results

In this section, we present the simulation results to evaluate the efficiency
of the proposed techniques. All these methods (the Markov chain, Greed-

iestOnline, and WMMFestimate) attempt to compute or estimate the net-
work performance bound; therefore, ideally, we expect that they will provide
the same result. However, in practice, due to the following reasons, there will
be difference between estimations obtained from these approaches.

• As mentioned, accuracy of GreediestOnline depends on the number
of simulated demands. Since, we cannot simulate it for a huge number
of demands in large networks, there will be some errors in the bound
obtained by GreediestOnline.

• Theorem 2 shows that the difference between Max-Min fair flow rates
and actual allocated bandwidth in the network depends on the required
bandwidth, b. Since b ≫ 0 in our simulations, the actual bandwidth

2We don’t consider multidimensional Markov chain here because its complexity is expo-
nential.
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Table 3: Topologies used in the simulations

Name Placement Area (m2) Node # Link #

Grid Grid 400× 400 9 24

Rand-15 Random 600× 600 15 72

Rand-25 Random 750× 750 25 126

Rand-100 Random 1000× 1000 100 656

allocation is not exactly max-min fair that leads to some errors in bound
obtained by WMMFestimate.

In the following, we first compare the GreediestOnline algorithm to the
Markov chain based analysis to measure the accuracy of the algorithm. Then,
GreediestOnline,WMMFestimate and the multi-class Erlang-B based tech-
nique proposed in [2], which is named MCEB, are compared under various traffic
patterns in different topologies. Then, through pathological examples, we ex-
plain why MCEB leads to a loose underestimate or overestimate of acceptance
probability. Finally, results on the practical complexity of the algorithms are
presented.

8.1. Simulation setup

The simulations were carried out in four topologies, which are shown in
Table 3. In these topologies, there are two directional links (u, v) and (v, u)
if the Euclidean distance between u and v is less than 200 m. The physical
capacity of all the links is 100 units. The GreediestOnline algorithm was
implemented in a flow-level event driven simulator developed in Java. The
ZIB Optimization Suite [32] and CLP [33] were used to solve the optimization
problems. Simulations were performed on an Intel Pentium IV 3.2 GHz machine
with 2 Gigabytes RAM. In each experiment, a random set D of traffic classes
and its corresponding demand set ∆ were used. By random set D, we mean
that all parameters of traffic classes were chosen randomly. For a given set D,
to control the network load and find the performance bound versus it, arrival
rate of all traffic classes was equally scaled. In the following results, we present
acceptance probability versus the scale.

8.2. Accuracy of the simulation-based estimation

In this section, in order to measure the accuracy of the simulation-based
technique, we compare the estimation of the acceptance probability obtained
from the GreediestOnline algorithm to the probability computed by (8).
The simulation results are shown in Table 4. The parameters of the traffic
classes used in these simulations are shown in Appendix B, Table B.10. In these
simulations, the maximum and average estimation errors are, respectively, 0.7%
and 0.3% that shows GreediestOnline estimates the network performance
bound accurately as it proved in Theorem 1. These simulations did not run in
Rand-100 network and very few traffic classes were used since it is impractical
to compose the Markov chain in large networks for a large number of traffic
classes. As mentioned in Section 7.1, the number states grows exponentially by
increasing the number traffic classes and network capacity, which is proportional
to the network size. For example, in the Rand-15 and Rand-25 topologies,
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Table 4: The acceptance probabilities obtained by the Markov chain based analysis and the
simulation-based technique versus the scaled arrival rate

Topology Scale Markov Simulation Error %

1.0 0.992 0.991 0.1
2.0 0.681 0.676 0.5

Grid 3.0 0.466 0.461 0.5
4.0 0.352 0.354 0.2
5.0 0.282 0.278 0.4

1.0 0.954 0.951 0.3
2.0 0.646 0.647 0.1

Rand-15 3.0 0.475 0.473 0.2
4.0 0.383 0.382 0.1
5.0 0.323 0.321 0.2

0.8 0.999 1.000 0.1
1.6 0.984 0.984 0.0

Rand-25 2.4 0.877 0.884 0.7
3.2 0.768 0.775 0.7
4.0 0.690 0.687 0.3

the number of states of the Markov chain is about 2,721,700 and 3,943,200,
respectively.

Because of the accurate estimation of acceptance probability by Greed-

iestOnline and the limitations of using the Markov chain, in the following
sections, we use the GreediestOnline algorithm as the reference to measure
the precision of the estimations provided by WMMFestimate and MCEB.

