
1622 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 8, AUGUST 2015

Irregular Cellular Learning Automata
Mehdi Esnaashari and Mohammad Reza Meybodi

Abstract—Cellular learning automaton (CLA) is a recently
introduced model that combines cellular automaton (CA) and
learning automaton (LA). The basic idea of CLA is to use LA
to adjust the state transition probability of stochastic CA. This
model has been used to solve problems in areas such as channel
assignment in cellular networks, call admission control, image
processing, and very large scale integration placement. In this
paper, an extension of CLA called irregular CLA (ICLA) is
introduced. This extension is obtained by removing the structure
regularity assumption in CLA. Irregularity in the structure of
ICLA is needed in some applications, such as computer networks,
web mining, and grid computing. The concept of expediency has
been introduced for ICLA and then, conditions under which an
ICLA becomes expedient are analytically found.

Index Terms—Expediency, irregular cellular learning
automata (ICLA), Markov process, steady-state analysis.

I. INTRODUCTION

CELLULAR automaton (CA) is a discrete model consists
of simple identical components, called cells, organized

into a regular grid structure. Each cell can assume a state
from a finite set of states. The operation of a CA takes place
in discrete steps according to a local rule, which depends on
the local environments of the cells. The local environment of
a cell is usually taken to be a small number of neighboring
cells, which can include the cell itself [1]. The global state of
a CA, which represents the states of all its constituting cells
together, is referred to as a configuration. The local rule and
the initial configuration of a CA specify the evolution of that
CA, which tells how each configuration is changed in one
step. CA is particularly suitable for modeling natural systems
that can be described as massive collections of simple objects
interacting locally with each other [2]. CA is called cellular,
because it is made up of cells like points in the lattice, and
called automata, because it follows a simple local rule [3].

On the other hand, learning automaton (LA) is, by design,
a simple agent for making simple and adaptive decisions in
unknown random environments. Intuitively, LA could be con-
sidered as a learning organism which tries different actions

Manuscript received November 9, 2013; revised June 16, 2014 and
August 24, 2014; accepted August 26, 2014. Date of publication
October 1, 2014; date of current version July 15, 2015. This paper was
recommended by Associate Editor R. Selmic.

M. Esnaashari is with the Information Technology Department, Iran
Telecommunications Research Center, Tehran 1439955471, Iran (e-mail:
esnaashari@itrc.ac.ir).

M. R. Meybodi is with the Computer Engineering and Information
Technology Department, Amirkabir University of Technology, Tehran, Iran
and also with the School of Computer Science, Institute for Studies in
Theoretical Physics and Mathematics (IPM), Tehran 15914, Iran (e-mail:
mmeybodi@aut.ac.ir).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2356591

(from its action set) and selects new actions on the basis of
the responses of the environment to previous actions. One
attractive feature of this model is that it could be regarded
as a simple unit from which complex structures could be
constructed. These could be designed to handle complicated
learning problems [4]. In most applications, local interaction
of LAs, which can be defined in a form of graph such as
tree, mesh, or array, is more suitable. In [5], CA and LA
are combined, and a new model, which is called cellular LA
(CLA), is obtained. This model, which opens a new learn-
ing paradigm, is superior to CA because of its ability to
learn and is also superior to single LA because it consists
of a collection of LAs interacting with each other. CLA has
been used in many different applications including: channel
assignment in cellular networks [6], call admission control in
cellular networks [7], and very large scale integration place-
ment [8], to mention a few. In [11], a mathematical framework
for studying the behavior of the CLA has been introduced.
It was shown that, for a class of rules called commutative
rules, different models of CLA converge to a globally stable
state [7], [9]–[11].

In this paper, irregular CLA (ICLA) is introduced as an
extension to CLA model, in which the structure regularity
assumption is removed. We argue that in some applications,
such as computer networks, web mining, and grid computing,
problems could usually be described by graphs, with irregu-
lar structures, and hence, an extension of CLA with irregular
structure is needed to model such problems.

For the proposed extended model, the concept of expediency
is introduced. Informally, an ICLA is said to be expedient
if, in the long run, all of its constituting LA perform better
than pure-chance automata. A pure-chance automaton is an
automaton which chooses any of its actions by pure chance.
Expediency is a notion of learning. An automaton which is
capable of learning must do at least better than a pure-chance
automaton [12]. The steady-state behavior of ICLA is studied
and then, conditions under which an ICLA becomes expedient
are given.

The rest of this paper is organized as follows. In Section II,
we briefly introduce CLA model. Sections III and IV present
ICLA and its steady-state behavior, respectively. A set of
numerical examples are given in Section V for illustrating the
theoretical results. In Section VI, we present a case study of
using ICLA for problem solving in the area of wireless sensor
networks. Section VII is the conclusion.

II. CLA: COMBINATION OF CA AND LA MODELS

Before presenting CLA model in this section, we first give
a brief introduction to CA and LA models.

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ESNAASHARI AND MEYBODI: IRREGULAR CELLULAR LEARNING AUTOMATA 1623

A. CA

A d-dimensional CA consists of an infinite d-dimensional
lattice of identical cells. Each cell can assume a state from a
finite set of states. The cells update their states synchronously
on discrete steps according to a local rule. The new state of
each cell depends on the previous states of a set of cells,
including the cell itself, and constitutes its neighborhood. The
states of all cells in the lattice are described by a configura-
tion. A configuration can be described as the state of the whole
lattice. The local rule and the initial configuration of CA spec-
ify the evolution of CA, that is, how the configuration of CA
evolves in time.

B. LA

LA is an abstract model which randomly selects one action
out of its finite set of actions and performs it on a random
environment. Environment then evaluates the selected action
and responses to the LA with a reinforcement signal. Based
on the selected action, and the received signal, LA updates its
internal state and selects its next action.

Environment can be defined by the triple E = {α, β, c}
where α = {α1, α2, . . . , αr} represents a finite input set,
β = {β1, β2, . . . , βr} represents the output set, and c =
{c1, c2, . . . , cr} is a set of penalty probabilities, where each
element ci= E[β | α = αi] of c corresponds to one input αi. An
environment in which β assumes values in the interval [0, 1] is
referred to as an S-model environment. LAs are classified into
fixed-structure stochastic, and variable-structure stochastic. In
the following, we consider only variable-structure LAs.

