
Applied Intelligence

Adaptive Cooperative Particle Swarm Optimizer
--Manuscript Draft--

Manuscript Number: APIN-1413R3

Full Title: Adaptive Cooperative Particle Swarm Optimizer

Article Type: Original Submission

Keywords: Particle Swarm Optimizer (PSO); Cooperative swarms; Learning Automata; adaptive
swarm behavior; composition benchmark functions; large-scale optimization; active
coordinate rotated benchmark functions

Corresponding Author: mohammad hasanzadeh, MSc
Amirkabir University of Technology
Tehran, IRAN, ISLAMIC REPUBLIC OF

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Amirkabir University of Technology

Corresponding Author's Secondary
Institution:

First Author: mohammad hasanzadeh, MSc

First Author Secondary Information:

Order of Authors: mohammad hasanzadeh, MSc

mohammad reza meybodi, PHD

mohammad mehdi ebadzadeh, PHD

Order of Authors Secondary Information:

Powered by Editorial Manager® and Preprint Manager® from Aries Systems Corporation

Reviewer #1 comments:

The [25] [26] [34] [51] references numbers are referenced in the previous versions of manuscript.

Also the following reference numbers are added from APIN: [24] [27] [38] [42] [45] [53]

Response to Reviewer Comments

1

Adaptive Cooperative Particle
Swarm Optimizer

Mohammad Hasanzadeh, Mohammad Reza Meybodi and Mohammad Mehdi

Ebadzadeh

Computer Engineering and Information Technology Department, Amirkabir

University of Technology (Tehran Polytechnic), Tehran, Iran.

Tel: +98-21-64545120

Fax: +98-21-66495521

E-mail: mdhassanzd@aut.ac.ir, mmeybodi@aut.ac.ir, ebadzadeh@aut.ac.ir

Abstract

An Adaptive Cooperative Particle Swarm Optimizer (ACPSO) is introduced in

this paper, which facilitates cooperation technique through usage of Learning

Automata (LA) algorithm. Cooperative learning strategy of ACPSO optimizes the

problem collaboratively and evaluates it in different contexts. In ACPSO

algorithm, a set of learning automata associated with dimensions of the problem

are trying to find the correlated variables of the search space and optimize the

problem intelligently. This collective behavior of ACPSO will fulfill the task of

adaptive selection of swarm members. Simulations were conducted on four types

of benchmark suits which contain three state-of-the-arts numerical optimization

benchmark functions in addition to one new set of active coordinate rotated test

functions. The results demonstrate the learning ability of ACPSO in finding

correlated variables of the search space and also describe how efficiently it can

optimize the coordinate rotated multimodal problems, composition functions and

high-dimensional multimodal problems.

1 Introduction

Swarm Intelligence (SI) [1] is an abstract system which contains a population of

agents interacting locally with each other and with their corresponding

environment. SI is inspired from the discipline that lies behind the behavior of

flocks of birds, insect colonies and fish schooling. Optimization methods are

*Manuscript
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/apin/viewRCResults.aspx?pdf=1&docID=1889&rev=3&fileID=44082&msid={EF3885D4-E18C-42EF-9120-9BB28E0CA2F4}

2

currently one of the most applicable approaches to solve real world problems.

Particle Swarm Optimizer (PSO) [2], [3] is an optimization algorithm which uses

SI as a model of social interactions between multiple agents. PSO [2], [3]

optimizes a problem by keeping track of the best values of each individual and the

entire population.

Standard PSO [4] is a heuristic-based iterative technique which uses a population

of particles. An N-dimensional community is evaluated through an eligibility test

in each generation of the algorithm with the best quantities of each individual and

the whole population being updated. Another population based optimization

technique is Genetic Algorithm (GA) [5] which uses mating and mutation during

evolution part of the population. The term cooperation was first introduced by

Potter in the field of GA [6]. The model consists of three major steps: first; it

splits the problem dimensions into smaller parts; second, it solves each of these

sub-problems by a single GA; and finally, it combines each subpopulation

solution to form an N-dimensional solution vector which is feasible to evaluate

through the designated fitness function. The same scenario was brought to PSO

technique by Van den Bergh [7], [8], including a PSO that splits the solution

space into multiple subspaces. The dilemma remains in all cooperative

optimization techniques how to select the coherent dimensions in order to solve

the problem efficiently?

Learning Automaton (LA) [9], [10] is an autonomous machine which is designed

to automatically learn instructions from the environment. The first publication that

introduced LA to the science community was a survey conducted by Narendra in

1970s [9]. Since the first introduction of LA, there have been many applications

of this learning method such as traffic congestion [11], channel assignment [12] in

cellular mobile networks and dynamic point coverage in wireless sensor networks

[13]. More recently, LA has been successfully applied to the context of PSO for

adaptive parameter selection [14]. Also in [15] a new hybrid model of PSO and

cellular automata is developed to address the dynamic optimization.

In order to adaptively select the correlated dimensions of the problem, this paper

combines the cooperative PSO [7], [8] with the learning methodology of a group

of learning automata [16]. This combination leads to present an optimizer which

cooperatively optimizes the problem and intelligently places the correlated

dimensions in a same swarm. The performance of ACPSO is evaluated in IEEE

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Conference on Evolutionary Computation 2005 (CEC 2005) [17] and IEEE

Transaction on Evolutionary Computation 2006 (TEC 2006) [18]. Experimental

results show that ACPSO algorithm could optimize the rotated multimodal

problems better than its counterpart algorithms.

The feature selection [19] is an NP-hard problem and currently has become the

focus of much research areas of application. Considering the fact that, we

necessarily need specific problems to study the ACPSO correlation detection

feature, we have applied it to some active coordinate rotated test functions. The

results produced by ACPSO are promising for future design of feature extraction

algorithms.

In order to investigate the performance of ACPSO in large-scale optimization

problems, it we also tested it on six multimodal benchmark functions in 300

dimensions of TEC 2009 [20] and was especially compared with one of the non-

cooperative optimization algorithms called Group Search Optimizer [20], [21].

The results indicate that ACPSO could alleviate the curse of dimensionality [22]

while optimizing the 300 dimensional problems. The secondary aim of this paper

is to provide a brief survey on cooperative optimization techniques the framework

of which are originated from Potter’s Cooperative Coevolutionary Genetic

Algorithm (CCGA) [6]. Moreover, some applications of learning automata in

Evolutionary Algorithm (EA) are reviewed.

The rest of this paper is organized as follows: Standard PSO is introduced in

section 2 and then a review of some cooperative algorithms is carried out. In

Section 3 learning automata, its application in PSO and the technological

advances due to its usage are presented. Section 4 adopts to describe the adaptive

particle swarm optimization. Section 5 is dedicated to empirical study of the

proposed method on several test functions and finally in section 6 some

conclusions are drawn.

2 Particle Swarm Optimizer Concepts and

Applications

In PSO [23] a number of particles fly in the problem space and each of them

evaluates its current position through the designated objective function. Then,

each particle calculates its move by combining its own best information and best

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

information of all the swarm members. PSO has been used in a wide range of

applications including bandwidth minimization problem [24], distributed local

area networks [25], e-learning systems [26] and armored vehicle design [27].

2 – 1 conventional Particle Swarm Optimizer

Assume that an N-dimensional problem exists; the corresponding PSO contains a

population of N-dimensional particles. Each particle indicates a feasible solution

in the search space. Three features are assigned to the ith particle of population:

the position vector 1 2, ,..., N

i i i iX x x x , the velocity vector 1 2, ,..., N

i i i iV v v v and

the best position which is met 1 2, ,..., N

i i i iX pbest pbest pbest . The velocity D

iV

and position D

iX of the i
th

 particle are updated through the following equations [4],

[18]:

 1 21 2D D D D D D D D

i i i i i i iV w V c rand pbest X c rand gbest X

(1)
D D D

i i iX X V (2)

Where 1 2, ,..., Dgbest gbest gbest gbest is the best position which is met by the

whole population, c1 and c2 are acceleration constants in which they control the

absorption degree of pbest and gbest positions, also rand1 and rand2 0,1 are

two random numbers and finally w [28] is called inertia weight which is designed

to balance the exploration and exploitation characteristics of PSO. The algorithm

of the original PSO is given in Fig. 1.

Algorithm 1 Standard PSO

for each generation do

 for each individual i in the population do

 update position of ith individual:

 1 21 2D D D D D D D D

i i i i i i iV w V c rand pbest X c rand gbest X

D D D

i i iX X V

 calculate individual fitness f(xi)

 update pbesti and gbest

 end for

end for

Fig 1. Pseudocode for the standard PSO

2 – 2 Some Population-based Optimization Approaches

Since introducing PSO for the first time [3], there has been a great deal of

research on improving the performance of original PSO. Comprehensive Learning

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

Particle Swarm Optimizer (CLPSO) [18] is a PSO with a new learning strategy.

The main goal of CLPSO is to avoid premature convergence when solving

multimodal problems. In the new learning strategy each particle learns from pbest

information of all particles. The velocity of particles in each dimension is updated

by an exemplar function. The exemplar function collects pbest of all particles and

assigns an exemplar to each dimension of them using a tournament selection.

Since this novel learning schema maintains the diversity of population, CLPSO

could avoid premature convergence.

The Group Search Optimizer (GSO) [20], [21] is an optimization heuristic which

adopts Producer-Scrounger (PS) framework. The PS model is a group living

methodology with two strategies: (1) producing or searching food; (2) scrounging

or joining resources uncovered by others. Besides producer and scrounger

members, the population of GSP algorithm also contains some additional

dispersed members which perform random walks to avoid being trapped in

pseudominima.

Original PSO doesn’t offer a fast convergence speed and thus easily trapped in

local optima. To obtain the abovementioned goals, Adaptive Particle Swarm

Optimization (APSO) is proposed in [29]. APSO includes two main phases. First,

observing the population distribution and computing the evolutionary factor f by

the distance of particles. Based on the information which given by f, one of the

four evolutionary states, namely exploration, exploitation, convergence and

jumping out will be chosen for the next generation. These evolutionary strategies

are developed to adaptively control the acceleration coefficients (c1 and c2).

Moreover, APSO dynamically adjusts the inertia weight w. Second, if the selected

state was convergence, an elitist learning would be performed. Similar to

Simulated Annealing (SA), elitist learning chooses one dimension of gbest and

changes it by a Gaussian perturbation.

DNA sequence compression algorithm [30] is an approach that tries to find the

most effective way of data encoding to reduce the space needed to store the data.

In [30], a novel Adaptive Particle Swarm Optimization-based Memetic Algorithm

(POMA) is proposed for DNA sequence compression. After computing the

codebooks, each codebook is encoded into a particle. Then, in order to find the

optimal codebook, the particles are given to CLPSO algorithm [18] which

performs a global search over the population. Finally, Adaptive Intelligence

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

Single Particle Optimizer (AdpISPO) is run which implements the search with

only one particle and performs a local search. AdpISPO is an adaptive version of

ISPO [31] which splits the solution vector into a certain number of subvectors and

updates them sequentially. The key characteristic of IPSO is its learning factor

that intelligently tunes the particle velocity during the search process. By

combining these two PSO algorithms, POMA keeps track of global and local

search strategies promisingly.

Due to the shortcomings of conventional PSO, an Orthogonal Learning Particle

Swarm Optimization (OLPSO) is recommended in [32]. Similar to CLPSO [18]

the Orthogonal Learning (OL) strategy tries to construct a direction-efficient

exemplar. There are three motivations for a typical OL strategy: First, building an

accurate guidance vector based on search information from the best personal and

neighborhood positions of the particles. Second, applying Orthogonal

Experimental Design (OED) [33] to construct a beneficial learning exemplar.

Third, using the notion of CLPSO learning strategy [18] to develop OL strategy

which can determine the search direction accurately.

Light Adaptive PSO (LADPSO) [34] is a PSO in which fuzzy logic is utilized to

improve the standard PSO. LADPSO adds two operators to PSO, a plow operator

for efficient initializing and a mutation operator to avoid getting trapped in local

minima. The combination of these two operators facilitates both global and local

searches of LADPSO.

A PSO is designed in [35] for dynamic environments. Furthermore, master-slave

architecture is applied to PSO algorithm in [36]. Each of the slave swarms evolve

independently while the master swarm combines its own information with the

information received from the slave swarms in order to evolve more efficiently. A

multi swarm cooperative PSO with four subswarms is introduced in [37]. In this

PSO algorithm, various techniques are employed to maintain the diversity of

population, escape from pseudominima and acquire a better solution. In [38] a

novel PSO based on emotional behavior is proposed to solve real optimization

problems. In this approach an emotional factor splits up the search space into

potential regions that are finely explored by subswarms.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

2 – 3 Review of Cooperative Optimization Heuristics

The first attempt to develop cooperative optimization was based on Genetic

Algorithms (GA) [6]. Genetic Algorithm (GA) [5] is one of the basic branches of

Evolutionary Computing (EC) which is founded by Holland. Particle Swarm

Optimization (PSO) [4] is a newfound optimization method which has a lot of

applications in spite of its simple structure. For solving multimodal problems or

functions which cannot be solved by other heuristics, PSO offers more promising

results than other methods. The current publication trend marks the usage of this

method in rather new and different applications. The main categories of PSO

applications include video analyzing, design and reconstruction of electronic

networks, control applications, scheduling applications, biologic, medical and

pharmacy applications [23].

Having inspired from natural evolution flow, GA employs recombination,

selection and mutation operators to produce an optimal set or entity from its early

population. In this context, Potter considered a typical solution of the optimization

problem as an N-dimensional vector where each dimension represents a

subpopulation of the primary population. In order to evaluate one member of a

subpopulation, an N-dimensional vector should be constructed by combining the

other selected members of each subpopulation. Similar to standard GA, the

constructed vector could easily be evaluated through the designated objective

function. The Cooperative Coevolutionary Genetic Algorithm (CCGA) of Potter

is sensitive to the correlation of dimensions and its performance deteriorates upon

optimizing correlated variables of the optimization problems. Ong, Keane and

Nair [39] raised the idea of Potter’s cooperative GA by Radial Basis Function

(RBF) and used it to solve some problems of the correlated parameters.

A Cooperative PSO (CPSO) was first introduced by Van den Bergh and

Engelbrecht in [7]. The CPSO algorithm splits the input vector into several

subvectors and optimizes them using the assigned subpopulation. In CPSO, each

swarm act as the representative of one to several dimensions of the problem while

the cooperative swarms collaboratively optimize the problem solution. Van den

Bergh utilized these subpopulations for training the neural network (CPSO-S). He

also used this cooperative approach in function optimization and eventually

introduced Hybrid Cooperative PSO (CPSO-H) [8]. The CPSO-H algorithm is a

cooperative PSO which combines standard features of PSO with the cooperative

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

behavior of CPSO by the aim of utilizing both beneficial characteristics of the

aforementioned PSOs.

Evolutionary Strategy (ES) [40] is introduced by Rechenberg and Schwefel in

1970s in Germany. At that time, the applications of ES were limited to optimizing

the nasal shape. Sofge, De Jong, and Schultz [41] brought the cooperation concept

into ES. Cooperative Coevolution Evolutionary Strategy (CCES) divides the

population of ES into some subspecies and lets them evolve. By means of a

migration operator, Sofge could hybridize the cooperative evolutionary behavior

of Potter with ES. The proposed model controls the interaction of subspecies

properly and exhibits good performance results.