8.3. Homogeneous traffic

In this section, we consider homogeneous traffic, in which all traffic classes
have the same arrival rate λ, average holding time µ−1, and required bandwidth
b. The traffic classes used for these simulations are shown in Table B.11. We
evaluate the precision of the weighted max-min fairness based estimation by
comparing it to the results obtained from the GreediestOnline algorithm.
Moreover, the MCEB method was also simulated. MCEB considers flow fi for
each traffic class, then finds the maximum α such that simultaneously allocating
bandwidth αfi for every traffic class is feasible. The authors in [2] do not clarify
how fi is assigned. In these simulations, we use two schemes to assign fi. The
first one, which is named MCEB-1, considers the same fi = 1 for all τi ∈ D.
The other, which is named MCEB-W, assigns fi = λiµ

−1
i bi for τi ∈ D.

Acceptance probability versus the scale of arrival rate is depicted in Fig. 2.
In these figures, “Simulation” and “WMMF” are, respectively, the acceptance
probabilities obtained from GreediestOnline and WMMFestimate. Since
traffic is homogeneous in these simulations, MCEB-1 and MCEB-W both yield
to the same results. The maximum and average estimation errors, the difference
between “Simulation” and “WMMF,” are shown in Table 5. These results
show that WMMFestimate provides a quite accurate estimation of acceptance
probability regardless of the network topology, the number of traffic classes, and
the scale of arrival rate. However, the MCEB method underestimates network
performance bound which is due to incorrect estimation of network capacity by
this method. We discuss about this problem in more detail in Section 8.5.

23



0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.250.25
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

P
A

 

 
Simulation
WMMF
MCEB−W
MCEB−1

0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.56 0.63 0.7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

P
A

 

 
Simulation
WMMF
MCEB−W
MCEB−1

(a) Grid Topology (b) Rand-15 Topology

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

P
A

 

 
Simulation
WMMF
MCEB−W
MCEB−1

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.250.25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale

P
A

 

 
Simulation
WMMF
MCEB−W
MCEB−1

(c) Rand-25 Topology (d) Rand-100 Topology

Figure 2: Acceptance probability versus the scale of arrival rate under homogeneous traffic with the parameters shown in Table B.11
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Table 5: The average and maximum estimation errors of the max-min fairness based technique
in comparison to the simulation-based method corresponding to Fig. 2

Topology Average Err. % Max. Err. %

Grid 1.27 2.38

Rand-15 1.07 2.34

Rand-25 0.62 1.21

Rand-100 1.91 2.92

8.4. Heterogeneous traffic

In this section, we evaluate the algorithms under heterogeneous traffic that
implies that each traffic class τi has its own arrival rate λi and average holding
time µ−1

i . However, all the classes request the same bandwidth b. The param-
eters of the traffic classes used for these simulations are shown in Table B.12
and Table B.13. In these tables, F ∗

n0
and z are the maximum flow and weighted

max-min flow of traffic classes, respectively. The number of traffic classes used
in these simulations is different from the numbers used in the previous section
in order to see the effect of the number of traffic classes per topology.

The acceptance probabilities obtained by GreediestOnline, WMMFes-

timate and MCEB versus the scale of demand arrival rate are shown in Fig. 3.
The maximum and average estimation errors of the weighted max-min fairness
based technique are shown in Table 6. These results show that similar to the
homogeneous traffic condition, the gap between WMMFestimate and Greed-

iestOnline is quite small in all the network topologies with different numbers
of traffic classes, and in a wide range of offered load.

Except the Grid topology, MCEB provides a very loose bound of network
performance. Interestingly, in the Grid topology, this method exactly estimates
the acceptance probability. This is due to the location of the source-destination
pairs in this simulation scenario. We explicate in Section 8.5 that MCEB as-
sumes all traffic classes completely share the same bottleneck resource (the
same min-cut in the network). This is the case in this scenario. Traffic classes
τ1 = (8, 1, 5, 18, 6), τ2 = (5, 3, 20, 11, 6), and τ3 = (2, 6, 10, 30, 6) were used in
this simulation, which are shown in Fig. B.7. These classes share the same min-
cut that is composed of links (2,1), (5,4), and (8,7) as shown in the figure. Since
the complete resource sharing assumption holds in this scenario, it estimates
acceptance probability exactly.
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Figure 3: Acceptance probability versus the scale of arrival rate under heterogeneous traffic with the parameters shown in Tables B.12 and
B.13
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Table 6: The average and maximum estimation errors of WMMFestimate in comparison to
GreediestOnline in Fig. 3

Topology Average Err. % Max. Err. %

Grid 0.57 2.13

Rand-15 1.02 1.88

Rand-25 0.78 1.65

Rand-100 1.62 3.08

8.5. Pathological examples

Simulation results in the previous sections shows that the MCEB technique
yields to a loose estimation of network performance. In this section, through
two simple pathological examples, the shortcomings of the method are clarified.