A variable-structure LA is defined by the quadruple
{α, β, p, T} in which α = {α1, α2, . . . , αr} represents the
action set of LA, β = {β1, β2, . . . , βr} represents the input
set, p = {p1, p2, . . . , pr} represents the action probability set,
and finally p (k + 1) = T

[
α (k), β (k), p (k)

]
represents the

learning algorithm. This LA operates as follows. Based on the
action probability set p, LA randomly selects an action α (k),
and performs it on the environment. After receiving the envi-
ronment’s reinforcement signal (β (k)), LA updates its action
probability set based on (1) or (2) according to the selected
action α (k)

pi (k + 1) = pi (k) + β (k)
[

b
r−1 − b · pi (k)

]

− [1 − β (k)] · a · pi (k) , when α (k) �= αi
(1)

pi (k + 1) = pi (k) − β (k) · b · pi (k) + [1 − β (k)]·
a · (1 − pi (k)) , when α (k) = αi.

(2)

In the above equations, a and b are reward and penalty
parameters respectively. For a = b, learning algorithm is called
LRP,1 for b << a it is called LRεP,2 and for b = 0, it is called
LRI .

3

Since its introduction in 1973 by Tsetlin [21], LA have
been found a variety of applications in many different top-
ics [22]–[25] and still appears in many recent researches such
as [26] and [27] to mention a few.

1Linear Reward-Penalty
2Linear Reward epsilon Penalty
3Linear Reward Inaction

C. CLA

A CLA is a CA in which a number of LAs is assigned to
every cell. Each LA residing in a particular cell determines
its action (state) on the basis of its action probability vector.
Like CA, there is a local rule that CLA operates under. The
local rule of CLA and the actions selected by the neighboring
LAs of any particular LA determine the reinforcement signal
to that LA. The neighboring LAs (cells) of any particular LA
(cell) constitute the local environment of that LA (cell). The
local environment of an LA (cell) is nonstationary due to the
fact that the action probability vectors of the neighboring LAs
vary during the evolution of CLA. The operation of a CLA
could be described as the following steps: At the first step,
the internal state of every cell is determined on the basis of
the action probability vector of the LA residing in that cell.
In the second step, the local rule of CLA determines the rein-
forcement signal to the LA residing in that cell. Finally, each
LA updates its action probability vector based on the supplied
reinforcement signal and the chosen action. This process con-
tinues until the desired result is obtained. Formally, a CLA
can be defined as follows.

Definition 1: A d-dimensional CLA is a structure =(
Zd, N,�, A,

)
, where as follows.

1) Zd is a lattice of d-tuples of integer numbers.
2) N = {x1, x2,. . . , xm} is a finite subset of Zd called

neighborhood vector, where xi ∈ Zd.
3) � is a finite set of states. The state of the cell ci is

denoted by ϕi.
4) A is the set of LA each of which is assigned to one cell

of the CLA.
5) Fi : ϕi → β is the local rule of the CLA in each cell ci,

where β is the set of values that the reinforcement signal
can take. It computes the reinforcement signal for each
LA based on the actions selected by the neighboring LA.

III. ICLA: EXTENSION TO CLA MODEL

ICLA (Fig. 1) is a generalization of CLA in which the
restriction of regular structure is removed. An ICLA is defined
as an undirected graph in which, each vertex represents a cell
and is equipped with an LA, and each edge induces an adja-
cency relation between two cells (two LAs). LA residing in
a particular cell determines its state (action) according to its
action probability vector. Like CLA, there is a rule that ICLA
operates under. The rule of ICLA and the actions selected
by the neighboring LAs of any particular LA determine the
reinforcement signal to that LA. The neighboring LAs of any
particular LA constitute the local environment of that LA. The
local environment of an LA is nonstationary because the action
probability vectors of the neighboring LAs vary during the
evolution of ICLA.

The operation of ICLA is similar to the operation of CLA.
At the first step, the internal state of each cell is specified on
the basis of the action probability vector of the LA residing in
that cell. In the second step, the rule of ICLA determines the
reinforcement signal to the LA residing in each cell. Finally,
each LA updates its action probability vector on the basis of
the supplied reinforcement signal and the internal state of the

1624 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 8, AUGUST 2015

Fig. 1. ICLA.

cell. This process continues until the desired result is obtained.
Formally, an ICLA is defined as given below.

Definition 2: ICLA is a structure = (G < E, V >,
�, A,), where

1) G is an undirected graph, with V as the set of vertices
(cells) and E as the set of edges (adjacency relations).

2) � is a finite set of states. The state of the cell ci is
denoted by ϕi.

3) A is the set of LAs each of which is assigned to one cell
of ICLA.

4) i : φ
i

→ β is the local rule of ICLA in the cell
ci, where ϕ

i
= {

ϕj |{i, j} ∈ E
} ∪ {ϕi} is the set of

states of all neighbors of ci and β is the set of val-
ues that the reinforcement signal can assume. Local
rule gives the reinforcement signal to each LA from
the current actions selected by the neighboring LAs of
that LA.

Comparing the above definition with the definition of CLA,
the only existing difference is that the lattice Zd and the neigh-
borhood vector N in CLA are replaced by the undirected graph
G < E, V > in ICLA. That is, instead of having a regular lat-
tice structure, ICLA has an irregular graph-based structure.
Note that in the definition of ICLA, no explicit definition is
given for the neighborhood of each cell. It is implicitly defined
in the definition of the graph G.

In what follows, we consider ICLA with n cells. The
LAi which has a finite action set αi is associated to cell
ci (for i = 1, 2, . . . , n) of ICLA. Let the cardinality
of αi be mi.

The operation of ICLA takes place as the following itera-
tions. At iteration k, each LA selects an action. Let αi ∈ αi be
the action selected by LAi. Then all LA receive a reinforce-
ment signal. Let βi ∈ β be the reinforcement signal received
by LAi. This reinforcement signal is produced by the appli-
cation of the local rule i (φ

i
) → β. Higher values of β i

mean that the selected action of LAi will receive higher penal-
ties. Then, each LAi updates its action probability vector on
the basis of the supplied reinforcement signal and its selected
action αi.

Like CLA, ICLA can be either synchronous or asyn-
chronous and an asynchronous ICLA can be either time-driven
or step-driven. ICLA have been successfully used for problem
solving in the area of wireless sensor networks [16]–[19].

A. Evolution of ICLA

Definition 3: A configuration of ICLA at step k is denoted
by p (k) = (p

1
, p

2
, . . . , p

n
)T , where p

i
is the action prob-

ability vector of the LAi and T denotes the transpose
operator.