Differential Evolution (DE) [42] is a population-based parallel search method

which is used for global optimization problems. In each generation of this

algorithm, the population moves towards the global optimum by mutation, cross

over and selection operators. Shi, Teng and Li [43] applied the cooperative

behavior of Potter to DE and invented Cooperative Co-evolutionary Differential

Evolution (CCDE). This CCDE fragmented the standard problem into several

subproblems and allocated a subpopulation to each of them. Yang, Tang and Yao

[44] introduced a randomized grouping mechanism and used an adaptive

weighting strategy in order to adapt the separated components. The idea was

accomplished to bring the interacted variables into a similar subcomponent. Later,

Yang introduced a self-adaptive neighborhood search into DE (SaNSDE), which

could tackle the non-separable problems with more than 1000 dimensions inside.

Artificial Bee Colony (ABC) [45] which is inspired from natural bee colonies is

another swarm intelligence method. El-Abd [46] exerted the cooperative approach

of Potter into ABC and produced Cooperative Artificial Bee Colony (CABC).

Like two variants of CPSO, he introduced two versions of split swarm and hybrid

for CABC. CABC_S algorithm can efficiently optimize the separable problems

and CABC_H algorithm has the ability to escape from the local minima.

The discussed cooperative issues assert that the cooperative coevolutionary

approach is implemented in several EAs, among which the following cooperative

techniques are reviewed: Genetic Algorithm (GA) [5], Particle Swarm

Optimization (PSO) [2], Evolutionary Strategy (ES) [40], Differential Evolution

(DE) [42] and Artificial Bee Colony (ABC) [45].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

2 – 4 Comprehensive study of Particle Swarm Optimizer

Standard PSO [4] and cooperative PSO [8] were introduced in sections 2-1 and 2-

3, respectively. The key entity of these optimization approaches is related to their

corresponding population. The standard PSO contains a single population where

this single population is divided into multiple swarms in cooperative PSO.

There is a paradigm in conventional PSO algorithm which could be extended to

Cooperative PSO: "In order to find a proper solution vector, each particle of the

swarm fly through an N–dimensional search space by N values corresponded to

each dimension of the space". To understand this phrase, consider the population

as a matrix [MN] where M and N respectively represent the number of particles

and dimensions, respectively as: # #of Particles of Dimensions (see Fig. 2) .In this

framework, velocity and position of the standard PSO [4] population were

updated row wise. The interpretation of this framework in CPSO [8] is quite

different from that of standard PSO algorithm. In CPSO algorithm the population

is optimized column wise (dimension wise) with the dimension of each particle

being evaluated by a context vector (CV) which is built from the best particle of

corresponding swarm and the best particles of other swarms.

1 2

1

2

/

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

: 1

: , , ,

N

M

i i

i j i j

P D D D D

P P P P N

P P P P N

P P M P M P M N

PSO f P fitness P D

CPSO f P S fitness CV P S j

Fig. 2 Comprehensive view of the PSO population. f(Pi) represents the ith particle of population

which evaluates through the traditional PSO mechanism and f(Pi,Sj) indicates the evaluation

process of the ith particle (Pi) of jth swarm (Sj) of CPSO population.

3 Learning Automata

Learning Automaton (LA) [16] is a typical model of observation which adapts

itself to the dynamic environment. The learning process of an automaton is

acquired and applied simultaneously. The concept of learning systems is an

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

inevitable phenomenon which has rapidly grown in the last decades. This

emergence of intelligent systems is due to the easiness of learning task which

tends to replace the manual adjustment of chores and applications simply and

automatically. The following will review some interesting and new applications of

LA.

To attain high coverage in wireless sensor networks, an automatic node

deployment is proposed in [47]. For solving vertex coloring problem, Torkestani

and Meybodi proposed an algorithm in [48]. Moreover, learning automaton was

successfully applied to Traveling Tournament Problem in [49].

Several methods have been proposed for using learning automata in Evolutionary

Computing (EC). For Differential Evolution (DE) algorithm, Noroozi, Hashemi

and Meybodi invented an optimization model which combines the DE algorithm

with Cellular Automata (CA) for dynamic environments [50]. Meanwhile, a CA

splits the problem space into cells with the subpopulation placed at each cell in

CellularDE [50]. Vafashoar, Meybodi and Momeni proposed another DE variant

based on learning automata. Their proposed method called CLA-DE algorithm

[51] combines Cellular Learning Automata (CLA) with differential evolution.

CLA-DE iteratively partitions the dimensions of search problem and learns the

most promising regions of the corresponding dimensions. In order to avoid the

population diversity loss, a CA is used in [52] to evaluate the structure of genetic

algorithm.

Artificial Immune System (AIS) [53] is one of the computational intelligence

branches which inspired from natural immune system. In [56] a new method of

AIS utilizing cooperative concept of learning automata is proposed. Firefly

algorithm [54] is a new evolutionary optimization algorithm which works based

on the flashing characteristics of the fireflies. In [55], parameter adaption of

firefly algorithm is handled by learning automata.

Below explains the operation of LA in more details. Learning automata [9]–[11]

are stochastic learning machines which gradually adapt with the corresponding

environment. An automaton contains a set of actions every time the automaton

interacts with the environment. Then, one of the actions is selected and the

environment sends a reinforcement signal as a feedback. Eventually the

automaton could recognize whether its selected action is wrong and update its

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

action probability vector. A schematic representation of leaning automaton is

depicted in Fig. 3.

Random

Environment

Learning

Automata

Performance

Evaluation

Reinforcement

Signal

Environment

Response

Selected

Action

Fig. 3 Visualization of a learning automaton in a stochastic circumstance.

The objective of a learning automaton is to grasp an optimal choice from a

random environment. This perception is not acquired, unless the automaton

randomly selects an action and little by little learns the optimal action. Variable-

structure automatons are a typical example of the stochastic systems. A Variable-

Structure learning Automaton (VLSA) is identified by a quadruple , , ,p T ,

where 1 , ,p n T p n n n is the reinforcement scheme of the

automaton. If 1p n is a linear function of p n the schema is called linear,

otherwise it is nonlinear. In the noted learning scheme, T is the learning algorithm,

 1 2, ,..., r is the set of actions, 1 2, ,..., r is the set of inputs and

 1 2, ,..., rp p p p is the probability of each action. The pseudo code of a variable

structure learning automaton in a stationary environment with 0,1 and r

actions is shown in Figure 4:

Algorithm 2 Learning automata probability vector update framework
define

Initialize r-dimensional action set:
1 2
, ,...,

r
 where r is the number of actions.

Initialize r-dimensional action probability vector:
1 2

1 1 1
, , ...,

r

p
r r r

while (the automaton converge to one of its action)

 The learning automaton selects an action based on the probability distribution of p.

 The environment evaluates the action and calculates the reinforcement signal 0,1 .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

 The environment feedbacks to the learning automaton.

 Consider i as the selected action of the automaton, j as the current checking action and

 n as the n
th

 step of evolution.

 Update the probability vector:

 for each action [1,...,]j r do

 if 0 \\ positive response

. 1
1

. 1

j j

j

j

p n a p n if i j
p n

p n a if i j

(3)

 else if 1 \\ negative response

. 1

1
1 .

1

j

j

j

p n b if i j

p n b
b p n if i j

r

(4)

 end if

 end for

end while

Fig. 4 Learning automata updating schema

In (3) and (4), a and b are called learning parameters and they are associated with

the reward and penalty responses. Considering the values of a and b, there are

three types of learning algorithms. In Linear Reward-Penalty algorithm (LR-P), it is

considered that a and b are equal. In Linear Reward-Inaction (
R IL

) the learning

parameter b is set to 0. And finally in Linear Reward-epsilon-Penalty (R PL) the

learning parameter b is much smaller than a.

3 – 1 Improved PSOs using Learning Automata

Parameter adaption [14], [55]–[57] is a successful application of learning

automata. Due to sensitive parameters of PSO, Hashemi and Meybodi adaptively

adjusted the values of inertia weight and acceleration coefficients of PSO at two

levels of population, swarm degree and particle degree [14]. In order to address

the diversity loss of PSO population in dynamic environment, a multi swarm PSO

has been put forward in [15]. This Cellular PSO [15] used an N-dimensional CA

with C
D
 cells in an N-dimensional problem space. The developed method

contributed to save the population diversity.

 Rastegar, Meybodi and Badie designed a LA-based Discrete PSO (DPSO)

algorithm [58], which benefits from a collection of LA to comprehend the

topological space of the optimization problem. Each LA is assigned to one

dimension of the particle and can be viewed as the controller of it. The Bitwise

LA which was used in DPSO algorithm estimates the particles position and moves

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

them through the search space. Jafarpour, Meybodi and Shiry [59] enhanced the

LA-based DPSO using a CLA neighborhood topology, in which each particle was

placed in a cell being affected by its best personal information and best

information of neighboring particles. Learning automaton has greatly influenced

the way in which particles fly in the search space.

There have been lots of publications on trend and usage of learning in particle

swarm optimization. The new model PSO-LA by Sheybani and Meybodi [60]

introduced the usage of LA for path and velocity control of PSO in real parameter

optimization. An application of PSO-LA in sensor network is addressed in [61].

PSO-LA used one LA to determine the trajectories of particles in PSO. Other

efforts toward using LA to control the behavior of the PSO population have been

described in [62]. In order to balance the process of global and local searched in

this new PSO-LA algorithm, one learning automaton is assigned to each particle

of the swarm. A recent advancement in combining learning automata with PSO

was Dynamic PSO-LA (DPSOLA) [63]. The proposed model used three types of

existing information, namely individual, neighboring and swarm information. In

order to confirm the velocity update equation of PSO, LA selected a combination

of the aforementioned information. The new algorithm had the ability to escape

from the pseudominima and fast convergence speed. Another hybrid algorithm

based on PSO and learning automata was Cooperative PSO-LA (CPSOLA) [64]

which improved the performance of CPSO-H [8] using a learning automaton as an

adaptive switching mechanism.

4 Adaptive Cooperative Particle Swarm

Optimizer

Cooperative PSO [7], [8] divides the initial population into some subpopulations

and each of these subswarms optimizes their designated dimensions individually.

There are two layers of cooperation in a cooperative PSO. The first layer lies

under the collaborative behavior of particles in specific dimensions and the

second one is the schema that produces a solution vector by means of sharing the

best information of each subpopulation to constitute a valid solution vector. In

order to evaluate each member of the subpopulation, one requires constructing a

context vector which aggregates the prime solution of each subpopulation within

an N-dimensional vector. Typically to evaluate the current subpopulation, the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

corresponding dimensions filled with the position of particle and the other

dimensions are considered constant. The following is a typical cooperative

coevolutionary pseudocode (Fig. 5):

Algorithm 3 Cooperative Evolutionary Algorithm Framework
define

Split N-dimensional search space into j subpopulations of entities.

Calculate the best individual of each subpopulation (sbest).

Construct a Context Vector (CV) through the best individuals of each subpopulation:

CV = [sbest1, sbest2, …, sbestj]

for each generation i do

 for each subpopulation j do

 for each entity k do

 Replace current entity of the j
th

 subpopulation by its corresponding positions in the CV

 Evaluate the N-dimensional output vector through the fitness function.

 k=k+1 // next entity

 end for

 Apply cooperative behavior of EA to j
th

 subpopulation.

 Update sbestj.

 j=j+1 // next swarm

 end for

 i=i+1 // next generation

end for

Fig. 5 Pseudocode of the cooperative coevolutionary algorithms

Finding correlated variables is an important application of cooperative

approaches. Two variables are correlated since changing one of them shows an

impact on the other one. A simple example of two correlated variables is the

relationship between weight and height of people. If the height of someone is

more than the average value, it is usually expected that his/her weight is also

above the average. Correlation is a measure for calculating the power of

association between two variables. However, covariance is a measure of

calculating the correlation between each pair of correlated variables. In standard

benchmark functions which are used in [6], [7], [41], [43], [46], all dimensions are

independent from each other, but in coordinate rotated test functions which are

introduced in [8], [18], dimensions of the problem are correlated. The rotation

matrix which is used to rotate the variables of the problem correlates all

dimensions of the search space. The correlation behind sub dimensions is a reason

to divide the search space and optimize each division by a subpopulation.

However, all dimensions of the standard coordinate rotated benchmark functions

are correlated together. What if one changes the benchmark consciously? If one

rotates the objective function so that the correlation lies exactly behind some

specific dimensions of the problem, he/she will have the chance to allocate

isolated subpopulations into the correlated sub dimensions. This kind of credit

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

assignment to swarms will eventually lead to improve the performance of the

algorithm and make the test function more realistic. In order to show the impact of

correlated variables on the performance of PSO, several active coordinate rotated

test functions are designed the sub dimensions of which are affected by the

rotation.

The benchmark functions which are used to evaluate the cooperative PSO [7], [8]

and other cooperative coevolutionary algorithms [6], [41], [43], [46] considered

the dimensions of problem independently. There are three drawbacks in these

cooperative approaches. First of all, neglecting the correlation between variables

by a fully coordinate rotation matrix which is used to rotate the problem

dimensions is one major problem. Second, there is no term of correlation or

covariance considered in their updating schema. And finally, the lack of a proper

selection mechanism for the correlated sub dimensions can consequently lead to

select the correlated dimensions unadvisedly in a random or fixed fashion.

Originally, these algorithms do not see the correlation of variables and they are

not suitable for real life optimization problems such as wireless communications,

nuclear science, signal processing and etc. For these kinds of applications an

alternative approach is needed which intelligently selects the correlated variables

and optimizes them in mutual cooperation manner. In addition to accelerate the

optimization process, optimizing correlated variables together could also make

reaching the problem optimum more accurate.

Based on the previous discussions, Adaptive Cooperative Particle Swarm

Optimizer (ACPSO) is proposed here. The key idea of ACPSO algorithm is to

find the correlated variables of the search space and integrate them into a joint

swarm. A set of learning automata are used to extract the correlated dimensions.

A learning automaton is an autonomous machine with finite number of actions.

The automaton is originally like an inhabitant of stochastic ecosystem which

interacts with the environment during the evolution part of its life. The responses

of environment to the automaton gradually lead to emerge a survival behavior for

the automaton.

A typical ACPSO algorithm consists two phases: symbiosis and synergy. In

symbiosis stage, the learning automata are allowed to learn the correlated

parameters, while in synergy stage, these correlated dimensions are put in the

same swarm and are optimized directly by CPSO algorithm. Also in the synergy

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

phase, the selected dimensions of each group may vary such that the learning

automata still have the chance to learn the correlation. The schematic view of

ACPSO algorithm is illustrated in Fig. 6.

Symbiotic Evolution:

Individual life of a learning automaton by

performing local search on its actions

Synergic Evolution:

Swarm life of the set of learning automata

which are mounted on the particles dimensions

Start

Stop

Fig. 6 Two key steps of the ACPSO algorithm

4 – 1 Introducing the Binary Swarm Table

The fundamental data structure of ACPSO algorithm is a swarm table. Swarm

table characterizes which dimensions belong to which swarm. A schematic view

of this table is shown in Fig. 7. Each row of the swarm table represents a swarm

and each column represents a dimension of the search problem. In Fig. 7, K

denotes the number of predefined swarms and N is the dimensions of the problem.