A simple network topology is shown in Fig. 4. In this network, there are two
traffic classes: τ1 = (u1, u2, 1, 1, 1) and τ2 = (u2, u3, 1, 1, 1). In the first case, we
assume that both links have the same physical capacity, c(u1,u2) = c(u2,u3) =
5. Acceptance probabilities obtained by the multidimensional Markov chain,
WMMFestimate, and MCEB, are depicted in Fig. 5. Note that since traffic is
homogeneous, both MCEB-1 and MCEB-W provide the same results. As this
figure shows, MCEB overestimates acceptance probability in this case. This is
due to the sharing policy assumed in the method. MCEB models the whole
links in the network as a single loss system that means it assumes complete
sharing among all traffic classes. However, in this example, in fact, there is
not any resource sharing among the traffic classes. This sharp contradiction
between that assumption and this actual traffic pattern leads to the large gap
between MCEB and Markov in this figure. The weighted max-min fairness
based technique does not suffer the drawback since it considers a loss system
per traffic class, and takes into account the resource sharing among classes using
the sharing factor γi.

Now, let us consider a heterogeneous network. Assume that in Fig. 4, we
have c(u1,u2) = 1 and c(u2,u3) = 10. Acceptance probabilities for the traffic
classes τ1 and τ2 in the heterogeneous network are depicted in Fig. 6. The figure
shows that MCEB gives a very loose underestimate of acceptance probability in
this scenario. The reason is the lower bound on the capacity of the minimum
multi-commodity cut which is used by MCEB as the capacity in the Erlang-B
formula. As mentioned, MCEB considers flow fi for each traffic class, and finds
the maximum α such that simultaneously allocating bandwidth αfi for every
traffic class is feasible. Then, it considers

∑

τi∈D αfi as the capacity of the
multi-class loss system and uses Erlang-B formula to find rejection probability.
Indeed, this approach considers the absolute fairness strategy. The problem is
that absolute fairness does not fully utilize network resources. For example in
this figure, assuming f1 = f2 = 1, we have α = 1, and hence, αf2 = 1 units of
bandwidth is considered for τ2 in spite of the fact that its maximum possible
flow allocation is c(u2,u3) = 10. Underutilization of network resources causes
the underestimate of acceptance probability by MCEB. The weighted max-min
fairness approach does not have this shortcoming because instead of absolute
fairness, it considers max-min fairness, which leads to complete utilization of
network resources.
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Figure 4: A simple topology to illustrate the drawbacks of the MCEB technique
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Figure 5: Acceptance probability versus the scale of arrival rate in the topology depicted in
Fig. 4 with capacities c(u1,u2) = c(u1,u2) = 5
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Figure 6: Acceptance probability versus the scale of arrival rate in the topology depicted in
Fig. 4 with capacities c(u1,u2) = 1 and c(u1,u2) = 10
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8.6. Practical computational complexity

In Section 7, we analyzed the worst case complexity of the algorithms. In
this section, simulation results on the practical average case complexity of the
methods are presented.

We first consider the average case running time of the GreediestOnline

algorithm. This algorithm is developed in Java. Upon arrival of a demand, the
Java code initializes the parameters of the MaxFlow model. An instance of
MaxFlow using the parameters is created by zimpl [32], which is solved by
clp [33]. Table 7 shows the average running time of clp to solve the instances
of MaxFlow in each simulated scenarios. As mentioned in Section 7, the com-
putational complexity to solve an instance of MaxFlow is O

(

(|D||E|)3.5L2
)

which is also justified by the results shown in Table 7. In this table, clp running
time grows by increasing the number of traffic classes and network size. The
average total running time (the sum of running time of Java code, zimpl, and
clp) per demand is shown in Table 8. The actual running time of the simulation
based method can be estimated using this table. For example, in the Rand-100
topology with 50 traffic classes, if simulation is performed for 5000 demands,
it takes about 133 hours (5 days and 13 hours). These results show that using
the GreediestOnline algorithm to estimate the network performance bound
is impractical especially in large networks.3