Definition 4: A configuration p is called deterministic if the
action probability vector of each LA is a unit vector, otherwise
it is called probabilistic. Hence, the set of all deterministic
configurations, ∗, and the set of probabilistic configurations,

, in ICLA are

∗ =
{

p

∣∣
∣∣∣
p =

(
p

1
, p

2
, . . . , p

n

)T
, p

i
= (

pi1, . . . , pimi

)T
,

∀y, i: piy ∈ {0, 1} ,∀i:
∑

y piy = 1

}

(3)

and

=
{

p

∣∣∣
∣∣
p =

(
p

1
, p

2
, . . . , p

n

)T
, p

i
= (

pi1, . . . , pimi

)T
,

∀y, i: 0 ≤ piy ≤ 1,∀i:
∑

y piy = 1

}

(4)

respectively.
Lemma 1: is the convex hull of ∗.
Proof: Proof of this lemma is given in [11].
The application of the local rule to every cell allows

transforming a configuration to a new one.
Definition 5: The global behavior of an ICLA is a mapping
: → that describes the dynamics of ICLA. The evolu-

tion of ICLA from a given initial configuration p (0) ∈ is
a sequence of configurations { p (k)}k≥0, such that p (k + 1) =
(p(k)).
Definition 6: Neighborhood set of any particular LAi,

denoted by N(i), is defined as the set of all LA residing in
the adjacent cells of the cell ci, that is

N (i) = {
LAj |{i, j} ∈ E

}
. (5)

Let i be the cardinality of N(i).
Definition 7: The average penalty for action r of LAi in

configuration p ∈ is defined as

dir(p) = E
[
βi

∣∣∣p , αi = r
]

=
∑

yj1 ,...,yjNi

i
(

yj1 , . . . , yjNi
, r

) ∏

LAl∈N(i)

plyjl
(6)

and the average penalty for the LAi is defined as

Di(p) = E
[
βi

∣∣∣p
]

=
∑

y

diy(p)piy. (7)

The above definition implies that if the LAj is not a neigh-
boring LA for LAi, then dir(p) does not depend on p

j
. We

assume that dir(p) �= 0 for all i, r, and p, that is, in any
configuration, any action has a nonzero chance of receiving
penalty.

Definition 8: The total average penalty for ICLA at config-
uration p ∈ is the sum of the average penalties for all LA
in ICLA, that is

D(p) =
∑

i

Di(p). (8)

ESNAASHARI AND MEYBODI: IRREGULAR CELLULAR LEARNING AUTOMATA 1625

IV. BEHAVIOR OF ICLA

In this section, we will study the asymptotic behavior of an
ICLA, in which all LA use the LRP learning algorithm [13],
when operating within an S-model environment. We refer
to such an ICLA as ICLA with SLRP LA hereafter. The
process { p (k)}k≥0 which evolves according to the LRP learn-
ing algorithm can be described by the following difference
equation:

p (k + 1) = p (k) + a · g
(

p (k) , β (k)
)

(9)

where β (k) is composed of components β iy(k) (for 1 ≤ i ≤
n, 1 ≤ y ≤ mi, and βiy1 = βiy2 for every y1, y2 such that
1 ≤ y1, y2 ≤ mi), which are dependent on p (k). a is an n × n
diagonal matrix with aii = ai and ai represents the learning
parameter for LAi. g represents the learning algorithm, whose
components can be obtained using LRP learning algorithm in
S-model environment as follows:

g
ir

(pir, βir) =
{

(1 − pir − βir) ; αi = r(
βir

mi−1 − pir

)
; αi �= r

. (10)

From (9) it follows that { p (k)}k≥0 is a discrete-time Markov
process [14] defined on the state space [given by (4)].
Let

(
,

)
be a metric space, where d is the metric defined

according to
(

p, q
)

=
∑

i

∥∥∥p
i
− q

i

∥∥∥ (11)

where
∥∥X

∥∥ stands for the norm of the vector X.
Lemmas 2 and 3, given below, state some properties of the

Markovian process given by (9).
Lemma 2: The Markovian process given by (9) is strictly

distance diminishing.
Proof: To prove this lemma, we will show that the

Markovian process given by (9) follows the definition of the
strictly distance diminishing processes given by Norman [15].
The complete proof is given in Appendix A.

Corollary 1: Let p(h) denotes p (k + h) when p (k) = p and

q(h) denotes p (k + h) when p (k) = q. Then p(h) → q(h) as
h → ∞ irrespective of the initial configurations p and q.

Proof: The proof is given in Appendix A.
Lemma 3: The Markovian process given by (9) is ergodic.
Proof : To prove the lemma we can see that the Markovian

process given by (9) has the following two properties.
1) There are no absorbing states for { p (k)}, since there is

no p that satisfies p (k + 1) = p (k).
2) The proposed process is strictly distance diminishing

(Lemma 2).
From the above two properties and considering the results

given in corollary 1, we can conclude that the Markovian
process { p (k)}k≥0 is ergodic.

Now define

�p (k) = E
[
p (k + 1)

∣
∣∣p (k)

]
− p (k). (12)

Since
{

p (k)
}

k≥0
is Markovian and β (k) depends only on

p (k) and not on k explicitly, then �p (k) can be expressed as

a function of p (k). Hence we can write

�p = a f (p). (13)

The components of �p can be obtained as follows:

�pir = aipir · [
1 − pir − E [βir]

]

− ai

∑

y �=r

piy ·
[

1

mi − 1
E

[
βiy

] − pir

]

= ai ·
⎡

⎣ 1

mi − 1

∑

y �=r

piyE
[
βiy

] − pirE [βir]

⎤

⎦

= ai ·
⎡

⎣ 1

mi − 1

∑

y �=r

piydiy(p) − pirdir(p)

⎤

⎦

= ai fir(p) (14)

where

fir(p) = 1

mi − 1

∑

y �=r

piydiy(p) − pirdir(p)

= 1

mi − 1

∑

y

piydiy(p) −
(

1 + 1

mi − 1

)
·
[
pirdir(p)

]

= 1

mi − 1
·
[
Di(p) − mipirdir(p)

]
. (15)

Lemma 4: Function f (p) whose components are given
by (15) is Lipschitz continuous over the compact space .