Having assigned the dimensions to the swarms, the corresponding dimensions of

each swarm will be set to 1 and others to 0. Note that, each dimension can be only

placed in one swarm.

LA1 LANLA3LA2 ...

DND1 D3D2 ...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

S1

S2

SK

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

Fig. 7 Binary swarm table and the embedded learning automaton for each dimension.

1
, ,

K
S S S indicates the swarm set,

1
, ,

N
D D D indicates the problem dimensions and

1

LA LA ,..., LA
N

 represents the learning automaton set which are allocated to each dimension.

4 – 2 Embedding Learning Automata in the Swarm Table

In order to assign problem dimensions to swarms, a learning automaton was

placed upon each dimension (|LA| = |D| = N where, ‘| |’ indicates the cardinality of

a set, D = {D1,…,DN} is the set of problem dimensions with |D| = N and |LA|

gives the cardinality of LA set). The placed learning automata have total number

of actions equal to the initial number of swarms in PSO population (r = |S| = K

where, S = {S1,…,SK} and K denotes the number of swarms(|S| = K)). The initial

probability of each action is 1/r (where r is the number of actions). Fig. 8 presents

the assignment of learning automata to the swarm table and the mapping

procedure of swarm table to the population. Each learning automaton is mounted

on a particular dimension of the search space. There are two basic tasks of the

learning automata: action selection and swarm dimension assignment that each

automaton should perform them in each trial. At first context vector is required to

evaluate the particles of population. For simplicity in Fig. 8 the context vector is

formed through concatenating gbest particle of each dimension. Note that during

further development of ACPSO algorithm the context vector will be constructed

from the best position of swarm (sbest) while each sbest is not a sequential subset

of discussed context vector from this section. Finally the particles of a swarm will

evaluate through the context vector based on the 0/1 values of the swarm table.

This mapping procedure is a part of ACPSO framework which will be discussed

in details in the following section.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

PM

P2

P1

D1 D2

P1D1 P1D2 P1D3 ... P1DN

P2D1 P2D2 P2D3 ... P2DN

PMD1 PMD2 PMD3 ... PMDN

D3 ... DN

PiD1 PiD2 PiD3 ... PiDNPi

LA1

S2

S1

S3

LA2 ...LA3

1 1 0 ... 0

0 0 0 ... 1

0 0 1 ... 0

LAN

PiD1 PiD2 gbestD3 … gbestDNS1

S2

S3

gbestD1 gbestD2 PiD3 … gbestDN

gbestD1 gbestD2 gbestD3 … PiDNCV

Evaluate ith
 particle through Context Vector

gbestD1 gbestD2 gbestD3 … gbestDN

Swarm TablePSO Population(a) (b)

(c) (d)

Fig. 8 Mapping process between PSO population and swarm table. The example consists of M

particles with N dimensions: P = {P1,…,PM} | Pi = { PiD1, …, PiDN} (part a). Typically the

number of swarms is set to 3. In first step the learning automata select their actions and scatter the

dimensions into the swarms. After selecting the action, corresponding dimensions of the swarm

will be marked as 1 in the swarm table (part b). Moreover, if we want to evaluate the i
th

 member of

the j
th

 swarm, we will look up into the j
th

 row of swarm table (part c). To form an N-dimensional

solution vector and calculate the fitness for the i
th

 particle of j
th

 swarm the components with 0 in

the j
th

 row are remained constant as their values in the context vector (CV), while the components

with 1 are replaced by corresponding values of the i
th

 particle (part d).

4 – 3 ACPSO framework

Adaptive cooperative PSO is a learning, Cooperative and Optimization algorithm.

To simultaneously gather all these aspects together, one should establish a

collective behavior between PSO population and a set of learning automata

mounted on each dimension. A fuser module is first needed to match the learning

ability of LA to the PSO population. A fuser gathers all information from the PSO

population and computes a reinforcement signal for the learning automata. The

schematic of such a module is shown in Fig. 9. The PSO population is the

environment from which the learning automata should learn from it. The action

set for each leaning automaton is 1,..., ;r r K . Also the action

probability vectors are associated with each learning automaton of the fuser

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

module. Each LA of the fuser module selects an action based on its action

probability vector. The learning automata correlate with the swarm table and the

selected action maps into it. Each particle of the current swarm evaluates through

the context vector and the fitness of the related swarm spreads to the fuser module

as reinforcement signals. The fuser combines these reinforcement signals and

obtains the reinforcement signal for all learning automata of the swarm. For each

automaton of the swarm, the action probability vector is updated according to its

previous action and its received reinforcement signal.

FUSER

LA1

LAN

LA2

 1 N21N 2

D1

DN

D2

S1

SK

Context

Vector

Swarm

Table

PSO

Population

Fig. 9 Module of learning automata

The proposed algorithm consists of two steps nominated as symbiosis and

synergy. The following will explain them more clearly:

ACPSO Symbiosis Step

The aim of symbiosis step is to give LA the required time to learn the correlated

variables of the search space, before the algorithm starts to optimize the problem

intentionally. At first the learning automata select their actions based on their

initial probability vectors which are equal to 1 divided by the number of actions

(as mentioned before the action set size of each automaton is equal to the number

of swarms). After filling the swarm table, the particles of each group are evaluated

using a context vector. Note that, a context vector is constructed from the swarm

best positions of each swarm (sbest). As mentioned, the basic goal of symbiosis

step is to let the learning automata grasp a comprehensive view about the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

correlation of variables. The following procedures describe details of this step,

while some of them are common with symbiosis step.

Initialize Context Vector: In order to calculate each swarm best position (sbest)

and concatenate them to form the context vector, this procedure will be used at the

beginning of ACPSO algorithm. At first, corresponding dimensions of each

swarm is extracted from the swarm table. Then the best particle among each

subpopulation is chosen and considered as sbest. Concatenation of these particles

leads to form the context vector. The discussed procedure is illustrated in Fig 10.

Procedure 1 Initialize Context Vector
define

Number of swarms K and number of dimensions N.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let A(d) B(d) | d D overwrites d positions of vector B in corresponding d positions of vector

A. Also,let A B(d) | d D overwrites d positions of vector B in vector A.

Let x denotes PSO population.

Let gbest = [gbest1, gbest2, …, gbestN] denotes the global best position of initial population.

Initialize CV by global best position of population: CV = gbest

begin

 for each swarm j [1, …, K]

 Find Sj swarm members:

 Let d be the set of corresponding dimensions of Sj:

 d D | SWARM_TABLE(j,d) = 1

 for each particle 1,...,i PS

 Replace d positions of CV with corresponding values in xi: CV(d) xi(d)

 if fitness (CV) < fitness (gbest)

 sbestj xi(d)

 end if

 end for

 end for
 Let CV = [sbest1, sbest2, …, sbestK] be the context vector.

end

Fig. 10 Initializing the context vector based on all global best particles.

Context Vector: In cooperative approaches, the global best particle of the

population includes sbest information of each swarm, while the information

composition of these sbest's would construct an N-dimensional context vector.

While evaluating the particles of j
th

 swarm, the context vector function returns an

N-dimensional vector which consists of all the global best particles in all swarms,

except for j
th

 swarm, which is replaced with the position of any particle of j
th

swarm. Fig. 11 presents the context vector subroutine.

Procedure 2 Context Vector (d,p)
define

Current particle p, number of swarms K and number of dimensions N.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let d D be a subset of D.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

Let A(d) B(d) | d D overwrites d positions of vector B in the corresponding d positions of

vector A. Also, let A B(d) | d D overwrites d positions of vector B in vector A.

Build CV from all swarms best position: CV = [sbest1, sbest2, …, sbestK]

begin

 Replace d positions of CV with the corresponding values in p: CV(d) p(d)

 Return CV.

end

Fig. 11 Evaluating the PSO population through the context vector.

Action Refinement: In this subroutine and after completing each evolution round

of PSO population, sequentially one of the swarm table dimensions will be chosen

and its corresponding learning automaton will change its action randomly. In the

next generation, the impact of this change is evaluated in the swarm table with the

isolate update procedure being applied to the corresponding learning automaton.

This procedure performs a local search on the learning automaton action set and

lets the reward and penalty signals be more effective. Besides giving vague

reinforcement signals to the learning automata from the beginning, the LA is let to

identify the correlated variables more preciously and gradually. Fig. 12 depicts

pseudocode of the action refinement procedure.

Procedure 3 Action Refinement (i)
define

Current generation i, number of dimensions N and swarm number K.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let LA = {LA1, …, LAN} denotes the set of learning automaton designated to each dimension.

begin

 Calculate LA index for refinement:

 d = (i mod N) +1 | d D

 Select random swarm j:

 [1,...,]j K | SWARM_TABLE(j,d) 1

 Change the selected action of LAd to j.

 Let V = {V1, …, Vq} denotes a subset of swarms set S.

 Let V = {S1, …, SK} - Sj | V S be the subset of S except for Sj, while q = K -1.

 Update swarm table:

 Fill j
th

 row of swarm table with 1:

 SWARM_TABLE(j,d) = 1

 Fill V row members of swarm table with 0:

 SWARM_TABLE(Vl,d) = 0 | l [1,…,q]

end

Fig. 12 Action refinement procedure

Reinforcement Signal: The learning automata should detect a signal from the

environment, regarding the impact of their actions. Having a suitable feedback

from the population of swarms and fusing it to convey an operational token will

play an important role in building an efficient reinforcement signal. In order to

construct a suitable reinforcement signal, several ways are examined such as:

mean improvement on pbest's information of the particles, mean gbest

improvement of the population and gbest improvement of the population. This

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

observation implies that the signal made from gbest information of PSO

population is the most effective one and also takes into consideration fairness

about the population. Reinforcement signal shows to the set of learning automata

whether their actions are right or wrong. The signal is defined by (5) below:

 10

1

i ifitness gbest fitness gbest
ReinforcemeSignal

otherwise

(5)

Where, i is the current iteration number. As all test problems are a kind of

minimization functions, the smaller their fitness, the better they are. If the fitness

of global best particle of the population (gbest) is improved (decreased) by a

specific swarm, then the corresponding swarm will get the reward signal. Since

the gbest improvement is equal surpass of swarm best position (sbest), one can

additionally define the reinforcement signal via sbest information of each swarm.

This schema is executed after evaluating each swarm of PSO population. The

signal is only applied to a learning automaton (in isolate update procedure) or a

set of LA that are associated with the current swarm (in ensemble update

procedure). Then the corresponding probability vectors of LA are modified based

on learning algorithm of automata using (3) and (4). Procedure of the

reinforcement signal is illustrated in Fig. 13.

Procedure 4 Reinforcement Signal (t,j)
define
Improvement tag t and current swarm j.

Let S = {S1,…,SK} denotes the set of swarms.

Let sbestj | j [1, …, K] denotes the swarm best position of Sj.

begin

 if t == 1

 Reinforcement Signal = 0 // gbest is improved by Sj or sbestj is improved.

 else if t == 0

 Reinforcement Signal = 1 // gbest is not improved by Sj or sbestj is not improved.

 end if

 signal = Reinforcement Signal
 Return signal.

end

Fig. 13 Calculation of the reinforcement signal based on equation (5).

Parameter t is obtained from the body of ACPSO algorithm. Also the result of

reinforcement signal procedure will be coupled with isolate update and ensemble

update procedures in symbiosis and synergy steps, respectively.

Isolate Update: If someone wants to apply reward and punishment signal in just

one dimension, he/she will use isolate update procedure (see Fig. 14). The

function uses the reinforcement signal which is calculated for the current

dimension and lets the learning automaton independently performs its update task

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

on the corresponding dimension (reinforcement signal will be defined later). The

isolate update procedure will be further developed with in synergy step which has

additional applications in the swarm table.

Procedure 5 Isolate Update (signal, j)
define

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and

number of dimensions N.

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension.

Let LA 1,...,|i i N denotes the selected automaton for updating its probability vector by input

signal.

Let
1
, ...,

r
 denotes the action set of LAi, where r = K.

Let 1,...,|j j K be the selected action of LAi.

Let Z = {Z1, …, Zq} denotes a subset of action set .

Let
1
, ..., |

r j
Z Z be the subset of LAi action set except for j , where q = r-1.

begin

 if signal = 0

 Reward j action of LAi.

 Penalize Z action members of LAi: Zl | l [1,…,q].

 Update corresponding probability vector of LAi by using (3).

 else if signal = 1

 Penalize j action of LAi.

 Reward Z action members of LAi: Zl | l [1,…,q].

 Update corresponding probability vectors of LAi by using (4).

 end if

end

Fig. 14 Isolate update procedure

ACPSO Synergy Step

After selecting dimensions in symbiosis step, which would place the correlated

subsets of variables in the same swarms, the synergy step is initiated. Till now, the

swarm table may assign wrong or incomplete dimensions to the swarms and these

noisy swarms may deteriorate the fitness value during evaluation. The aim of this

phase is to exploit the correlation detection power of the set of learning automata

and also to optimize the test function explicitly.

Similar to symbiosis interval, the swarms contribute to the context vector and

each particle optimizes the problem through different contexts. As discussed in

the isolate update procedure, the reinforcement signal leads to find the best policy

of the automaton. In other words, the reinforcement signal helps the automaton to

identify a subset of correlated variables in the search space. The swarms contain a

collection of learning automata and the reinforcement signal should be provided

for all of them. Thus, a procedure is required to apply the reinforcement signal for

a bunch of LA.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

Finally, ACPSO algorithm needs a function to initialize the swarm table at the end

of each generation. This mechanism is performed based on the probability vector

of each automaton. The following procedures sketch work flow of the synergic

step:

Ensemble Update: Regardless of the number of swarm members, all the swarm

components are evaluated together in synergy step and the reinforcement signal is

calculated based on either gbest information at population level or sbest

information at swarm level. The signal deploys only on corresponding learning

automata which are associated with the specified swarm. If at least one of the

swarm members can improve the gbest fitness, this swarm might have a good

configuration of dimensions. Such configuration is expected to include more

correlated variables of the search space and the associated learning automata may

identify the coherent choice of dimensions. Fig. 15 illustrates the grouping update

procedure in which the set of learning automata associated with j
th

 swarm

retrieves the reward or penalty signal.

Procedure 6 Ensemble Update (signal,j)
define

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and

number of dimensions N.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension.

Find Sj swarm members:

 Let d D | SWARM_TABLE(j,d) = 1 denotes a subset of dimensions set D.

 Let d = {d1, …, dp} be the set of corresponding dimensions of S j, where |d| = p.

Find set of learning automata associated to Sj for updating their probability vectors by input signal.

 Let LA_S = {LA_S1, …, LA_Sp} donates a subset of LA corresponding to Sj.

 Let LA_S = {LA1, …, LAN} – {LAd1, …, LAdp} | LA_S LA be the of corresponding

 learning automata of Sj.

Let
1
, ...,

r

denotes the action set of each automaton of LA_S, where r = K.