The average case computational complexity of WMMFestimate is dis-
cussed in Section 7.4, where we mentioned that it is proportional to the number
LP problems need to be solved in this algorithm. Table 9 shows these num-
bers and the running time of WMMFestimate in the simulated scenarios. In
this table, columns Fairness, Saturation, and MaxFlow show the num-
ber of solved instances of their corresponding optimization models. The last
column shows the running time of the algorithm. It must be noted that the av-
erage time to solve LP problems in WMMFestimate is less than the average
time reported in Table 7; therefore, this algorithm estimate the network per-
formance bound efficiently. If WMMFestimate and GreediestOnline are
compared according to the number of required LP problems should be solved
in these algorithms, Table 9 shows that WMMFestimate is significantly more
efficient than GreediestOnline; e.g., if simulation is performed in Rand-100
with |∆| = 5000 for 10 scales, then 50000 LP problems are solved; while WMM-

Festimate needs solution of about 300 problems that implies about 160 times
speed up.

Finally, it should be note that the MCEB method always solves one LP
problem, which is an instance of the Fairness model. Therefore, its running
time is much less than WMMFestimate; however, as discussed, its estimation
of network performance may be quite inaccurate.

9. Conclusions and future work

In this paper, we have studied the problem of performance evaluation of QoS-
aware data networks. In this problem, the network performance is measured in
terms of acceptance probability of traffic demands requiring a fixed amount of

3In fact, our simulations in the Rand-100 network for different load scales took more than
six weeks.
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Table 7: Average running time to solve an instance of MaxFlow in the GreediestOnline

algorithm

Topology |D| Traffic Time (sec)

Grid 3 heterogeneous 0.0366

Grid 5 homogeneous 0.0393

Rand-15 5 heterogeneous 0.2618

Rand-15 15 homogeneous 0.9972

Rand-25 15 heterogeneous 1.0762

Rand-25 25 homogeneous 2.2531

Rand-100 50 heterogeneous 76.6010

Rand-100 50 homogeneous 74.2758

Table 8: Average running time of the GreediestOnline algorithm per demand

Topology |D| Traffic Time (sec)

Grid 3 heterogeneous 0.4937

Rand-15 5 heterogeneous 0.93666

Rand-25 15 heterogeneous 1.5334

Rand-100 50 heterogeneous 95.7328

Table 9: The number of LP problems solved in WMMFestimate

Scenario WeightedMaxMinFair MaxFlow Total Runtime
Topology |D| Fairness Saturation (sec)

Grid 5 2 6 5 13 1.52

Grid 3 1 1 3 5 1.04

Rand-15 15 4 28 15 47 68.23

Rand-15 5 3 8 5 16 5.38

Rand-25 25 7 59 25 91 230.11

Rand-25 15 8 46 15 69 25.06

Rand-100 50 14 180 50 244 2321.41

Rand-100 50 15 240 50 305 2994.11
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bandwidth. We obtained an upper bound on the maximum acceptance probabil-
ity achievable through online bandwidth constrained routing algorithms under
the greedy CAC policy. The bound is exactly computed by modeling the net-
work stats as a multidimensional Markov chain. To tackle the computational
complexity of composing and enumerating the Markov chain, we developed the
greediest online algorithm to estimate the bound by simulation. It was shown
that under single rate traffic load, the resource allocation by this algorithm is
approximately weighted max-min fair. Based on this observation, a novel tech-
nique was developed to estimate the performance bound without enumerating
the Markov chain or performing simulations. Extensive simulations showed that
the proposed technique accurately estimates the bound under a wide range of
traffic parameter settings in different networks.

In this paper, the weighted max-min fairness based estimation technique
is developed for single-rate traffic, extending this method for multi-rate traf-
fic is an open research problem. Multi-rate traffic can be modeled by multi-
class Erlang-B formula, as we modeled single-rate traffic using the single-class
Erlang-B formula; however, it yields to a multidimensional Markov chain which
is computationally intensive. Moreover, estimating the performance of QoS
routing algorithms in multi-hop wireless networks, where inference complicates
the problem, in another future research direction.

Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

Proof. Assume that at time t, ni(t) flows from traffic class τi are active in the
network, which have been accepted by the greediest online algorithm. Hence,
n(t) =

(

n1(t), . . . , n|D|(t)
)

is the state of the network visited by the algorithm
at time t. Assume tj < tj+1, and let

Pr
(

X(tj) = n(tj)
∣

∣ X(tj−1) = n(tj−1), . . . , X(t1) = n(t1)
)

be the probability of being at state n(tj) if the greediest online algorithm has
visited states n(1), n(2), . . . , and n(tj−1), sequentially.