Proof: Function f (p) has compact support (it is defined
over), is bounded because −1 ≤ fir(p) ≤ 1 for all
p, i, r, and is also continuously differentiable with respect
to p over . Therefore, its first derivative with respect to
p is also bounded. Thus, using the Cauchy’s mean value
theorem, it can be concluded that f (p) is Lipschitz con-
tinuous over the compact space with Lipschitz constant
K = sup

p

∥∥∥∇pf (p)

∥∥∥.

For different values of a, (9) generates different processes
and we shall use pa (k) to denote this process whenever the
value of a is to be specified explicitly. To find the approximat-
ing ODE for the learning algorithm given by (9), we define a
sequence of continuous-time interpolation of (9), denoted by
p̃a (t) and called an interpolated process, whose components
are defined by

p̃a
i
(t) = p

i
(k), t ∈ [kai, (k + 1) ai) (16)

where ai is the learning parameter of the LRP algorithm for
LAi. The interpolated process {p̃a (t)}t≥0 is a sequence of

random variables that takes values from
m1×...×mn , where

m1×...×mn is the space of all functions that, at each point, are
continuous on the right and have a limit on the left over [0,∞)

and take values in , which is a bounded subset of
m1×...×mn .

Consider the following ordinary differential equation (ODE):

ṗ = f (p) (17)

where ṗ is composed of the following components:

dpir

dt
= 1

mi − 1
·
[
Di(p) − mipirdir(p)

]
. (18)

1626 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 8, AUGUST 2015

In the following theorem, we will show that (9) is the
approximation to the ODE (17). This means that if we have
the solution to (17), then we can obtain information regarding
the behavior of p (k).

Theorem 1: Using the learning algorithm (10) and consider-
ing max

{
a
} → 0, p (k) is well approximated by the solution

of the ODE (17).
Proof: Following conditions are satisfied by the learning

algorithm given by (10):
1) { p (k)}k≥0 is a Markovian process.
2) Given p (k), α (k) and β (k) are independent of α (k − 1)

and β (k − 1).
3) f (p (k)) is independent of k.
4) f (p (k)) is Lipshitz continuous over the compact space

(Lemma 4).
5) E‖g(p) − f (p)‖2 is bounded since g(p) ∈ [−1,

1]m1×...×mn .
6) Learning parameters ai, i = 1, . . . , n are sufficiently small

since max
{
a
} → 0.

Therefore, using [4, Th. A.1], we can conclude the
theorem.

Equation (9) is the so called Euler approximation to the
ODE (17). Specifically, if p (k) is a solution to (9) and p̃ (t) is
a solution to (17), then for any T > 0, we have

ai→0
0≤k≤T/ai

∥∥
∥p

ir
(k) − p̃ (kai)

∥∥
∥ = 0. (19)

What Theorem 1 says is that p (k), given by (9), will closely
follow the solution of the ODE (17), that is, p (k) can be made
to closely approximate the solution of its approximating ODE
by taking max

{
a
}

sufficiently small. Thus, if the ODE (17) has
a globally asymptotically stable equilibrium point, then we can
conclude that (by taking max

{
a
}

sufficiently small), p (k), for
large k, would be close to this equilibrium point irrespective
of its initial configuration p (0). Therefore, the analysis of the
process { p (k)}k≥0 is done in two stages. In the first stage, we
solve ODE (17) and in the second stage, we characterize the
solution of this ODE.

In the following subsections, we first find the equilibrium
points of ODE (17), then study the stability property of these
equilibrium points, and finally state some theorems about the
convergence of ICLA.

A. Equilibrium Points

To find the equilibrium points of ODE (17), we first show
that this ODE has at least one equilibrium point and then
specify a set of conditions which must be satisfied by a
configuration p to be an equilibrium point of the ODE (17).

Lemma 5: ODE (17) has at least one equilibrium point.
Proof: To prove this lemma, we first propose a continu-

ous mapping ζ(p) from to . Then, using the Brouwer’s
fixed point theorem, we will show that any continuous map-
ping from to has at least one fixed point. Finally, we
will show that the fixed point of ζ(p) is the equilibrium
point of the ODE (17). This indicates that ODE (17) has at
least one equilibrium point. The complete proof is given in
Appendix B.

Theorem 2: The equilibrium points of ODE (17) are the
set of configurations p∗ which satisfy the set of conditions
p∗

ir = (
∏

y �=r diy(p∗))/(
∑

y1
(
∏

y2 �=y1
diy2(p

∗))) for all i, r.
Proof: To find the equilibrium points of ODE (17), we have

to solve equations of the form

dp∗
ir (t)

dt
= 0 for all i, r. (20)

Using (18), (20) can be rewritten as

1
mi−1 ·

[
Di

(
p∗ (t)

)
− mip∗

ir (t) dir

(
p∗ (t)

)]
= 0

for all i, r.
(21)

These equations have solutions of the form

p∗
ir =

Di

(
p∗

)

midir

(
p∗

) , for all i, r (22)

which after some algebraic manipulations, can be rewritten as

p∗
ir =

∏
y �=r diy

(
p∗

)

∑
y1

(∏
y2 �=y1

diy2

(
p∗

)) , for all i, r (23)

and hence the theorem.
It follows from Theorem 2 that the difference equation given

by (13) has equilibrium points p∗ that satisfy the set of condi-
tions p∗

ir (k) = (
∏

y �=r diy(p∗ (k)))/(
∑

y1
(
∏

y2 �=y1
diy2(p

∗ (k))))
for all i, r.

B. Stability Property

In this Section IV-B, we characterize the stability of equilib-
rium configurations of ICLA, that is, the equilibrium points of
ODE (17). To do this, the origin is first transferred to an equi-
librium point p∗, and then a candidate for a Lyapunov function
is introduced for studying the stability of this equilibrium
point. Consider the following transformation:

p̂ir = pir −
Di

(
p∗

)

midir

(
p∗

) for all i, r. (24)

Using this transformation, the origin is transferred to p∗.
Lemma 6: Derivative of p̂ with respect to time has compo-

nents of the following form:

dp̂ir

dt
= −dir(p)p̂ir for all i, r. (25)

Proof: The proof is given in Appendix C.
Corollary 2: p̂

ir
and its time derivative (dp̂ir/dt) have

different signs.
Proof: Considering the fact that dir(p) ≥ 0 for all configu-

rations p and for all i and r, the proof is an immediate result
of (25).

Theorem 3: A configuration p∗, whose components satisfy
set of equations p∗

ir = (
∏

y �=r diy(p∗))/(
∑

y1
(
∏

y2 �=y1
diy2(p

∗)))
for all i, r, is an asymptotically stable equilibrium point of
ODE (17) over .