Let 1,...,|j j K denotes the selected action of LA_S which are designated to Sj.

Let Z = {Z1, …, Zq} denotes a subset of action set .

Let
1
, ..., |

r j
Z Z be the subset of LA_Sd | d = {d1, …, dq}action set except for j ,

where q = r-1.

begin

 for each LA_S i [1, …, p]:

 if signal = 0

 Reward j action of LA_Si.

 Penalize Z action members of LA_Si: Zl | l [1,…,q].

 Update corresponding probability vector of LA_Si by using (3).

 else if signal = 1

 Penalty j action of LA_Si.

 Reward Z action members of LA_Si: Zl | l [1,…,q]

 Update corresponding probability vectors of LA_Si by using (4).

 end if

 end for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

end

Fig 15. Deployment of reinforcement signal for the LA which are associated with j
th

 swarm.

 Action Selection: At the end of each generation, the swarm table should be refill

based on the new probability vectors of automata. The updating procedure

contributes the algorithm to detect the correlated dimensions more accurately.

Thus, at the end of each generation each automaton distinguishes every attached

dimensions of it belongs to which swarm (Fig. 16).

Procedure 7 Action Selection
define

Number of swarms K and number of dimensions N.

Let S = {S1,…,SK} denotes the set of swarms disseminated in problem dimensions.

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension.

Let
1
, ...,

r
 denotes the action set of each automaton, where r = K.

Let p = {p1, …, pr} denotes the probability vector corresponding to action set of each automaton.

begin

 for each LA [1, ...]i N

 LAi selects the j action based on its current probability vector p from its action set .

 Let | 1, ...,
j

j K be the selected action of LAi.

 Let Z = {Z1,…, Zq} denotes a subset of action set .

 Let
1
, ..., |

r j
Z Z be the subset of LAi action set except for j , while q = r-1.

 Update swarm table:

 Fill j
th

 row of swarm table with 1

 SWARM_TABLE(j,i) = 1

 Fill Z row members of swarm table with 0:

 SWARM_TABLE(Zl,d) = 0 | l [1,…,q]

 end for

end

Fig 16. Function describes how learning automata fill the swarm table.

The intelligent framework of ACPSO algorithm employs a set of learning

automata and utilizes the correlated variables to extend the global and local search

abilities of the cooperative PSO. The pseudocode of the ACPSO algorithm is

presented in Fig. 17.

Algorithm 4 ACPSO algorithm
define

Initialize PSO parameters: population size PS, dimension number N, number of swarms K,

generation ge = 0, fitness evaluation fe = 0, maximum fitness evaluations FE, maximum

generations GE, train epoch TE, Improvement Tag t = 0 and inertia weight w.

Initialize SWARM_TABLE[K N] data structure.

Initialize position x and associated velocity v.

Initialize pbest = [pbest1, …, pbestN] and gbest = [gbest1, …, gbestN] of population.

Initialize K swarms: S = {S1,…,SK}

Initialize sbestj | j [1, …, K]

Let D = {D1, …, DN} be the set of problem dimensions.

Let A(d) B(d) | d D overwrites d positions of vector B in the corresponding d positions of

vector A. Also, let A B(d) | d D overwrites d positions of vector B in vector A.

Initialize LA parameters: action probability vector P, alpha (reward signal), beta (penalty signal)

and action number r, where r = K.

Call procedure ACTION_SELECTION and fill SWARM_TABLE.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

Call procedure INITIALIZE_CONTEXT_VECTOR.

Let b (d,p) as procedure CONTEXT_VECTOR (dimension, position) which builds context vector

in different contexts of different swarms.

Let f be the fitness value.

repeat //Symbiosis phase

 for each swarm 1,...j K :

 find Sj swarm members:

 Let d be the set of Sj dimension members.

 d D | SWARM_TABLE(j,d) = 1

 for each particle 1,...,i PS :

 Evaluate the particle through the context vector:

 Let p be the position that is going to evaluate in the context of Sj.

 Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj.

 if f (b(d,xi(d)) < f (b(d,pbesti(d))) then

 pbesti(d) xi(d)

 end if

 if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then

 gbest(d) pbesti(d)

 sbestj pbesti(d)

 t = 1

 end if
 fe = fe + 1

 end for
 Perform PSO update for Velocity and Position on Sj using (1) and (2).

 if g>0 AND j == (g mod N) + 1

 Call procedure REINFORCEMENT_SIGNAL (t,j) // calculate signal

 Call procedure ISOLATE_UPDATE (signal,j) // deploy signal

 end if

 t = 0

 end for

 Call procedure ACTION_REFINEMENT (g) and refine the action of associated LA.

 ge = ge + 1

until ge < EP

repeat //Synergy phase

 for each swarm 1,...j K :

 find kj swarm members:

 d D | SWARM_TABLE(j,d) = 1

 Let d be the set of Sj dimension members.

 for each particle 1,...,i PS :

 Evaluate the particle through the context vector:

 Let p be the position that is going to evaluate in the context of Sj.

 Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj.

 if f (b(d,xi(d)) < f (b(d,pbesti(d))) then

 pbesti(d) xi(d)

 end if

 if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then

 gbest(d) pbesti(d)

 sbestj pbesti(d)

 t = 1

 end if
 fe = fe + 1

 end for
 Perform PSO update for Velocity and Position on Sj using (1) and (2).

 Call procedure REINFORCEMENT_SIGNAL (t,j). // calculate signal

 Call procedure ENSEMBLE_UPDATE (signal,j). // deploy signal

 t = 0

 end for
 Call procedure ACTION_SELECTION and fill SWARM_TABLE for the next generation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27

 ge = ge + 1

until (ge <= G AND fe <= FE)

Fig 17. Pseudocode for the generic ACPSO algorithm.

5 Simulation Results

In this section the benchmark functions which are used for experimental

simulation and modeling are briefly introduced. In order to examine the

performance of proposed algorithm, four kinds of experiments are conducted in

the following subsections. The first experiment is conducted on TEC 2006 [18]

benchmark functions which are proposed in [18] to test CLPSO algorithm. The

second experiment consists of optimization problems of TEC 2006 [18] which are

unrotated and rotated functions. This set of new benchmark shows how

interestingly ACPSO optimizes the rotated problems and suppresses its

competitors. The third selected set of test functions is composition benchmark

functions of CEC 2005 [17], which are quite difficult optimization problems. The

last and fourth experiment is carried out on six 300-dimensional multimodal

functions of TEC 2009 [20] with the aim of extending ACPSO application to real

world optimization problems.

Since the aim of ACPSO algorithm is to learn the correlated variables of the

search space, the learning parameters and swarm size have been playing an

important role in achieving better results. The number of generations which is

considered for symbiosis stage is set to 500. Due to this restriction, the associated

set of learning automata should learn the correlated variables of the search space

in symbiosis step much faster. Moreover, convergence to the optimal action will

occur later in synergy stage.

ACPSO algorithm was tested on various settings of parameters and finally the LR-

P learning algorithm was selected with learning parameters alpha = beta = 0.1.

The number of swarms in ACPSO algorithm is a static parameter which should be

set prior to running the algorithm. In order to observe the impact of this

parameter, it is set to 3 and 6 for all 30 dimensional experiments conducted in this

paper and also 30 and 60 for 300-dimensional experiment. Tables 1-3 summarize

the experimental results for 30D problems while Table 4 lists those from 300-

dimensional cases.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

5 – 1 Experiment 1: IEEE TEC 2006 Benchmark Functions

Test Functions and Parameter Settings

There are 16 different optimization benchmark functions which are introduced in

TEC 2006 [18]. These test functions are categorized in four main groups:

Group A: Unimodal and Simple Multimodal Problems: f1-f2

Group B: Unrotated Multimodal Problems: f3-f8

Group C: Rotated Multimodal Problems: f9-f14

Group D: Composition Problems: f15-f16

To show the performance of the proposed method, ACPSO algorithm was run on

these 16 test problems with 30 dimensions and compared with two famous PSO

variants. Essentially one of our counterparts is CPSO-H [8] and the other one is

CLPSO [18]. The parameter settings which are used for these two PSOs are

similar to TEC 2006 [18]. For 30-dimensional problems the population size is set

to 40 and the maximum fitness evaluation is set to 200,000, respectively. For each

of these test functions 30 independent runs being conducted and the average and

standard deviation of results being reported in Table 1.

30-dimensional problems

Table 1 shows the overall performance of ACPSO and other algorithms on 16

different 30-dimensional benchmark functions. The obtained results demonstrate

that ACPSO alleviates curse of dimensionality and retains its performance in 30-D

problems. In both unimodal and multimodal problems (f1-f8), ACPSO outperforms

CPSO-H. f1 problem is a simple and convex one which can be optimized by

ACPSO faster than other PSOs. In f2, ACPSO can avoid getting trapped in local

minima by changing its search direction through the problem space. In unrotated

multimodal problems (f3-f8), global and local searches are managed

simultaneously. The algorithms that see dimensions of the problem independently

fail to optimize these kinds of problems.

Cooperative algorithms divide the solution space into several subspaces and

assign each subspace to a swarm. The cooperation avoids early stagnation of the

algorithm and balances both exploration and exploitation features of PSO.

ACPSO algorithm generally performed similar to CLPSO and better than CPSO-

H in rotated multimodal problems (f9-f14) and composition functions (f15-f16)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

which are the most complex problems of this experiment. Since the swarm

members are stochastically selected in ACPSO and there is no helpful feedback

about the swarm configuration, the results are tolerable as compared to CLPSO

algorithm. Population of CLPSO learns from different exemplars in different

dimensions, which implies the large potential search space of CLPSO. For this

purpose, CLPSO algorithm emphasizes on diverse feasible solutions of the search

space. This set of diverse solutions which are originated from theoretical search

experience of each particle, leads to the superior performance of CLPSO on

highly multimodal problems. Having a look on rank (R) columns of Table 1

reveals that ACPSO statistically outperforms CLPSO and CPSO-H in 62.5 % and

93.75 % of the test cases, respectively.

Table 1 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H [8]

and CLPSO [18] algorithms in 30-D problems. The last three rows represent the performance

compassion between ACPSO and other algorithms, where ''−'', ''+'' and ''='' indicate that the

performance of ACPSO is worse, better and similar to counterpart algorithms, respectively. The

values listed in the “R” columns are used to specify this performance measure.

F CLPSO R CPSO-H R ACPSO3-LR-P ACPSO6-LR-P

f1 4.46E-14 ± 1.73E-14 + 1.16E-113 ± 2.92E-113 + 0.00E+00 ± 0.00E+00 2.43E-188 ± 0.00E+00

f2 2.10E+01 ± 2.98E+00 + 7.08E+00 ± 8.01E+00 + 3.18E-05 ± 4.01E-05 2.89E-06 ± 2.34E-06

f3 0.00E+00 ± 0.00E+00 − 4.93E-14 ± 9.17E-14 + 8.76E-15 ± 3.06E-15 1.85E-14 ± 6.00E-15

f4 3.14E-10 ± 4.64E-10 − 3.63E-02 ± 3.60E-02 + 3.47E-02 ± 2.29E-02 4.84E-02 ± 3.04E-02

f5 3.45E-07 ± 1.94E-07 + 7.82E-15 ± 8.50E-15 + 0.00E+00 ± 0.00E+00 5.45E-15 ± 5.81E-15

f6 4.85E-10 ± 3.63E-10 + 0.00E+00 ± 0.00E+00 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f7 4.36E-10 ± 2.44E-10 + 1.00E-01 ± 3.16E-01 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f8 1.27E-12 ± 8.79E-13 − 1.83E+03 ± 2.59E+02 + 8.94E+02 ± 8.14E+01 4.93E+02 ± 1.22E+02

f9 3.43E-04 ± 1.91E-04 + 2.10E+00 ± 3.84E-01 + 8.20E-15 ± 2.61E-15 1.65E-14 ± 4.65E-15

f10 7.04E-10 ± 1.25E-11 − 5.54E-02 ± 3.97E-02 + 2.85E-02 ± 2.41E-02 3.61E-02 ± 3.48E-02

f11 3.07E+00 ± 1.61E+00 − 1.43E+01 ± 3.53E+00 + 2.95E+00 ± 1.33E+00 3.62E+00 ± 1.41E+00

f12 3.46E+01 ± 1.61E+00 + 1.01E+02 ± 3.53E+00 + 3.27E+01 ± 5.07E+00 3.61E+01 ± 8.13E+00

f13 3.77E+01 ± 5.56E+00 + 8.80E+01 ± 2.59E+01 + 2.58E+01 ± 6.29E+00 2.95E+01 ± 4.21E+00

f14 1.70E+03 ± 1.86E+02 − 3.64E+03 ± 7.41E+02 + 3.89E+03 ± 5.72E+02 3.51E+03 ± 4.20E+02

f15 7.50E-05 ± 1.85E-04 + 1.30E+02 ± 1.64E+02 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f16 7.86E+00 ± 3.64E+00 − 7.83E+01 ± 1.60E+02 − 5.27E+02 ± 1.10E+02 4.97E+02 ± 1.17E+02

+ 9 15

− 7 1

= 1 0

If the dimensionality of problem increases, then the optimization of it by PSO will

be become more difficult. This is exactly due to exponential growth of the search

space. In order to confront the mentioned problem known as curse of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30

dimensionality, the volume of search space is divided and assigned to small

swarms in cooperative approaches. ACPSO algorithm dynamically exploits from

these small volumes during the evolution and modifies their configuration in an

attempt to discover correlated components of the search space. So in ACPSO

algorithm, the results will not deteriorate if the dimensionality of the problem

increases.

In TEC 2006 benchmark functions [18], increasing the number of swarms from 3

to 6 incurs detrimental effect on the performance of ACPSO algorithm. This

phenomenon especially occurs in 30-D problems of TEC2006 and almost fades in

300-D problems of [20]. Large numbers of swarms suffer from two major

drawbacks: first, it increases the number of function evaluations needed for

convergence of the algorithm; and second, leads to a large action set per

automaton. When there are no sub correlated variables in the search space to

produce a suitable reinforcement signal, the automata cannot select an optimal

policy efficiently. In an attempt to enhance the performance of ACPSO algorithm,

a set of new benchmarks are conducted in the next experiment, which precisely

uncovers a subtle performance for ACPSO.

5 – 2 Experiment 2: Active Coordinate Rotated Benchmark

Functions

To have a fair compassion of ACPSO and other PSOs, one should design some

new test functions with correlated dimensions. In order to show the correlation

detection feature of ACPSO during solving an optimization problem, some active

coordinate rotated benchmark functions are introduced here. Moreover, one

should adapt CPSO-H and CLPSO algorithms [8], [18] to fit this new validation

method.

Building New Benchmark Functions

A new set of benchmark functions is proposed for correlation detection in this

subsection. Originally, these functions are taken from TEC 2006 [18]. Based on

the previously mentioned features of ACPSO, capacities of the algorithm emerge

entirely just when the coordinate rotation is applied to dimensions of the specific

problem. The test functions used in [8], [18], apply the rotation matrix to all

dimensions and create a correlation between all dimensions of the problem. Due

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

31

to the globally coordinate rotated benchmark functions which are utilized in [8],

[18], the search space is divided into multiple sub dimensions with these sub

dimensions being rotated intentionally. This process leads to have some correlated

subspaces in the search space.