Without loss of generality, assume that state n(tj−1) is visited by the al-
gorithm and no demand leaves the network before tj . At time tj , a new de-
mand from traffic class τi arrives. The algorithm checks the feasibility of state
n(tj−1) + ei, and accepts the demand if the state is feasible that means state
n(tj) = n(tj−1)+ ei is visited, X(tj) = n(tj). Assuming that demand arrival is
Poisson and holding time is exponentially distributed, visiting state n(tj) does
not depend on the states visited before tj−1 since the algorithm can reroute all
the existing flows; in other words, the route selections have been performed in
states n(tj′) 1 ≤ j′ ≤ j − 1 do not influence acceptance of the new demand.
Therefore, we have

Pr
(

X(tj) = n(tj)
∣

∣ X(tj−1) = n(tj−1), . . . , X(t1) = n(t1)
)

= Pr
(

X(tj) = n(tj)
∣

∣ X(tj−1) = n(tj−1)
)

,

that shows the Markovian property of the stochastic process X(t).
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For the second part of the theorem, we use the following observations. First,
transitions between the states visited by the algorithm are triggered when a
demand arrives or leaves the network. Therefore, assuming states n

′ and n =
n

′ + ei are feasible, the transition rate from n
′ to n is λi, and from n to

n
′ is niµi. Note that these are the transition rates of the multidimensional

Markov chain as discussed in Section 4. Second, the greediest online algorithm
uses the MaxFlow model to accept demands. This model is also used in
the StateSpace algorithm to compose the state space of the Markov chain.
Therefore, if state n is visited by the algorithm, it implies that the state is
feasible; in other words, n ∈ Ω. Hence, the state space of X(t) is equal to Ω,
and since the transition rates are the same, the stochastic process X(t) is the
multidimensional Markov chain.

Appendix A.2. Proof of Theorem 2

The set {δ1+i|D|, δ2+i|D|, . . . , δ|D|+i|D|} ⊂ ∆ of successive demands is called
ith round of the greediest online algorithm. By n = n

′ + 1, we mean ∃D′ ⊆ D
s.t. ni = n′i + 1 ∀τi ∈ D

′ and nj = n′j ∀τj ∈ D \D
′. We use the following facts

about the greediest online algorithm to prove the theorem.

F1. Suppose states n(1), n(2), ... are visited by the algorithm, we have n(i+
1) = n(i) + 1. Because due to assumption A3 no demand leaves the
network, hence the number of existing flows are always increasing.

F2. Assume that for the first time, a demand of traffic class τi is rejected in jth
round. No demand will be accepted from the class in the future rounds.
Because due to the greedy CAC policy, the rejection in jth round implies
that sufficient resources are not available for the class at this round, and
since no demand leaves the network, assumption A3, no resource will be
freed for the class in the future rounds. In this case, round j is called the
blocking round of class τi.

F3. If traffic class τi is blocked in jth round, then yi = (j − 1)ǫ and vice versa.
Because due to assumptions A1 and A4, at each round at most ǫ units of
bandwidth is allocated for each traffic class, and according to fact F2 no
bandwidth is allocated for the class after round j − 1.

F4. If n is the last state visited by the algorithm, then n + ei /∈ Ω ∀τi ∈ D.
Because the CAC policy is greedy, and according to assumption A5, there
is a sufficiently large number of demands; hence, if a traffic class τi exists
such that n

′ = n + ei ∈ Ω, then there is a demand from the class that
triggers visiting the state; hence, the algorithm visits it, and n cannot be
the last state. This fact implies that at the end of simulation, the network
is completely saturated and all resources are fully utilized. Moreover, it
implies that each traffic class τi is blocked in (ni + 1)th round.

F5. Let N(1) = {n ∈ Ω s.t. ni = ki, nj = kj}, N(2) = {n ∈ Ω s.t. ni =
ki + 1, nj = kj + 1}, and N(3) = {n ∈ Ω s.t. ni = ki + 2}. Fact F1

implies that if the algorithm visits a state n(2) ∈N(2), then it must also
visit a state n(1) ∈ N(1) before visiting n(2) because n(2) = n(1) + 1.
Similarly, if the algorithm visits a state n(3) ∈N(3), it must visit a state
n(1) ∈N(1) because n(3) = (n(1) + 1) + 1.
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By definition [29], bandwidth allocation Z is max-min fair if and only if for
any other allocation Z ′, if a τi exists such that z′i > zi, then there must exist τj
such that z′j < zj and zj ≤ zi.