Proof: To prove this theorem, we first apply transforma-
tion (24) to transfer the origin to p∗. Then we propose

ESNAASHARI AND MEYBODI: IRREGULAR CELLULAR LEARNING AUTOMATA 1627

a positive definite function V(p) and show that the time
derivative of V(p) is globally negative definite over .
This indicates that p∗ is an asymptotically stable equilibrium
point of ODE (17) over . The complete proof is given in
Appendix D.

Corollary 3: The equilibrium point of ODE (17) is unique
over .

Proof: Let p∗, q∗ be two equilibrium points of ODE (17).
Theorem 3 proves that any equilibrium point of ODE (17),
including p∗, is asymptotically stable over . This means that
all initial configurations within the state space converge to
p∗. Using a similar approach for q∗, one can conclude that
all initial configurations within the state space converge to
q∗. This implies that p∗=q∗, and thus, the equilibrium point of
ODE (17) is unique over .

C. Convergence Results

In this section, we summarize the main results specified in
the above lemmas and theorems in a main theorem (Theorem 4
given below).

Theorem 4: An ICLA with SLRP LA, regardless of its initial
configuration, converges in distribution to a random configu-
ration, in which the mean value of the action probability of
any action of any LA is inversely proportional to the average
penalty received by that action.

Proof: The evolution of an ICLA with SLRP LA is described
by (9). From this equation, it follows that { p (k)}k≥0 is
a discrete-time Markov process. Lemma 3 states that this
Markovian process is ergodic, and hence, it converges in dis-
tribution to a random configuration p∗, irrespective of its initial
configuration. Lemma 5 shows that such a configuration exists
for ICLA, Corollary 3 states that it is unique, and Theorem 3
proves that it is asymptotically stable. Theorem 2 specifies the
properties of the configuration p∗. It shows that p∗ satisfies the
set of conditions given by (22). According to (22), in config-
uration p∗, the action probability of any action of any LA is
inversely proportional to the average penalty received by that
action.

D. Expediency of ICLA

In this section, we introduce the concept of expediency for
ICLA and specify the set of conditions under which an ICLA
becomes expedient.

Definition 9: A pure-chance automaton is an automaton that
chooses each of its actions with equal probability i.e., by pure
chance, that is, an m-action automaton is pure-chance if pi =
(1/m), i = 1, 2, . . . , m.

Definition 10: A pure-chance ICLA is an ICLA, for which
every cell contains a pure-chance automaton rather than a
LA. The configuration of a pure-chance ICLA is denoted
by ppc.

Definition 11: An ICLA is said to be expedient with respect
to the cell ci if

k→∞ p (k) = p∗ exists and the following

inequality holds:

k→∞ E
[
Di

(
p (k)

)]
<

1

mi

∑

y

diy

(
p∗). (26)

TABLE I
SPECIFICATIONS USED FOR NUMERICAL EXAMPLE 1

In other words, an ICLA is expedient with respect to the
cell ci if, in the long run, the ith LA performs better (receives
less penalty) than a pure-chance automaton.

Definition 12: An ICLA is said to be expedient if it is
expedient with respect to every cell in ICLA.

Theorem 5: An ICLA with SLRP LA, regardless of the local
rule being used, is expedient.

Proof: To prove this theorem, we show that an ICLA with
SLRP LA is expedient with respect to every cell in ICLA. The
proof is given in Appendix E.

V. NUMERICAL EXAMPLES

In this section, we will give a number of numerical exam-
ples for illustrating the analytical results specified in previous
sections. The first two sets of examples are used to illustrate
the analytical results given in Theorem 4, and the next set of
examples is used to study the behavior of ICLA in terms of
expediency.

A. Numerical Example 1

This set of examples are given to illustrate that the action
probability of any action of any LA in an ICLA with SLRP LA
converges in distribution to a random variable, whose mean
is inversely proportional to the average penalty received by
that action. We consider three different ICLAs with different
number of cells and different number of cell states. Table I
gives the specifications used for this set of simulations. Here,
ICLA(n,m) refers to an ICLA with n cells and m states for each
cell. Table II compares the action probabilities of the actions
of the LA in each ICLA at the end of the simulation time
(k > 3 × 106) with their theoretical values obtained from (22).
As it can be seen from these tables, the action probabilities
of all actions and their theoretical values approach each other.
This is in coincidence with the results of the theoretical anal-
ysis given in Theorem 4, that is, an ICLA with SLRP LA
converges in distribution to a random configuration, in which
the mean value of the action probability of any action of any
LA is inversely proportional to the average penalty received
by that action. Fig. 2 also shows the approach of these two
values to each other over the simulation time for randomly
selected actions of three randomly selected LA from ICLA2,3
and ICLA5,5.

B. Numerical Example 2

The goal of conducting this set of numerical examples
is to study the convergence behavior of ICLA when it
starts to evolve within the environment from different initial
configurations. For this paper, we use an ICLA5,5 with SLRP

1628 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 8, AUGUST 2015

TABLE II
RESULTS OF THE NUMERICAL EXAMPLE 1 FOR ICLA2,3, ICLA3,2, ICLA5,5 (pij IS THE ACTION PROBABILITY OF THE jTH ACTION OF THE iTH LA

OBTAINED FROM THE SIMULATION STUDY AND p∗
ij IS THE CORRESPONDING THEORETICAL VALUE)

Fig. 2. Results of the numerical example 1 for randomly selected actions of
two randomly selected LA from ICLA2,3, ICLA5,5.

LA. Table III gives the initial configurations of this ICLA. In
this table, for each configuration, the initial action probabil-
ity vectors for LA are given from left to right. For example,
in configuration 3, the initial action probability vector of the
LA4 is [0.5, 0.1, 0.1, 0.2, 0.1]T . Fig. 3 plots the evolution

TABLE III
INITIAL CONFIGURATIONS FOR ICLA5,5 USED IN

NUMERICAL EXAMPLE 2

of the action probabilities of two randomly selected actions
from two of the LA in ICLA for different initial configura-
tions. As it can be seen from this figure, no matter what the
initial configuration of ICLA is, it converges to its equilibrium
configuration. Thus, the results of this set of examples coin-
cide with the results given in Theorem 4 in Section III, that
is, the convergence of ICLA to its equilibrium configuration
is independent of its initial configuration.