The pseudocode of partitioning mechanism is outlined in Fig. 18 these new

benchmarks. First, the problem dimensions are split and some rotation matrixes

are created according to the number of swarms. Then, while evaluating each

member of the population, these correlated sub dimensions are pre multiplied to

their designated rotation matrix. Finally, multiple correlated sub dimensions are

created which are independent from each other. If these correlated variables are

put into one same swarm, performance of the algorithm will be improved

significantly. This process is applied to coordinate rotated multimodal functions

(f9-f14) of TEC 2006 [18] and leads to create new active coordinate rotated

benchmark functions.

Algorithm 5 pseudocode of active rotation matrix
Define

Rotation Matrix M, Number of dimensions N, number of swarms K and swarm length L.

Let x = [x1, …, xD]
T
 be the original variable.

Let y = [y1, …, yD]
T
 be the new rotated variable.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

K1 = n mod K; L1 =
N

K

K2 = K – (n mod K) ; L2 =
N

K

for each Ki | i [1,2]

 Initialize Ki Li-dimensional rotation matrix:

 for each swarm Sj | 1,...,j K
i

...
11 12 1

...
21 22 2

...

...
1 2

i

i

i ii i

m m m
L

m m m
L

M j

m m mL LL L

 Split the corresponding dimensions of Sj:

 Let r = [1, …, d] be the range of associated swarm, where d = Li.

 yj = [x1, …, xd]
 T

 Mj

 end for

end for

y = [y1, …, yK]
 T

Use variable y to calculate the fitness value f.

Fig. 18. Rotation matrix generator.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32

Before evaluating the particles by these new benchmark functions, one should

adapt PSOs with the proposed procedure. Besides modification of CLPSO

algorithm, two versions of CPSO-H algorithm are implemented as discussed in

the following:

Randomized CPSO-H (rCPSO-H): Due to the nature of the rotation matrix

generator, correlated variables of the search space will be place sequentially

together. Since naïve selection of the correlated dimensions in CPSO-H algorithm

is going to be shown, a permutation will be applied to the swarm members at the

beginning of this algorithm. Then, the correlated dimensions are not exactly

placed in the same swarm. Consequently, this partitioning mechanism has been

simulating the hopeless structure of CPSO-H algorithm in finding some correlated

variables for the same swarm.

Idealized CPSO-H (iCPSO-H): Since the partitioning mechanism blindly takes

the value c (c<N) in CPSO-H [8], some correlated variables are expected to end

up in the same swarm. The rotation matrix was exactly applied on sub dimensions

of the problem which are placed in the same swarm. As a result, the correlated

variables will be optimized together and performance of the algorithm will

obviously dominate that of rCPSO-H.

Both rCPSO-H and iCPSO-H algorithms determine their swarm members at the

beginning of the algorithm and sustain the initial configuration of the correlated

variables during evolution. In the current arranged experiment, the lack of

learning ability for CPSO-H will be sensed more considerably and the power for

correlation detection of ACPSO algorithm will emerge strongly.

Benchmark Functions and Parameter Configurations

In the following experiment, the discussed rotation matrix of Fig. 18 is applied to

the multimodal coordinate rotated test functions (f9-f14) of TEC 2006 [18] and they

are employed to compare the proposed method with CLPSO, rCPSO-H and

iCPSO-H algorithms. All the algorithms run on 30-D problems with 40 particles

per population. The experiments are repeated 30 times with the standard deviation

and mean of these runs being reported in Table 2. Similar to experiment 1, the

corresponding set of learning automata use a LR-P learning algorithm with alpha =

beta = 0.1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

33

Table 2 The mean and standard deviation of function error values for ACPSO-LR-P, iCPSO-H,

rCPSO-H and CLPSO algorithms in 30-D problems. The last 3 columns represent the performance

compassion between ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the

performance of ACPSO is worse, better and similar to counterpart algorithms, respectively. The

values listed in the “R” columns are used to specify this performance measure. The column S

represents the number of swarms.

Algorithm S f9 R f10 R f11 R + − =

CLPSO 3 5.39E-12 ± 2.68E-11
+

3.68E-10 ± 1.84E-09
−

4.77E-01 ± 4.20E-01
− 1 2 0

6 5.66E-14 ± 1.07E-13 5.47E-15 ± 2.59E-14 1.56E-01 ± 1.48E-01

iCPSO-H 3 1.65E-01 ± 3.93E-01
+

3.14E-02 ± 3.08E-02
+

1.92E+00 ± 1.62E+00
− 2 1 0

6 2.77E-14 ± 6.49E-15 6.35E-02 ± 6.53E-02 6.59E-02 ± 9.52E-02

rCPSO-H 3 8.53E-01 ± 8.82E-01
+

2.64E-02 ± 2.39E-02
+

6.04E+00 ± 2.09E+00
+ 3 0 0

6 5.76E-01 ± 7.44E-01 3.82E-02 ± 4.38E-02 5.60E+00 ± 2.48E+00

ACPSO-LR-P 3 7.84E-15 ± 2.20E-15 2.42E-02 ± 2.14E-02 1.74E+00 ± 1.18E+00

6 1.29E-14 ± 3.43E-15 4.05E-02 ± 3.78E-02 2.92E+00 ± 1.44E+00

Algorithm S f12 R f13 R f14 R + − =

CLPSO 3 2.56E+01 ± 7.62E+00
−

1.99E+01 ± 5.49E+00
+

3.39E+03 ± 4.05E+02
+ 2 1 0

6 2.35E+01 ± 6.38E+00 1.69E+01 ± 3.27E+00 3.11E+03 ± 5.91E+02

iCPSO-H 3 3.06E+01 ± 7.71E+00
−

1.92E+01 ± 3.90E+00
−

2.77E+03 ± 4.16E+02
− 0 3 0

6 1.30E+01 ± 3.59E+00 9.40E+00 ± 1.53E+00 1.65E+03 ± 3.51E+02

rCPSO-H 3 5.11E+01 ± 1.71E+01
+

4.46E+01 ± 1.47E+01
+

3.80E+03 ± 6.20E+02
+ 3 0 0

6 5.06E+01 ± 1.48E+01 2.98E+01 ± 1.45E+01 3.93E+03 ± 5.09E+02

ACPSO-LR-P 3 2.80E+01 ± 3.92E+00 1.85E+01 ± 2.17E+00 3.60E+03 ± 4.14E+02

6 3.14E+01 ± 7.30E+00 1.59E+01 ± 2.81E+00 3.06E+03 ± 4.43E+02

Discussion of results

All the problems which are used in this experiment are active coordinate rotated

multimodal functions. Since swarm members of iCPSO-H are fully tuned on

correlated dimensions of the problem space, the performance of iCPSO-H is

superior to other algorithms. Although iCPSO-H exactly knows the correlation

configuration, ACPSO learning ability can suppress iCPSO-H in almost half of

the benchmark functions. There is a chance that ACPSO produces noisy swarms

or roughly finds correlated dimensions. These phenomena may balance the

abilities of global and local searches and improve performance of the search to

some context.

rCPSO-H algorithm is a cooperative PSO without any information about

correlated parameters of the search space (like CPSO-H in [8]). In 30-D problems,

ACPSO suppress rCPSO-H in all test cases almost 100 %. The learning ability of

ACPSO is clearly evident in the experiment conducted with rCPSO-H. However,

the new learning strategy of CLPSO is based on pbest information from each

individual of the population and thus can exploit the required solution diversity

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34

from the designed benchmark functions; CLPSO algorithm maintains its

performance. By comparing the proposed method with CLPSO, ACPSO

outperforms CLPSO algorithm in 3 out of 6 problems.

From Table 2, one can realize that in addition to simplifying the problem,

increasing the number of applied separate rotations will also improve performance

of algorithm. This case obviously occurs in iCPSO-H algorithm. This algorithm

knows the exact location of correlated variables. ACPSO algorithm tries to find

the proper set of dimensions for each of the swarms. This functionality needs a

proper feedback from the environment which is defined as the improvement of

gbest information of the population. Since the reinforcement signal is defined

globally and there is enough number of generations, the set of learning automata

can converge to an optimal configuration of swarms and its performance achieves

better results than CLPSO and rCPSO-H.

5 – 3 Experiment 3: IEEE CEC 2005 Benchmark Functions

In the special session of CEC 2005 [17], 25 benchmark functions are defined for

real-parameter optimization. The mathematical formula and properties of these

functions are described in [17]. The test functions are divided into four basic

groups:

1) Unimodal Functions (5)

2) Basic Multimodal Functions (7)

3) Expanded Multimodal Functions (2)

4) Hybrid Composition Functions (11)

To show the eligibility of ACPSO algorithm in different benchmark functions, in

this section ACPSO is compared with CPSO-H (randomized version) and CLPSO

algorithms. For each algorithm, the population size, number of dimensions and

termination condition are set to 30 particles, 30 dimensions and 300,000 fitness

evaluations (FEs). The results for ACPSO and CPSO-H are reported for 6 swarms

per population. All algorithms were run 25 times with the average and standard

deviation of function error values (
*() ()f x f x) being reported in Table 3.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

35

Similar to experiment 1 and 2, the learning algorithm is an LR-P schema with

alpha = beta = 0.1.

Discussion of Results

The experimental results are presented in Table 3. On unimodal functions (f1-f5),

CPSO-H algorithm performs very well. Since it partitions the problem space into

fixed number of subspaces and each subpopulation exploits its designated

subspace, CPSO-H will outperform other PSOs. Although ACPSO is a

cooperative PSO, it doesn't show a steady swarm configuration. As ACPSO may

benefit from different parts of the problem space cooperatively, it will not perform

the best for unimodal problems. In simple multimodal functions (f6-f12) ACPSO

completely suppresses its parent PSO, i.e. CPSO-H, in 5 out of 7 test functions.

Especially in rotated multimodal functions (f7, f8, f10, f11) where the problem

dimensions are non-separable and correlation occurs between subspaces, ACPSO

will perform better than CPSO-H. Each dimension learns from different

exemplars in CLPSO, so it achieves superior results over ACPSO in unrotated

multimodal functions (f6, f9).

The expanded multimodal functions (f13-f14) and hybrid decomposition functions

(f15-f25) are the hardest ones to optimize since they mix properties of different

functions together. The intelligence dimension selection of ACPSO leads to an

efficient sub dimension configuration, thus it reduces the effectiveness of

decomposition of the problems. The aim of learning automata is to exploit the

correlation by using multiple swarms and maintaining a mechanism

simultaneously for these swarms in order to cooperate toward solving the

problem. The performance of ACPSO is better than CLPSO and CPSO-H on

seven and thirteen test functions, respectively and is similar to CLPSO in two

problems.

Table 3 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H and

CLPSO [65] algorithms for 30-D problems. The last three rows represent the performance

compassion between ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the

performance of ACPSO is worse, better and similar to counterpart algorithms, respectively. The

values listed in the “R” columns are used to specify this performance measure.

F CLPSO R CPSO-H R ACPSO-LR-P

Unimodal Functions f1 0.00E+00 ± 0.00E+00 − 1.32E-13 ± 3.16E-14 − 2.08E-03 ± 7.21E-04

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36

f2 8.40E+02 ± 1.90E+02 + 3.19E-02 ± 5.14E-02 − 3.33E+00 ± 1.59E+00

f3 1.42E+07 ± 4.19E+06 + 5.02E+05 ± 2.77E+05 − 4.03E+06 ± 1.48E+06

f4 6.99E+03 ± 1.73E+03 + 7.72E-02 ± 1.38E-01 − 2.89E+00 ± 1.03E+00

f5 3.86E+03 ± 4.35E+02 + 6.88E+03 ± 2.20E+03 + 5.52E+03 ± 1.04E+03

Basic Multimodal

Functions

f6 4.16E+00 ± 3.48E+00 − 7.11E+01 ± 1.53E+02 − 1.01E+02 ± 4.07E+01

f7 4.51E-01 ± 8.47E-02 + 2.57E-02 ± 1.89E-02 + 1.72E-01 ± 5.78E-02

f8 2.09E+01 ± 4.41E-02 + 2.03E+01 ± 7.21E-02 + 2.00E+01 ± 9.40E-03

f9 0.00E+00 ± 0.00E+00 − 9.95E-01 ± 9.53E-01 + 1.16E-02 ± 5.36E-03

f10 1.04E+02 ± 1.53E+01 − 1.90E+02 ± 6.32E+01 + 1.25E+02 ± 2.12E+01

f11 2.60E+01 ± 1.63E+00 + 2.66E+01 ± 3.56E+00 + 2.06E+01 ± 3.22E+00

f12 1.79E+04 ± 5.24E+03 + 2.64E+03 ± 4.38E+03 − 1.60E+04 ± 5.57E+03

Expanded Multimodal
Functions

f13 2.06E+00 ± 2.15E-01 + 1.12E+00 ± 4.70E-01 + 5.77E-01 ± 2.50E-01

f14 1.28E+01 ± 2.48E-01 + 1.29E+01 ± 5.04E-01 + 1.27E+01 ± 4.08E-01

Hybrid Composition
Functions

f15 5.77E+01 ± 2.76E+01 − 3.57E+02 ± 2.18E+02 + 2.58E+02 ± 7.15E+01

f16 1.74E+02 ± 2.82E+01 − 3.28E+02 ± 1.49E+02 + 2.20E+02 ± 6.09E+01

f17 2.46E+02 ± 4.81E+01 + 3.13E+02 ± 1.61E+02 + 1.96E+02 ± 5.52E+01

f18 9.13E+02 ± 1.42E+00 + 8.34E+02 ± 2.47E+00 + 8.32E+02 ± 1.77E+00

f19 9.14E+02 ± 1.45E+00 + 8.35E+02 ± 3.39E+00 + 8.33E+02 ± 2.42E+00

f20 9.14E+02 ± 3.62E+00 + 8.35E+02 ± 3.24E+00 + 8.33E+02 ± 1.74E+00

f21 5.00E+02 ± 3.39E-13 = 6.06E+02 ± 2.48E+02 + 5.00E+02 ± 2.55E-04

f22 9.72E+02 ± 1.20E+01 + 8.18E+02 ± 1.66E+02 + 6.42E+02 ± 1.54E+02

f23 5.34E+02 ± 2.19E-04 = 8.51E+02 ± 2.32E+02 + 5.34E+02 ± 5.06E-04

f24 2.00E+02 ± 1.49E-12 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00

f25 2.00E+02 ± 1.96E+00 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00

 + 15 19

 − 8 6

 = 2 0

In summary, the adaptive cooperative approach offered performance improvement

in terms of correlation detection. In unimodal and simple multimodal functions

(groups A and B) ACPSO performs much poorer than CPSO-H. The dimensions

of these test cases are separable and they could be easily optimized by splitting

them into some fixed subswarms. Since ACPSO couldn’t find any proper

correlation in the search space, the swarm configuration of it might vary during

the evolution and achieves rather weak results in comparison with CPSO-H.