Proof. We prove the theorem by contradiction. For the first case, assume that
∃τi ∈ D s.t. yi ≥ zi + ǫ. Due to max-min fairness of Z, there is τj ∈ D such
that yj < zj and zj ≤ zi. Let yi = kiǫ, yj = kjǫ, zi = kiǫ, and zj = kjǫ. Note
that due to fact F3, ki and kj are integer numbers; in fact, class τi and τj are
blocked in ki + 1 and kj + 1 rounds, respectively.

Without loss of generality, we assume that yi = zi + ǫ. Hence, ki = ki + 1.
By the max-min fairness of Z, we have yj < zj ≤ zi. If we assume zj = zi,
then we have yj < zj = zi = yi − ǫ. Therefore, kj < ki − 1. Without loss of
generality, assume kj = ki − 2. In summary, we have ki = kj = ki − 1 = kj +1,
and all these numbers are integer.

Let us define N(1) = {n ∈ Ω s.t. ni = kj , nj = kj}. N(2) = {n ∈
Ω s.t. ni = ki = kj + 1, nj = kj = kj + 1}, and N(3) = {n ∈ Ω s.t. ni =
ki = kj + 2, nj = kj}. Since bandwidth allocation Y is given by the greediest
online algorithm, the algorithm visits a state n(3) ∈ N(3). Fact F5 implies
that it must visit state n(1) ∈ N(1) before n(3). Suppose that state n(1) is
visited at time t, consider a round starting from this time. In this round there is
a demand from τi and a demand from τj because of the assumption A4. Both
demands are accepted by the algorithm because n(2) = ( z1

ǫ
, . . . , ni = ki =

kj + 1, . . . , nj = kj = kj + 1, . . . ,
z|D|

ǫ
) ∈ N(2) is feasible due to the feasibility

of bandwidth allocation Z. However according to F1, visiting n(2) implies that
the algorithm does not visit n(3) because n(3) 6= n(2) + 1. Hence, bandwidth
allocation Y cannot be produced by the algorithm.

For the second case, assume that ∃τi s.t. yi < zi − ǫ. Let n = (n1, . . . , n|D|)
where ni = yi/ǫ, and n = (n1, . . . , n|D|) where ni = ⌊zi/ǫ⌋. Fact F3 and F4

imply that n is the last state visited by the algorithm. If ∄τj s.t. yj ≥ zj + ǫ,
we can assume yj = zj ∀τj ∈ D \ τi without loss of generality. Hence, we
have n = n + ei. Since Z is a feasible bandwidth allocation, we have n ∈ Ω.
However, in this case, fact F4 implies that n cannot be the last state visited
by the algorithm; therefore, bandwidth allocation Y cannot be produced by the
algorithm. If ∃τj s.t. yj ≥ zj + ǫ, due to the first case, we know that Y is not
obtained by the greediest online algorithm.
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Table B.13: Heterogeneous traffic classes used in the simulations in Section 8.4

Topology λ µ−1 b F ∗
n0

z

12 26 8 400 72.2
13 22 8 200 66.2
12 26 8 400 55.4
15 21 8 200 56
10 23 8 700 87.9
12 23 8 500 63.9
10 24 8 700 55.6
10 25 8 1200 666.7
12 23 8 200 61.2
15 28 8 200 74.7
14 25 8 100 100
13 29 8 200 87.3
13 25 8 600 118.6
13 24 8 600 55.4
15 22 8 400 76.4
10 23 8 200 51
12 26 8 500 72.2
15 21 8 400 69.9
12 26 8 200 200
10 22 8 300 187.3
15 27 8 500 71.9
14 28 8 600 69.6

Rand-100 11 23 8 400 44.9
15 23 8 600 79.9
15 25 8 500 86.8
10 20 8 700 533.3
13 23 8 500 69.2
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13 20 8 500 60.2
15 26 8 200 69.3
10 23 8 600 87.9
15 26 8 600 69.2
13 30 8 200 112.7
15 26 8 700 90.3
14 30 8 600 74.5
13 27 8 400 62.3
12 21 8 900 58.3
13 22 8 600 50.8
15 24 8 500 83.3
13 23 8 600 69.2
10 29 8 600 67.1
11 25 8 700 100.4
13 20 8 600 46.1
13 24 8 700 151.4
13 25 8 500 139.2
15 29 8 600 166.3
10 28 8 100 62.1
13 29 8 400 162.2
13 29 8 400 87.3
10 27 8 300 103.2
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