C. Numerical Example 3

This set of numerical examples is conducted to study
the behavior of ICLA in terms of the expediency. For this

ESNAASHARI AND MEYBODI: IRREGULAR CELLULAR LEARNING AUTOMATA 1629

Fig. 3. Results of the numerical example 2 for randomly selected actions of
two randomly selected LA.

TABLE IV
RESULTS OF THE NUMERICAL EXAMPLE 3

paper, we use the specifications of the first numerical exam-
ple, given in Table I. Table IV compares E[Di(p(k))] and
(1)/(mi)

∑
y diy(p(k)) at the end of the simulation time (k >

2.85 × 106) for all LA of all ICLAs given in Table I. As it
can be seen from this table, the average penalty received by
any LA is less than that of a pure chance automaton. This is
in coincidence with the theoretical results given in Theorem 5,
i.e., an ICLA with SLRP LA, regardless of the local rule being
used, is expedient.

VI. CASE STUDY

To demonstrate the superiority of ICLA over LA, in this
section we compare the results of applying these two models
for solving the dynamic point coverage problem [20] in the
area of wireless sensor networks. In this problem, an unknown
number of targets are moving throughout the sensor field and

Fig. 4. Comparison of LA and ICLA for solving dynamic point coverage
problem in terms of (a) network detection rate (ηD) and (b) network redundant
active rate (ηR) criteria.

the aim is to detect and track these moving targets using as
few sensor nodes as possible.

We have proposed two different approaches for solving this
problem: 1) by using a number of noncooperating LA, one
at each sensor node of the network [20] and 2) by using an
ICLA, in which there again exists one LA at each sensor node,
but these LA cooperate with each other [18]. Fig. 4 compares
the results of these two approaches in terms of the following
two criteria.

1) Network Detection Rate (ηD): This criterion determines
the accuracy of detecting and tracking moving targets.

2) Network Redundant Active Rate (ηR): This criterion
determines the ratio of the time that a target is redun-
dantly detected by more than one sensor node.

As it can be seen from this figure, using ICLA, results in
higher ηD and lower ηR than using LA. In other words, the
aim of the network, which is to detect moving targets (ηD)
using as few sensor nodes as possible (ηR), is better fulfilled
when LA residing in different nodes of the network cooperate
with each other.

VII. CONCLUSION

In this paper, we proposed ICLA as an extension to CLA
model. In contrast to CLA, the proposed model have irregular
structure which is needed for modeling problems in some areas
such as computer networks, web mining, and grid computing.
The steady-state behavior of the proposed model was ana-
lytically studied and the results of this paper were illustrated
through some numerical examples. The concept of expediency
was introduced for the proposed learning model. An ICLA
is expedient with respect to each of its cells if, in the long
run, the LA resides in that cell performs better (receives less
penalty) than a pure-chance automaton. An ICLA is expedient,

1630 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 8, AUGUST 2015

if it is expedient with respect to all of its constituting cells.
Expediency is a notion of learning. Any model that is said
to learn must then do at least better than its equivalent pure-
chance model. The intended analytical studies showed that the
proposed model, using SLRP learning algorithm, is expedient.
The proposed analytical results are valid only if the learning
rate is sufficiently small.

APPENDIX A

Proof of Lemma 2: Let ES = {α|α = (αT
1 , αT

1 , . . . , αT
n)T}

be the event set which causes the evolution of the state p (k) .

The evolution of the state p (k) is dependent on the occurrence
of an associated event ES(k). Thus

p (k + 1) = fES(k)

(
p (k)

)
(27)

where fES(k) is defined according to (9). Let Pr [ES(k) =
e|p(k) = p] = φe(p) where φe(p) is a real-valued function

on ES × . Now define m (φe) and μ (fe) as

m (φe) = sup
p�=p′

∣∣∣φe(p) − φe

(
p′

)∣∣∣
(

p, p′
) (28)

μ (fe) = sup
p�=p′

(
fe(p), fe

(
p′

))

(
p, p′

) (29)

and

μ (fe) = sup
p �=p′

(
fe(p), fe

(
p′

))

(
p, p′

) (30)

whether or not these are finite. The following propositions are
held.

1) ES is a finite set.
2)

(
,

)
is a metric space and is compact.

3) m (φe) < ∞ for all e ∈ ES
4) μ (fe) < 1 for all e ∈ ES. To see this, consider p and q

as two states of the process { p(k)}.
From (10) and (11) we have

μ (fe) =
(

fe(p), fe
(

q
))

(
p, q

) =
∑

i

∥∥∥fei

(
p

i

)
− fei

(
q

i

)∥∥∥
∑

i

∥∥∥p
i
− q

i

∥∥∥

=
∑

i (1 − ai) ·
∥
∥∥p

i
− q

i

∥
∥∥

∑
i

∥
∥∥p

i
− q

i

∥
∥∥

. (31)

Since 0 < ai < 1,∀i it follows that μ (fe) < 1.
Therefore, and according to the definition of the distance

diminishing processes given by Norman [15], Markovian
process given by (9) is strictly distance diminishing.

Proof of Corollary 1: From Lemma 2, It follows that:
(

p(h), q(h)
)

=
∑

i

(1 − ai)
h ·

∥∥∥p
i
− q

i

∥∥∥. (32)

Right hand side of (32) tends to zero as h → ∞. Hence
p(h) → q(h) irrespective of the initial configurations p and q.

APPENDIX B

Proof of Lemma 5: Let ζ(p) = af (p) + p where matrix a
is equivalent to the one given in (9). Components of ζ(p) can
be obtained as follows:

ζir(p) = ai

mi − 1
·
[
Di(p) − mipirdir(p)

]
+ pir. (33)

It is easy to verify that 0 ≤ ζir(p) < 1 for all i and r. Thus,
ζ(p) is a continuous mapping from to . Since is closed,
bounded, and convex (Lemma 1), we can use the Brouwer’s
fixed point theorem to show that ζ(p) has at least one fixed
point. Let p∗ be a fixed point of ζ(p), thus we have

ζ
(

p∗) = p∗ (34)

or equivalently

a f
(

p∗) + p∗ = p∗. (35)

Since a is a diagonal matrix with no zero elements on its
main diagonal, it can be concluded from (35) that

f
(

p∗) = 0. (36)

Since every point p∗, that satisfies f (p∗) = 0, is an equilib-
rium point of ODE (17), we can conclude that ODE (17) has
at least one equilibrium point.