Although in hybrid composition test functions [17], [65] there is no active

coordinate rotation test function like test cases of experiment 2, ten different

functions are dealt with simultaneously here. Meanwhile, a flexible mechanism is

still needed to balance exploration and exploitation in these tough problems. The

column R in Table 3 indicates that, ACPSO has collectively performed better than

CLPSO and CPSO-H algorithms in 68 % and 76 % of test functions, respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

37

5 – 4 Experiment 4: High Dimensional Multimodal Benchmark

Functions

Real world optimization problems probably contain more than hundreds of

variables. The GSO introduced in [20], [21] is used to handle large-scale

optimization problems. In [20], GSO is tested on six 300-D multimodal test

functions (f8 – f13). In order to evaluate ACPSO performance on high dimensional

problems, these benchmark functions are used. The results of ACPSO are

compared with CPSO-H [8], CLPSO [18] and GSO [20]. Similar to the

experimental setting of [20], population size and maximum number of function

evaluations are set to 50 and 3,750,000, respectively. Note that according to [20]

the population size of GSO in set to 48. All experiments were run for 5 trials and

the reported results are the final average from four algorithms. In this experiment

the swarm size is also scaled based on the problem dimensions. Since dimensions

are 10 times larger than 30-D problems, the swarm size is set to be 60 for each

Cooperative PSO. Finally, each automaton of ACPSO uses LR-P learning

algorithm with alpha = beta = 0.1.

Table 4 The Mean of function error values for ACPSO-LR-P, CPSO-H, CLPSO and GSO [20],

algorithms in 300-D problems. The last three rows represent the performance comparison between

ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO

is worse, better and similar to counterpart algorithms, respectively. The values listed in the “R”

columns are used to specify this performance measure.

F GSO R CLSPO R CPSO-H R ACPSO-LR-P

f8 −125351.2 + -12566.7 + -12569.4 + -12569.5

f9 9.89E+02 + 5.87E+01 + 4.03E-01 + 1.02E-07

f10 1.35E-03 + 8.36E-01 + 8.94E-08 − 1.01E-04

f11 1.82E-07 + 4.91E-02 + 4.08E-02 + 6.06E-09

f12 8.26E-08 + 2.28E-02 + 1.49E-07 + 1.85E-10

f13 2.02E-07 + 8.86E-02 + 1.68E-05 + 2.63E-08

+ 6 6 5

− 0 0 1

= 0 0 0

Comparing to GSO, CLPSO and CPSO-H, ACPSO performed significantly better

on most benchmark functions. The optimal solution for f9 (Schwefel function) is

supposed to be equal to -125351.2 and ACPSO algorithm consistently achieves

this optimal value. Meanwhile, this function is quiet easy to optimize for both

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

38

ACPSO and CPSO-H because both algorithms could work on a sub-dimension of

the problem which would extremely increase diversity of the solution.

f10 (Ackley's function) is a non-separable benchmark function with numerous local

minima. In cooperative framework CPSO-H performed significantly better than

ACPSO. The learning automata of ACPSO have 60 actions corresponding to the

number of swarms. As an environment, f10 test function could not supply a

suitable reinforcement signal for learning automata, because the probability

vectors of action sets vary during evolution and the selected action out of this

large action set needs further steps for reaching convergence. Since ACPSO could

not find any correlated dimensions, it wandered around different configuration of

swarm table. But CPSO-H swarm members are fixed and they exploit specific

configuration of dimensions from the beginning of the evolution process.

 f11 (Griewank's function) has a cosine term which make the problem harder to

optimize. An interesting phenomenon of this function is that it is more difficult to

optimize for lower dimensions (e.g. 30-D problems of experiment 1) than higher

dimensions (e.g. 300-D problems of this experiment).

In f12 and f13 (two generalized penalized functions), ACPSO gets the best results.

Furthermore, GSO optimizes these benchmarks properly. There is a random

sampling procedure in GSO algorithm for finding the best fitness value

(scrounging) combined with ranging behavior of low number of members. In each

searching bout (generation), GSO performs a global optimizer as well as a local

optimizer.

From Table 4 it can also be seen that CLPSO cannot be properly scaled to handle

300-D problems despite the satisfactory results of Table 1 (30-D problems).

Finally, ACPSO outperformed GSO, CLPSO and CPSO-H algorithms in 100 %,

100 % and 83 % of test functions.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

39

Conclusion

Many PSOs have been introduced in the literature for global numerical

optimization but none of them aims to intelligently exploit from specific sub

dimensions of the search space. The ACPSO proposed in this paper followed an

adaptive scheme along this goal. It used cooperative swarms to optimize the

problem and also employed a learning automaton on each dimension to define

membership of the swarms. In ACPSO, each automaton generated its own action

based on its probability vector and assigned the corresponding dimension into a

swarm.

Four different kinds of experiments were carried out in this paper including three

state-of-the-art function optimization benchmark functions in addition to one new

set of benchmark functions. In 30-D problems, ACPSO was compared with two

other well-known PSO versions, i.e. CLPSO and CPSO-H. Since the correlation

detection of ACPSO needs an efficient feedback from the problem, it couldn't

perform its best on unimodal and simple multimodal. This behavior is due to the

separable search space of these test functions which were addressed by designing

several active coordinate rotated benchmark functions. The ACPSO utilizes the

increase in degree of correlation between the subspaces, and performs very well

on rotated and composition cases. ACPSO was also used as a high-dimensional

optimizer and was compared with three other EAs. The results show that ACPSO

is very effective in tackling 300 dimensional problems.

Obviously, the “no free lunch” theorem [66] has emerged in the searching

behavior of ACPSO. Although ACPSO is not very successful in solving simple

problems, the environment structure is unknown from the beginning when solving

real-life problems. Thus, having an adaptive learning mechanism could be really

beneficial in solving highly complicated and large-scale problems. Simple

problems will be optimized more efficiently by combining ACPSO with a PSO

technique such as standard PSO or Comprehensive Learning PSO (CLPSO).

References

[1] J. Kennedy, “Swarm intelligence,” Handbook of Nature-Inspired and

Innovative Computing, pp. 187–219, 2006.

[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in , IEEE

International Conference on Neural Networks, 1995. Proceedings, 1995, vol.

4, pp. 1942–1948.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40

[3] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in Proceedings of the Sixth International Symposium on Micro

Machine and Human Science, 1995. MHS ’95, 1995, pp. 39–43.

[4] D. Bratton and J. Kennedy, “Defining a Standard for Particle Swarm

Optimization,” in IEEE Swarm Intelligence Symposium, 2007. SIS 2007,

2007, pp. 120–127.

[5] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1,

pp. 66–72, 1992.

[6] M. Potter and K. De Jong, “A cooperative coevolutionary approach to

function optimization,” Parallel Problem Solving from Nature—PPSN III,

pp. 249–257, 1994.

[7] F. van den Bergh and A. P. Engelbrecht, “Cooperative learning in neural

networks using particle swarm optimizers,” South African Computer

Journal, pp. 84–90, 2000.

[8] F. van den Bergh and A. P. Engelbrecht, “A Cooperative approach to

particle swarm optimization,” IEEE Transactions on Evolutionary

Computation, vol. 8, no. 3, pp. 225– 239, Jun. 2004.

[9] K. S. Narendra and M. Thathachar, “Learning Automata  : A Survey,”

Systems, Man and Cybernetics, IEEE Transactions on, no. 4, pp. 323–334,

1974.

[10] K. S. Narendra and M. A. L. Thathachar, Learning automata: an

introduction. Prentice-Hall, Inc., 1989.

[11] C. Ünsal, “Intelligent navigation of autonomous vehicles in an automated

highway system: Learning methods and interacting vehicles approach,”

Virginia Polytechnic Institute and State University, 1997.

[12] H. Beigy and M. R. Meybodi, “Cellular learning automata with multiple

learning automata in each cell and its applications,” Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 40, no. 1, pp.

54–65, 2010.

[13] M. Esnaashari and M. R. Meybodi, “Dynamic point coverage problem in

wireless sensor networks: a cellular learning automata approach,” Journal of

Ad hoc and Sensors Wireless Networks, vol. 10, no. 2–3, pp. 193–234, 2010.

[14] A. B. Hashemi and M. R. Meybodi, “A note on the learning automata based

algorithms for adaptive parameter selection in PSO,” Applied Soft

Computing, vol. 11, no. 1, pp. 689–705, Jan. 2011.

[15] A. Hashemi and M. Meybodi, “Cellular PSO: A PSO for dynamic

environments,” Advances in Computation and Intelligence, pp. 422–433,

2009.

[16] M. Thathachar and P. S. Sastry, “Varieties of learning automata: an

overview,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 32, no. 6, pp. 711–722, 2002.

[17] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A. Auger, and S.

Tiwari, “Problem definitions and evaluation criteria for the CEC 2005

special session on real-parameter optimization,” Nanyang Technol. Univ.,

Singapore,, IIT Kanpur, Kanpur, India, #2005005, May 2005.

[18] J. Liang, A. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions,”

Evolutionary Computation, IEEE Transactions on, vol. 10, no. 3, pp. 281–

295, 2006.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

41

[19] I. Guyon and A. Elisseeff, “An introduction to variable and feature

selection,” The Journal of Machine Learning Research, vol. 3, pp. 1157–

1182, 2003.

[20] S. He, Q. Wu, and J. Saunders, “Group search optimizer: an optimization

algorithm inspired by animal searching behavior,” Evolutionary

Computation, IEEE Transactions on, vol. 13, no. 5, pp. 973–990, 2009.

[21] S. He, Q. Wu, and J. Saunders, “A novel group search optimizer inspired by

animal behavioural ecology,” in Evolutionary Computation, 2006. CEC

2006. IEEE Congress on, 2006, pp. 1272–1278.

[22] R. Bellman, “Dynamic programming and Lagrange multipliers,”

Proceedings of the National Academy of Sciences of the United States of

America, vol. 42, no. 10, p. 767, 1956.

[23] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization An

overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57, Aug. 2007.

[24] A. Lim, J. Lin, and F. Xiao, “Particle Swarm Optimization and Hill

Climbing for the bandwidth minimization problem,” Applied Intelligence,

vol. 26, no. 3, pp. 175–182, 2007.

[25] S. A. Khan, A. P. Engelbrecht, and others, “A fuzzy particle swarm

optimization algorithm for computer communication network topology

design,” Applied Intelligence, pp. 1–17, 2010.

[26] C. P. Chu, Y. C. Chang, and C. C. Tsai, “PC 2 PSO: personalized e-course

composition based on Particle Swarm Optimization,” Applied Intelligence,

vol. 34, no. 1, pp. 141–154, 2011.

[27] K. Wang and Y. J. Zheng, “A new particle swarm optimization algorithm

for fuzzy optimization of armored vehicle scheme design,” Applied

Intelligence, pp. 1–7, 2012.

[28] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in The 1998

IEEE International Conference on Evolutionary Computation Proceedings,

1998. IEEE World Congress on Computational Intelligence, 1998, pp. 69–

73.

[29] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle swarm

optimization,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 39, no. 6, pp. 1362–1381, 2009.

[30] Z. Zhu, J. Zhou, Z. Ji, and Y. H. Shi, “DNA Sequence Compression Using

Adaptive Particle Swarm Optimization-Based Memetic Algorithm,”

Evolutionary Computation, IEEE Transactions on, vol. 15, no. 5, pp. 643–

658, 2011.

[31] Zhen Ji, Huilian Liao, Yiwei Wang, and Q. H. Wu, “A novel intelligent

particle optimizer for global optimization of multimodal functions,” in IEEE

Congress on Evolutionary Computation, 2007. CEC 2007, 2007, pp. 3272–

3275.

[32] Zhi-Hui Zhan, Jun Zhang, Yun Li, and Yu-Hui Shi, “Orthogonal Learning

Particle Swarm Optimization,” IEEE Transactions on Evolutionary

Computation, vol. 15, no. 6, pp. 832–847, Dec. 2011.

[33] Qingfu Zhang and Yiu-Wing Leung, “An orthogonal genetic algorithm for

multimedia multicast routing,” IEEE Transactions on Evolutionary

Computation, vol. 3, no. 1, pp. 53–62, Apr. 1999.

[34] M. S. Norouzzadeh, M. R. Ahmadzadeh, and M. Palhang, “LADPSO: using

fuzzy logic to conduct PSO algorithm,” Applied Intelligence, pp. 1–15, 2011.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

42

[35] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-convergence

in dynamic environments,” IEEE Transactions on Evolutionary

Computation, vol. 10, no. 4, pp. 459–472, Aug. 2006.

[36] B. Niu, Y. Zhu, X. He, and H. Wu, “MCPSO: A multi-swarm cooperative

particle swarm optimizer,” Applied Mathematics and Computation, vol. 185,

no. 2, pp. 1050–1062, 2007.

[37] J. Zhang and X. Ding, “A Multi-Swarm Self-Adaptive and Cooperative

Particle Swarm Optimization,” Engineering Applications of Artificial

Intelligence, 2011.

[38] Y. Mohamed Ben Ali, “Psychological model of particle swarm optimization

based multiple emotions,” Applied Intelligence, pp. 1–15, 2012.

[39] Y. S. Ong, A. J. Keane, and P. B. Nair, “Surrogate-assisted coevolutionary

search,” in Neural Information Processing, 2002. ICONIP’02. Proceedings

of the 9th International Conference on, 2002, vol. 3, pp. 1140–1145.

[40] T. Bäck and H. P. Schwefel, “An overview of evolutionary algorithms for

parameter optimization,” Evolutionary computation, vol. 1, no. 1, pp. 1–23,

1993.

[41] D. Sofge, K. De Jong, and A. Schultz, “A blended population approach to

cooperative coevolution for decomposition of complex problems,” in

Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002

Congress on, 2002, vol. 1, pp. 413–418.

[42] M. F. Han, S. H. Liao, J. Y. Chang, and C. T. Lin, “Dynamic group-based

differential evolution using a self-adaptive strategy for global optimization

problems,” Applied Intelligence, pp. 1–16, 2012.

[43] Y. Shi, H. Teng, and Z. Li, “Cooperative co-evolutionary differential

evolution for function optimization,” Advances in Natural Computation, pp.

428–428, 2005.

[44] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using

cooperative coevolution,” Information Sciences, vol. 178, no. 15, pp. 2985–

2999, 2008.

[45] E. Cuevas, F. Sención, D. Zaldivar, M. Pérez-Cisneros, and H. Sossa, “A

multi-threshold segmentation approach based on Artificial Bee Colony

optimization,” Applied Intelligence, pp. 1–16, 2012.

[46] M. El-Abd, “A cooperative approach to The Artificial Bee Colony

algorithm,” in 2010 IEEE Congress on Evolutionary Computation (CEC),

2010, pp. 1–5.

[47] M. Esnaashari and M. R. Meybodi, “A cellular learning automata-based

deployment strategy for mobile wireless sensor networks,” Journal of

Parallel and Distributed Computing, vol. 71, pp. 988–1001, 2011.

[48] javad Akbari Torkestani and M. R. Meybodi, “A cellular learning

automata-based algorithm for solving the vertex coloring problem,” Expert

Systems with Applications, vol. 38, pp. 9237–9247, 2011.

[49] M. Misir, T. Wauters, K. Verbeeck, and G. Vanden Berghe, “A Hyper-

heuristic with Learning Automata for the Traveling Tournament Problem,”

Metaheuristics: Intelligent Decision Making, 2012.