APPENDIX C

Proof of Lemma 6: Let

δ∗
ir =

Di

(
p∗

)

midir

(
p∗

). (37)

Using (24) and (37), components of the derivative of p̂ with
respect to time can be given as

dp̂ir

dt
= dpir

dt
+ dδ∗

ir

dt
= dpir

dt
for all i, r. (38)

Using (18) and (37), (38) can be rewritten as

dp̂ir

dt
= 1

mi − 1
·
[
Di(p) − mi · (

p̂ir + δ∗
ir

) · dir(p)
]
. (39)

Equation (39) is valid for all configurations p̂ including q̂
in which q̂ir = 0 for a particular action r of the ith LA. For
this configuration, it is easy to verify that (dq̂

ir
)/(dt) = 0.

Next, use (7) to rewrite (39) as follows:

dp̂ir
dt = 1

mi−1 ·
[

dir(p) · (1 − mi) · (
p̂ir + δ∗

ir

)+
∑

y �=r

(
p̂iy + δ∗

iy

)
diy(p)

]

for all i, r.

(40)

Equation (40) is also valid for all configurations p̂ including
q̂. Thus, we have

dq̂ir

dt
= 1

mi − 1
·
⎡

⎣
dir

(
q
)

· (1 − mi) · δ∗
ir+

∑
y �=r

(
q̂iy + δ∗

iy

)
diy

(
q
)

⎤

⎦ = 0 (41)

from which it immediately follows that:

dir

(
q
)

· (1 − mi) · δ∗
ir +

∑

y �=r

(
q̂iy + δ∗

iy

)
diy

(
q
)

= 0. (42)

ESNAASHARI AND MEYBODI: IRREGULAR CELLULAR LEARNING AUTOMATA 1631

Since none of the terms in (42) depend on the value of q̂ir,
this equation is valid for all configurations p̂, that is

dir(p) · (1 − mi) · δ∗
ir+∑

y �=r

(
p̂iy + δ∗

iy

)
diy(p) = 0, for all p̂, i, r.

(43)

Using (43) in (40) we get

dp̂ir

dt
= −dir(p)p̂ir for all i, r (44)

and hence the lemma.

APPENDIX D

Proof of Theorem 3: Apply transformation (24) to transfer
the origin to p∗. Now consider the following positive definite
Lyapunov function:

V
(

p̂
)

= −
∑

i

∑

y

p̂iy · ln
(
1 − p̂iy

)
. (45)

V(p̂) ≥ 0 for all configurations p̂ and is zero only when
p̂ir = 0 for all i and r. Time derivative of V(.) can be
expressed as

V̇
(

p̂
)

= −
∑

i

∑

y

dp̂iy

dt
· υ

(
p̂iy

)
(46)

where

υ
(
p̂iy

) =
[

ln
(
1 − p̂iy

) · (
1 − p̂iy

) − p̂iy

1 − p̂iy

]

. (47)

Considering the value of p̂
iy

, following three cases may arise
for each term of this derivative.

1) 0 < p̂iy ≤ 1: In this case, υ
(
p̂iy

)
< 0 and (dp̂iy)/(dt) <

0 (Corollary 2). Therefore, (dp̂iy)/(dt) · υ
(
p̂iy

)
> 0.

2) −1 ≤ p̂iy < 0: In this case, υ
(
p̂iy

)
> 0 and (dp̂iy)/(dt)

> 0 (Corollary 2). Therefore, (dp̂iy)/(dt) · υ
(
p̂iy

)
> 0.

3) p̂iy = 0: In this case, (dp̂iy)/(dt) · υ
(
p̂iy

)
= 0.

Thus, V̇(p̂) ≤ 0, for all configurations p̂ and is zero
only when p̂ir = 0 for all i and r. Therefore, using the
Lyapunov theorems for autonomous systems, it can be proved
that p∗ is an asymptotically stable equilibrium point of
ODE (17) over .

APPENDIX E

Proof of Theorem 5: We have to show that an ICLA with
SLRP LA is expedient with respect to all of its cells; that is,

k→∞ p (k) = p∗ exists and the following inequality holds:

k→∞ E
[
Di

(
p (k)

)]
<

1

mi

∑

y

diy

(
p∗), for every i. (48)

Using (7), the left hand side of this inequality can be
rewritten as

lim
k→∞ E

[
Di

(
p (k)

)]
= lim

k→∞ E

⎡

⎣
∑

y

diy

(
p (k)

)
piy (k)

⎤

⎦

=
∑

y

lim
k→∞ E

[
diy

(
p (k)

)
piy (k)

]
. (49)

Since diy

(
p (k)

)
and piy (k) are independent, (49) can be

simplified to

lim
k→∞ E

[
Di

(
p (k)

)]

=
∑

y

(
lim

k→∞ E
[
diy

(
p (k)

)]
· lim

k→∞ E
[
piy (k)

])
. (50)

From Theorem 4, we have lim
k→∞ E[p(k)] = p∗ and

hence lim
k→∞ E

[
pir (k)

] = p∗
ir for all i and r. Using (6),

lim
k→∞ E[dir(p(k))] can be computed as follows:

k→∞ E
[
dir

(
p (k)

)]
=

k→∞

E

⎡

⎣
∑

yj1 ,...,yjNi

Fi
(

yj1 , yj2 , . . . , yjNi
, r

) ∏

LAl∈N(i)

plyjl
(k)

⎤

⎦

=
∑

yj1 ,...,yjNi

Fi
(

yj1 , yj2 , . . . , yjNi
, r

)

∏

LAl∈N(i)
k→∞ E

[
plyjl

(k)
]

= dir

(
p∗ (k)

)
. (51)

Thus, we get

lim
k→∞ E

[
Di

(
p (k)

)]
=

∑

y

(
diy

(
p∗) p∗

iy

)
. (52)

Now, we have to show that
∑

y

diy

(
p∗) p∗

iy <
1

mi

∑

y

diy

(
p∗) for every i. (53)

Each side of this inequality is a convex combination of
diy(p∗), y = 1, . . . , mi. In the convex combination given on
the right hand side of (53), weights of all dir(p∗) are equal to
(1)/(mi), whereas in the convex combination given on the left
hand side, weight of each dir(p∗) is inversely proportional to
its value, that is, the larger dir(p∗), the smaller its weight is
[considering (22)]. Therefore, the convex combination given
on the left hand side of inequality (53) is smaller than the one
given on the right hand side, and hence the theorem.