[50] V. Noroozi, A. Hashemi, and M. Meybodi, “CellularDE: a cellular based

differential evolution for dynamic optimization problems,” Adaptive and

Natural Computing Algorithms, pp. 340–349, 2011.

[51] R. Vafashoar, M. R. Meybodi, and A. H. Momeni Azandaryani, “CLA-DE:

a hybrid model based on cellular learning automata for numerical

optimization,” Applied Intelligence, Apr. 2011.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

43

[52] H. R. Cheshmehgaz, H. Haron, and M. R. Maybodi, “Cellular-based

Population to Enhance Genetic Algorithm for Assignment Problems,”

American Journal of Intelligent Systems, vol. 1, no. 1, pp. 1–5, 2011.

[53] C. Wallenta, J. Kim, P. J. Bentley, and S. Hailes, “Detecting interest cache

poisoning in sensor networks using an artificial immune algorithm,” Applied

Intelligence, vol. 32, no. 1, pp. 1–26, 2010.

[54] X. S. Yang, “Firefly algorithms for multimodal optimization,” Stochastic

algorithms: foundations and applications, pp. 169–178, 2009.

[55] S. M. Farahani, A. A. Abshouri, B. Nasiri, and M. Meybodi, “Some hybrid

models to improve Firefly algorithm performance,” International Journal of

Artificial Intelligence, vol. 8, no. S12, pp. 97–117, 2012.

[56] A. Rezvanian and M. R. Meybodi, “LACAIS: Learning Automata based

Cooperative Artificial Immune System for Function Optimization,” in 3rd

International Conference on Contemporary Computing (IC3 2010), Noida,

India. Contemporary Computing, CCIS, 2010, vol. 94, pp. 64–75.

[57] M. Meybodi and H. Beigy, “A note on learning automata-based schemes for

adaptation of BP parameters,” Neurocomputing, vol. 48, no. 1, pp. 957–974,

2002.

[58] R. Rastegar, M. R. Meybodi, and K. Badie, “A new discrete binary particle

swarm optimization based on learning automata,” in 2004 International

Conference on Machine Learning and Applications, 2004. Proceedings,

2004, pp. 456– 462.

[59] B. Jafarpour, M. Meybodi, and S. Shiry, “A hybrid method for optimization

(Discrete PSO+ CLA),” in Intelligent and Advanced Systems, 2007. ICIAS

2007. International Conference on, 2007, pp. 55–60.

[60] M. Sheybani and M. R. Meybodi, “PSO-LA: A New Model for

Optimization,” in Proceedings of 12th Annual CSI Computer Conference of

Iran, 2007, pp. 1162–1169.

[61] R. Soleimanzadeh, B. J. Farahani, and M. Fathy, “PSO based Deployment

Algorithms in Hybrid Sensor Networks,” International Journal of Computer

Science and Network Security, vol. 10, no. 7, pp. 167–171, 2010.

[62] M. Hamidi and M. R. Meybodi, “New Learning Automata based Particle

Swarm Optimization Algorithms,” presented at the Iran Data Mining

Conference (IDMC), 2008, pp. 1–15.

[63] M. Hasanzadeh, M. R. Meybodi, and S. Shiry, “Improving Learning

Automata based Particle Swarm: An Optimization Algorithm,” in 12th IEEE

International Symposium on Computational Intelligence and Informatics,

Budapest, 2011.

[64] M. Hasanzadeh, M. R. Meybodi, and M. M. Ebadzadeh, “A robust heuristic

algorithm for Cooperative Particle Swarm Optimizer: A Learning Automata

approach,” in 2012 20th Iranian Conference on Electrical Engineering

(ICEE), 2012, pp. 656 –661.

[65] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite trial

vector generation strategies and control parameters,” Evolutionary

Computation, IEEE Transactions on, vol. 15, no. 1, pp. 55–66, 2011.

[66] D. H. Wolpert and W. G. Macready, “No free lunch theorems for

optimization,” Evolutionary Computation, IEEE Transactions on, vol. 1, no.

1, pp. 67–82, 1997.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H [8] and CLPSO

[18] algorithms in 30-D problems. The last three rows represent the performance compassion between ACPSO

and other algorithms, where ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse, better and

similar to counterpart algorithms, respectively. The values listed in the “R” columns are used to specify this

performance measure.

F CLPSO R CPSO-H R ACPSO3-LR-P ACPSO6-LR-P

f1 4.46E-14 ± 1.73E-14 + 1.16E-113 ± 2.92E-113 + 0.00E+00 ± 0.00E+00 2.43E-188 ± 0.00E+00

f2 2.10E+01 ± 2.98E+00 + 7.08E+00 ± 8.01E+00 + 3.18E-05 ± 4.01E-05 2.89E-06 ± 2.34E-06

f3 0.00E+00 ± 0.00E+00 − 4.93E-14 ± 9.17E-14 + 8.76E-15 ± 3.06E-15 1.85E-14 ± 6.00E-15

f4 3.14E-10 ± 4.64E-10 − 3.63E-02 ± 3.60E-02 + 3.47E-02 ± 2.29E-02 4.84E-02 ± 3.04E-02

f5 3.45E-07 ± 1.94E-07 + 7.82E-15 ± 8.50E-15 + 0.00E+00 ± 0.00E+00 5.45E-15 ± 5.81E-15

f6 4.85E-10 ± 3.63E-10 + 0.00E+00 ± 0.00E+00 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f7 4.36E-10 ± 2.44E-10 + 1.00E-01 ± 3.16E-01 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f8 1.27E-12 ± 8.79E-13 − 1.83E+03 ± 2.59E+02 + 8.94E+02 ± 8.14E+01 4.93E+02 ± 1.22E+02

f9 3.43E-04 ± 1.91E-04 + 2.10E+00 ± 3.84E-01 + 8.20E-15 ± 2.61E-15 1.65E-14 ± 4.65E-15

f10 7.04E-10 ± 1.25E-11 − 5.54E-02 ± 3.97E-02 + 2.85E-02 ± 2.41E-02 3.61E-02 ± 3.48E-02

f11 3.07E+00 ± 1.61E+00 − 1.43E+01 ± 3.53E+00 + 2.95E+00 ± 1.33E+00 3.62E+00 ± 1.41E+00

f12 3.46E+01 ± 1.61E+00 + 1.01E+02 ± 3.53E+00 + 3.27E+01 ± 5.07E+00 3.61E+01 ± 8.13E+00

f13 3.77E+01 ± 5.56E+00 + 8.80E+01 ± 2.59E+01 + 2.58E+01 ± 6.29E+00 2.95E+01 ± 4.21E+00

f14 1.70E+03 ± 1.86E+02 − 3.64E+03 ± 7.41E+02 + 3.89E+03 ± 5.72E+02 3.51E+03 ± 4.20E+02

f15 7.50E-05 ± 1.85E-04 + 1.30E+02 ± 1.64E+02 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f16 7.86E+00 ± 3.64E+00 − 7.83E+01 ± 1.60E+02 − 5.27E+02 ± 1.10E+02 4.97E+02 ± 1.17E+02

+ 9 15

− 7 1

= 1 0

Table
Click here to download Table: table_1.docx

http://www.editorialmanager.com/apin/download.aspx?id=44083&guid=ef70b1e5-a87b-4ada-9b5b-5b3febd152ca&scheme=1

Table 2 The mean and standard deviation of function error values for ACPSO-LR-P, iCPSO-H, rCPSO-H and

CLPSO algorithms in 30-D problems. The last 3 columns represent the performance compassion between

ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse,

better and similar to counterpart algorithms, respectively. The values listed in the “R” columns are used to

specify this performance measure. The column S represents the number of swarms.

Algorithm S f9 R f10 R f11 R + − =

CLPSO 3 5.39E-12 ± 2.68E-11
+

3.68E-10 ± 1.84E-09
−

4.77E-01 ± 4.20E-01
− 1 2 0

6 5.66E-14 ± 1.07E-13 5.47E-15 ± 2.59E-14 1.56E-01 ± 1.48E-01

iCPSO-H 3 1.65E-01 ± 3.93E-01
+

3.14E-02 ± 3.08E-02
+

1.92E+00 ± 1.62E+00
− 2 1 0

6 2.77E-14 ± 6.49E-15 6.35E-02 ± 6.53E-02 6.59E-02 ± 9.52E-02

rCPSO-H 3 8.53E-01 ± 8.82E-01
+

2.64E-02 ± 2.39E-02
+

6.04E+00 ± 2.09E+00
+ 3 0 0

6 5.76E-01 ± 7.44E-01 3.82E-02 ± 4.38E-02 5.60E+00 ± 2.48E+00

ACPSO-LR-P 3 7.84E-15 ± 2.20E-15 2.42E-02 ± 2.14E-02 1.74E+00 ± 1.18E+00

6 1.29E-14 ± 3.43E-15 4.05E-02 ± 3.78E-02 2.92E+00 ± 1.44E+00

Algorithm S f12 R f13 R f14 R + − =

CLPSO 3 2.56E+01 ± 7.62E+00
−

1.99E+01 ± 5.49E+00
+

3.39E+03 ± 4.05E+02
+ 2 1 0

6 2.35E+01 ± 6.38E+00 1.69E+01 ± 3.27E+00 3.11E+03 ± 5.91E+02

iCPSO-H 3 3.06E+01 ± 7.71E+00
−

1.92E+01 ± 3.90E+00
−

2.77E+03 ± 4.16E+02
− 0 3 0

6 1.30E+01 ± 3.59E+00 9.40E+00 ± 1.53E+00 1.65E+03 ± 3.51E+02

rCPSO-H 3 5.11E+01 ± 1.71E+01
+

4.46E+01 ± 1.47E+01
+

3.80E+03 ± 6.20E+02
+ 3 0 0

6 5.06E+01 ± 1.48E+01 2.98E+01 ± 1.45E+01 3.93E+03 ± 5.09E+02

ACPSO-LR-P 3 2.80E+01 ± 3.92E+00 1.85E+01 ± 2.17E+00 3.60E+03 ± 4.14E+02

6 3.14E+01 ± 7.30E+00 1.59E+01 ± 2.81E+00 3.06E+03 ± 4.43E+02

Table
Click here to download Table: table_2.docx

http://www.editorialmanager.com/apin/download.aspx?id=44084&guid=f4445e70-e184-48d4-9526-0ef30e6605e3&scheme=1

Table 3 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H and CLPSO [65]

algorithms for 30-D problems. The last three rows represent the performance compassion between ACPSO and

other algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse, better and similar

to counterpart algorithms, respectively. The values listed in the “R” columns are used to specify this

performance measure.

F CLPSO R CPSO-H R ACPSO-LR-P

Unimodal Functions

f1 0.00E+00 ± 0.00E+00 − 1.32E-13 ± 3.16E-14 − 2.08E-03 ± 7.21E-04

f2 8.40E+02 ± 1.90E+02 + 3.19E-02 ± 5.14E-02 − 3.33E+00 ± 1.59E+00

f3 1.42E+07 ± 4.19E+06 + 5.02E+05 ± 2.77E+05 − 4.03E+06 ± 1.48E+06

f4 6.99E+03 ± 1.73E+03 + 7.72E-02 ± 1.38E-01 − 2.89E+00 ± 1.03E+00

f5 3.86E+03 ± 4.35E+02 + 6.88E+03 ± 2.20E+03 + 5.52E+03 ± 1.04E+03

Basic Multimodal Functions

f6 4.16E+00 ± 3.48E+00 − 7.11E+01 ± 1.53E+02 − 1.01E+02 ± 4.07E+01

f7 4.51E-01 ± 8.47E-02 + 2.57E-02 ± 1.89E-02 + 1.72E-01 ± 5.78E-02

f8 2.09E+01 ± 4.41E-02 + 2.03E+01 ± 7.21E-02 + 2.00E+01 ± 9.40E-03

f9 0.00E+00 ± 0.00E+00 − 9.95E-01 ± 9.53E-01 + 1.16E-02 ± 5.36E-03

f10 1.04E+02 ± 1.53E+01 − 1.90E+02 ± 6.32E+01 + 1.25E+02 ± 2.12E+01

f11 2.60E+01 ± 1.63E+00 + 2.66E+01 ± 3.56E+00 + 2.06E+01 ± 3.22E+00

f12 1.79E+04 ± 5.24E+03 + 2.64E+03 ± 4.38E+03 − 1.60E+04 ± 5.57E+03

Expanded Multimodal Functions
f13 2.06E+00 ± 2.15E-01 + 1.12E+00 ± 4.70E-01 + 5.77E-01 ± 2.50E-01

f14 1.28E+01 ± 2.48E-01 + 1.29E+01 ± 5.04E-01 + 1.27E+01 ± 4.08E-01

Hybrid Composition Functions

f15 5.77E+01 ± 2.76E+01 − 3.57E+02 ± 2.18E+02 + 2.58E+02 ± 7.15E+01

f16 1.74E+02 ± 2.82E+01 − 3.28E+02 ± 1.49E+02 + 2.20E+02 ± 6.09E+01

f17 2.46E+02 ± 4.81E+01 + 3.13E+02 ± 1.61E+02 + 1.96E+02 ± 5.52E+01

f18 9.13E+02 ± 1.42E+00 + 8.34E+02 ± 2.47E+00 + 8.32E+02 ± 1.77E+00

f19 9.14E+02 ± 1.45E+00 + 8.35E+02 ± 3.39E+00 + 8.33E+02 ± 2.42E+00

f20 9.14E+02 ± 3.62E+00 + 8.35E+02 ± 3.24E+00 + 8.33E+02 ± 1.74E+00

f21 5.00E+02 ± 3.39E-13 = 6.06E+02 ± 2.48E+02 + 5.00E+02 ± 2.55E-04

f22 9.72E+02 ± 1.20E+01 + 8.18E+02 ± 1.66E+02 + 6.42E+02 ± 1.54E+02

f23 5.34E+02 ± 2.19E-04 = 8.51E+02 ± 2.32E+02 + 5.34E+02 ± 5.06E-04

f24 2.00E+02 ± 1.49E-12 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00

f25 2.00E+02 ± 1.96E+00 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00

 + 15 19

 − 8 6

 = 2 0

Table
Click here to download Table: table_3.docx

http://www.editorialmanager.com/apin/download.aspx?id=44085&guid=f34d6acc-53d9-41b9-b6ff-26f3a0924a63&scheme=1

Table 4 The Mean of function error values for ACPSO-LR-P, CPSO-H, CLPSO and GSO [20], algorithms in

300-D problems. The last three rows represent the performance comparison between ACPSO and other

algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse, better and similar to

counterpart algorithms, respectively. The values listed in the “R” columns are used to specify this performance

measure.