REFERENCES

[1] J. Kari, “Reversibility of 2D cellular automata is undecidable,” Phys. D,
vol. 45, nos. 1–3, pp. 379–385, 1990.

[2] N. H. Pakard and S. Wolfram, “Two-dimensional cellular automata,”
J. State Phys., vol. 38, nos. 5–6, pp. 901–946, 1985.

[3] E. Fredkin, “Digital machine: An informational process based on
reversible cellular automata,” Phys. D, vol. 45, nos. 1–3, pp. 254–270,
1990.

[4] M. A. L. Thathachar and P. S. Sastry, Networks of Learning Automata.
Boston, MA, USA: Kluwer Academic, 2004.

[5] M. R. Meybodi, H. Beigy, and M. Taherkhani, “Cellular learning
automata and its applications,” Sharif J. Sci. Technol., vol. 19, no. 25,
pp. 54–77, 2003.

[6] H. Beigy and M. R. Meybodi, “A self-organizing channel assignment
algorithm: A cellular learning automata approach,” in Intelligent Data
Engineering and Automated Learning, vol. 2690. New York, NY, USA:
Springer, 2003, pp. 119–126.

[7] H. Beigy and M. R. Meybodi, “Asynchronous cellular learning
automata,” Automatica, vol. 44, no. 5, pp. 1350–1357, 2008.

1632 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 8, AUGUST 2015

[8] M. R. Meybodi and F. Mehdipour, “Application of cellular learn-
ing automata with input to VLSI placement,” J. Modarres, vol. 16,
pp. 81–95, 2004.

[9] H. Beigy and M. R. Meybodi, “Open synchronous cellular learning
automata,” Adv. Complex Syst., vol. 10, no. 4, pp. 527–556, 2007.

[10] H. Beigy and M. R. Meybodi, “Cellular learning automata with multiple
learning automata in each cell and its applications,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 40, no. 1, pp. 54–66, Feb. 2010.

[11] H. Beigy and M. R. Meybodi, “A mathematical framework for cellular
learning automata,” Adv. Complex Syst., vol. 7, no. 3, pp. 295–320, 2004.

[12] M. L. Tsetlin, “On the behavior of finite automata in random media,”
Autom. Remote Control, vol. 22, no. 10, pp. 1210–1219, 1962.

[13] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Englewood Cliffs, NJ, USA: Prentice-Hall, 1989.

[14] D. L. Isaacson and R. W. Madsen, Markov Chains: Theory and
Applications. New York, NY, USA: Wiley, 1976.

[15] M. F. Norman, “Some convergence theorems for stochastic learning
models with distance diminishing operators,” J. Math. Psychol., vol. 5,
no. 1, pp. 61–101, 1968.

[16] M. Esnaashari and M. R. Meybodi, “Irregular cellular learning automata
and its application to clustering in sensor networks,” in Proc. 15th Conf.
Elect. Eng., Telecommunication Research Center, Tehran, Iran, 2007.

[17] M. Esnaashari and M. R. Meybodi, “A cellular learning automata based
clustering algorithm for wireless sensor networks,” Sens. Lett., vol. 6,
no. 5, pp. 723–735, 2008.

[18] M. Esnaashari and M. R. Meybodi, “Dynamic point coverage problem
in wireless sensor networks: A cellular learning automata approach,”
J. Ad hoc Sens. Wireless. Netw., vol. 10, nos. 2–3, pp. 193–234, 2010.

[19] M. Ahmadinia, M. R. Meybodi, M. Esnaashari, and H. Alinejad
Rokney, “Energy efficient and multi clustering algorithm in wireless
networks using cellular learning automata,” IETE J. Res., vol. 59, no. 6,
pp. 774–782, 2013.

[20] M. Esnaashari and M. R. Meybodi, “A learning automata based schedul-
ing solution to the dynamic point coverage problem in wireless sensor
networks,” Comput. Netw., vol. 54, no. 14, pp. 2410–2438, 2010.

[21] M. L. Tsetlin, “Automaton theory and modeling of biological systems,”
New York, NY, USA: Academic Press, 1973.

[22] A. G. Barto and P. Anandan, “Pattern-recognizing stochastic learning
automata,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 15, no. 3,
pp. 360–375, May/Jun. 1985.

[23] K. S. Narendra and K. Parthasarathy, “Learning automata approach to
hierarchical multi-objective analysis,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 21, no. 1, pp. 263–272, Jan./Feb. 1991.

[24] P. S. Sastry, V. V. Phansalkar, and M. Thathachar, “Decentralized learn-
ing of nash equilibria in multi-person stochastic games with incomplete
information,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 24, no. 5,
pp. 769–777, May 1994.

[25] O.-C. Granmo, B. J. Oommen, S. A. Myrer, and M. G. Olsen, “Learning
automata-based solutions to the nonlinear fractional knapsack problem
with applications to optimal resource allocation,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 37, no. 2, pp. 166–175, Feb. 2007.

[26] B. J. Oommen and K. Hashem, “Modeling the “learning process” of
the teacher in a tutorial-like system using learning automata,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 43, no. 6, pp. 2020–2031,
Dec. 2013.

[27] A. Yazidi, O.-C. Granmo, and B. J. Oommen, “Learning automaton
based on-line discovery and tracking of spatio-temporal event patterns,”
IEEE Trans. Cybern., vol. 43, no. 3, pp. 1118–1130, Jun. 2013.

Mehdi Esnaashari received the B.S., M.S., and
the Ph.D. degrees in computer engineering from the
Amirkabir University of Technology, Tehran, Iran,
in 2002, 2005, and 2011, respectively.

He is currently an Assistant Professor with Iran
Telecommunications Research Center, Tehran. His
current research interests include computer net-
works, learning systems, soft computing, and infor-
mation retrieval.

Mohammad Reza Meybodi received the B.S. and
M.S. degrees in economics from Shahid Beheshti
University, Tehran, Iran, in 1973 and 1977, respec-
tively, and the M.S. and Ph.D. degrees in computer
science from Oklahoma University, Norman, OK,
USA, in 1980 and 1983, respectively.

He is currently a Full Professor with Computer
Engineering Department, Amirkabir University of
Technology, Tehran. Prior to his current posi-
tion, he was an Assistant Professor with Western
Michigan University, Kalamazoo, MI, USA, from

1983 to 1985, and an Associate Professor with Ohio University, Athens,
OH, USA, from 1985 to 1991. His current research interests include channel
management in cellular networks, learning systems, parallel algorithms, soft
computing, and software development.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