F GSO R CLSPO R CPSO-H R ACPSO-LR-P

f8 −125351.2 + -12566.7 + -12569.4 + -12569.5

f9 9.89E+02 + 5.87E+01 + 4.03E-01 + 1.02E-07

f10 1.35E-03 + 8.36E-01 + 8.94E-08 − 1.01E-04

f11 1.82E-07 + 4.91E-02 + 4.08E-02 + 6.06E-09

f12 8.26E-08 + 2.28E-02 + 1.49E-07 + 1.85E-10

f13 2.02E-07 + 8.86E-02 + 1.68E-05 + 2.63E-08

+ 6 6 5

− 0 0 1

= 0 0 0

Table
Click here to download Table: table_4.docx

http://www.editorialmanager.com/apin/download.aspx?id=44086&guid=1bfd8a0b-fcc5-4848-a1a2-5cc10373cf3d&scheme=1

Algorithm 1 Standard PSO

for each generation do

 for each individual i in the population do

 update position of ith individual:

 1 21 2D D D D D D D D

i i i i i i iV w V c rand pbest X c rand gbest X

D D D

i i iX X V

 calculate individual fitness f(xi)

 update pbesti and gbest

 end for

end for

Fig 1. Pseudocode for the standard PSO

Figure
Click here to download Figure: figure_1.docx

http://www.editorialmanager.com/apin/download.aspx?id=44087&guid=5e2b3068-0771-47a6-8299-8f2bf994f0ac&scheme=1

1 2

1

2

/

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

: 1

: , , ,

N

M

i i

i j i j

P D D D D

P P P P N

P P P P N

P P M P M P M N

PSO f P fitness P D

CPSO f P S fitness CV P S j

Fig. 2 Comprehensive view of the PSO population. f(Pi) represents the ith particle of population which

evaluates through the traditional PSO mechanism and f(Pi,Sj) indicates the evaluation process of the ith particle

(Pi) of jth swarm (Sj) of CPSO population.

Figure
Click here to download Figure: figure_2.docx

http://www.editorialmanager.com/apin/download.aspx?id=44088&guid=170a9c6a-d426-4fdd-88c4-1d3321a2783b&scheme=1

Random

Environment

Learning

Automata

Performance

Evaluation

Reinforcement

Signal

Environment

Response

Selected

Action

Fig. 3 Visualization of a learning automaton in a stochastic circumstance.

Figure
Click here to download Figure: figure_3.docx

http://www.editorialmanager.com/apin/download.aspx?id=44089&guid=e410a772-5185-4a94-b542-4e020e87cff3&scheme=1

Algorithm 2 Learning automata probability vector update framework
define

Initialize r-dimensional action set:
1 2
, ,...,

r
 where r is the number of actions.

Initialize r-dimensional action probability vector:
1 2

1 1 1
, , ...,

r

p
r r r

while (the automaton converge to one of its action)

 The learning automaton selects an action based on the probability distribution of p.

 The environment evaluates the action and calculates the reinforcement signal 0,1 .

 The environment feedbacks to the learning automaton.

 Consider i as the selected action of the automaton, j as the current checking action and

 n as the n
th

 step of evolution.

 Update the probability vector:

 for each action [1,...,]j r do

 if 0 \\ positive response

. 1
1

. 1

j j

j

j

p n a p n if i j
p n

p n a if i j

(3)

 else if 1 \\ negative response

. 1

1
1 .

1

j

j

j

p n b if i j

p n b
b p n if i j

r

(4)

 end if

 end for

end while

Fig. 4 Learning automata updating schema

Figure
Click here to download Figure: figure_4.docx

http://www.editorialmanager.com/apin/download.aspx?id=44090&guid=45090f8e-5e3e-4ff3-ba0e-714c5a2f6ccd&scheme=1

Algorithm 3 Cooperative Evolutionary Algorithm Framework
define

Split N-dimensional search space into j subpopulations of entities.

Calculate the best individual of each subpopulation (sbest).

Construct a Context Vector (CV) through the best individuals of each subpopulation:

CV = [sbest1, sbest2, …, sbestj]

for each generation i do

 for each subpopulation j do

 for each entity k do

 Replace current entity of the j
th

 subpopulation by its corresponding positions in the CV

 Evaluate the N-dimensional output vector through the fitness function.

 k=k+1 // next entity

 end for

 Apply cooperative behavior of EA to j
th

 subpopulation.

 Update sbestj.

 j=j+1 // next swarm

 end for

 i=i+1 // next generation

end for

Fig. 5 Pseudocode of the cooperative coevolutionary algorithms

Figure
Click here to download Figure: figure_5.docx

http://www.editorialmanager.com/apin/download.aspx?id=44091&guid=7799d3f7-9760-49d6-8673-8abd4e949414&scheme=1

Symbiotic Evolution:

Individual life of a learning automaton by

performing local search on its actions

Synergic Evolution:

Swarm life of the set of learning automata

which are mounted on the particles dimensions

Start

Stop

Fig. 6 Two key steps of the ACPSO algorithm

Figure
Click here to download Figure: figure_6.docx

http://www.editorialmanager.com/apin/download.aspx?id=44092&guid=76b2912f-aa36-4199-8e14-5344a69d6742&scheme=1

LA1 LANLA3LA2 ...

DND1 D3D2 ...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

S1

S2

SK

Fig. 7 Binary swarm table and the embedded learning automaton for each dimension.
1
, ,

K
S S S

indicates the swarm set,
1
, ,

N
D D D indicates the problem dimensions and

1
LA LA ,..., LA

N

represents the learning automaton set which are allocated to each dimension.

Figure
Click here to download Figure: figure_7.docx

http://www.editorialmanager.com/apin/download.aspx?id=44093&guid=f59e31fb-fa82-4464-ab31-c0c027f28ec6&scheme=1

PM

P2

P1

D1 D2

P1D1 P1D2 P1D3 ... P1DN

P2D1 P2D2 P2D3 ... P2DN

PMD1 PMD2 PMD3 ... PMDN

D3 ... DN

PiD1 PiD2 PiD3 ... PiDNPi

LA1

S2

S1

S3

LA2 ...LA3

1 1 0 ... 0

0 0 0 ... 1

0 0 1 ... 0

LAN

PiD1 PiD2 gbestD3 … gbestDNS1

S2

S3

gbestD1 gbestD2 PiD3 … gbestDN

gbestD1 gbestD2 gbestD3 … PiDNCV

Evaluate ith
 particle through Context Vector

gbestD1 gbestD2 gbestD3 … gbestDN

Swarm TablePSO Population(a) (b)

(c) (d)

Fig. 8 Mapping process between PSO population and swarm table. The example consists of M particles with

N dimensions: P = {P1,…,PM} | Pi = { PiD1, …, PiDN} (part a). Typically the number of swarms is set to 3. In

first step the learning automata select their actions and scatter the dimensions into the swarms. After selecting

the action, corresponding dimensions of the swarm will be marked as 1 in the swarm table (part b). Moreover, if

we want to evaluate the i
th

 member of the j
th

 swarm, we will look up into the j
th

 row of swarm table (part c). To

form an N-dimensional solution vector and calculate the fitness for the i
th

 particle of j
th

 swarm the components

with 0 in the j
th

 row are remained constant as their values in the context vector (CV), while the components with

1 are replaced by corresponding values of the i
th

 particle (part d).

Figure
Click here to download Figure: figure_8.docx

http://www.editorialmanager.com/apin/download.aspx?id=44094&guid=c11138c9-6e0a-4b1d-b8b1-89dca200d5ea&scheme=1

FUSER

LA1

LAN

LA2

 1 N21N 2

D1

DN

D2

S1

SK

Context

Vector

Swarm

Table

PSO

Population

Fig. 9 Module of learning automata

Figure
Click here to download Figure: figure_9.docx

http://www.editorialmanager.com/apin/download.aspx?id=44095&guid=c5a373f5-8cb2-4caf-8f3e-d6f27bbd21cf&scheme=1

Procedure 1 Initialize Context Vector
define

Number of swarms K and number of dimensions N.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let A(d) B(d) | d D overwrites d positions of vector B in corresponding d positions of vector A. Also,let A

 B(d) | d D overwrites d positions of vector B in vector A.

Let x denotes PSO population.

Let gbest = [gbest1, gbest2, …, gbestN] denotes the global best position of initial population.

Initialize CV by global best position of population: CV = gbest

begin

 for each swarm j [1, …, K]

 Find Sj swarm members:

 Let d be the set of corresponding dimensions of Sj:

 d D | SWARM_TABLE(j,d) = 1

 for each particle 1,...,i PS

 Replace d positions of CV with corresponding values in xi: CV(d) xi(d)

 if fitness (CV) < fitness (gbest)

 sbestj xi(d)

 end if

 end for

 end for
 Let CV = [sbest1, sbest2, …, sbestK] be the context vector.

end

Fig. 10 Initializing the context vector based on all global best particles.

Figure
Click here to download Figure: figure_10.docx

http://www.editorialmanager.com/apin/download.aspx?id=44096&guid=451720dc-9a12-4c0f-a2dc-fb1b28809641&scheme=1

Procedure 2 Context Vector (d,p)
define

Current particle p, number of swarms K and number of dimensions N.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let d D be a subset of D.

Let A(d) B(d) | d D overwrites d positions of vector B in the corresponding d positions of vector A. Also,

let A B(d) | d D overwrites d positions of vector B in vector A.

Build CV from all swarms best position: CV = [sbest1, sbest2, …, sbestK]

begin

 Replace d positions of CV with the corresponding values in p: CV(d) p(d)

 Return CV.

end

Fig. 11 Evaluating the PSO population through the context vector.

Figure
Click here to download Figure: figure_11.docx

http://www.editorialmanager.com/apin/download.aspx?id=44105&guid=b26de8fb-e820-49cb-b051-dca399726895&scheme=1

Procedure 3 Action Refinement (i)
define

Current generation i, number of dimensions N and swarm number K.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let LA = {LA1, …, LAN} denotes the set of learning automaton designated to each dimension.

begin

 Calculate LA index for refinement:

 d = (i mod N) +1 | d D

 Select random swarm j:

 [1,...,]j K | SWARM_TABLE(j,d) 1

 Change the selected action of LAd to j.

 Let V = {V1, …, Vq} denotes a subset of swarms set S.

 Let V = {S1, …, SK} - Sj | V S be the subset of S except for Sj, while q = K -1.

 Update swarm table:

 Fill j
th

 row of swarm table with 1:

 SWARM_TABLE(j,d) = 1

 Fill V row members of swarm table with 0:

 SWARM_TABLE(Vl,d) = 0 | l [1,…,q]

end

Fig. 12 Action refinement procedure

Figure
Click here to download Figure: figure_12.docx

http://www.editorialmanager.com/apin/download.aspx?id=44106&guid=6c03b99d-cb63-4317-badb-d727e777327a&scheme=1

Procedure 4 Reinforcement Signal (t,j)
define
Improvement tag t and current swarm j.

Let S = {S1,…,SK} denotes the set of swarms.

Let sbestj | j [1, …, K] denotes the swarm best position of Sj.

begin

 if t == 1

 Reinforcement Signal = 0 // gbest is improved by Sj or sbestj is improved.

 else if t == 0

 Reinforcement Signal = 1 // gbest is not improved by Sj or sbestj is not improved.

 end if

 signal = Reinforcement Signal
 Return signal.

end

Fig. 13 Calculation of the reinforcement signal based on equation (5).

Figure
Click here to download Figure: figure_13.docx

http://www.editorialmanager.com/apin/download.aspx?id=44107&guid=a836dd3b-7de7-4b87-b098-a3e13e347087&scheme=1

Procedure 5 Isolate Update (signal, j)
define

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and number of

dimensions N.

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension.

Let LA 1,...,|i i N denotes the selected automaton for updating its probability vector by input signal.

Let
1
, ...,

r
 denotes the action set of LAi, where r = K.

Let 1,...,|j j K be the selected action of LAi.

Let Z = {Z1, …, Zq} denotes a subset of action set .

Let
1
, ..., |

r j
Z Z be the subset of LAi action set except for j , where q = r-1.

begin

 if signal = 0

 Reward j action of LAi.

 Penalize Z action members of LAi: Zl | l [1,…,q].

 Update corresponding probability vector of LAi by using (3).

 else if signal = 1

 Penalize j action of LAi.

 Reward Z action members of LAi: Zl | l [1,…,q].

 Update corresponding probability vectors of LAi by using (4).

 end if

end

Fig. 14 Isolate update procedure

Figure
Click here to download Figure: figure_14.docx

http://www.editorialmanager.com/apin/download.aspx?id=44108&guid=94e8fe03-7901-4954-8420-6ba62f53496a&scheme=1

Procedure 6 Ensemble Update (signal,j)
define

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and number of

dimensions N.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension.

Find Sj swarm members:

 Let d D | SWARM_TABLE(j,d) = 1 denotes a subset of dimensions set D.

 Let d = {d1, …, dp} be the set of corresponding dimensions of S j, where |d| = p.

Find set of learning automata associated to Sj for updating their probability vectors by input signal.

 Let LA_S = {LA_S1, …, LA_Sp} donates a subset of LA corresponding to Sj.

 Let LA_S = {LA1, …, LAN} – {LAd1, …, LAdp} | LA_S LA be the of corresponding

 learning automata of Sj.

Let
1
, ...,

r

denotes the action set of each automaton of LA_S, where r = K.

Let 1,...,|j j K denotes the selected action of LA_S which are designated to Sj.

Let Z = {Z1, …, Zq} denotes a subset of action set .

Let
1
, ..., |

r j
Z Z be the subset of LA_Sd | d = {d1, …, dq}action set except for j , where q = r-1.

begin

 for each LA_S i [1, …, p]:

 if signal = 0

 Reward j action of LA_Si.

 Penalize Z action members of LA_Si: Zl | l [1,…,q].

 Update corresponding probability vector of LA_Si by using (3).

 else if signal = 1

 Penalty j action of LA_Si.

 Reward Z action members of LA_Si: Zl | l [1,…,q]

 Update corresponding probability vectors of LA_Si by using (4).

 end if

 end for

end

Fig 15. Deployment of reinforcement signal for the LA which are associated with j
th

 swarm.

Figure
Click here to download Figure: figure_15.docx

http://www.editorialmanager.com/apin/download.aspx?id=44109&guid=8ee72f1b-7074-4e1b-9732-e8dc6da5f7cb&scheme=1

Procedure 7 Action Selection
define

Number of swarms K and number of dimensions N.

Let S = {S1,…,SK} denotes the set of swarms disseminated in problem dimensions.

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension.

Let
1
, ...,

r
 denotes the action set of each automaton, where r = K.

Let p = {p1, …, pr} denotes the probability vector corresponding to action set of each automaton.

begin

 for each LA [1, ...]i N

 LAi selects the j action based on its current probability vector p from its action set .

 Let | 1, ...,
j

j K be the selected action of LAi.

 Let Z = {Z1,…, Zq} denotes a subset of action set .

 Let
1
, ..., |

r j
Z Z be the subset of LAi action set except for j , while q = r-1.

 Update swarm table:

 Fill j
th

 row of swarm table with 1

 SWARM_TABLE(j,i) = 1

 Fill Z row members of swarm table with 0:

 SWARM_TABLE(Zl,d) = 0 | l [1,…,q]

 end for

end

Fig 16. Function describes how learning automata fill the swarm table.

Figure
Click here to download Figure: figure_16.docx

http://www.editorialmanager.com/apin/download.aspx?id=44110&guid=d3bbbf50-8076-4a39-916a-ac759e79addd&scheme=1

Algorithm 4 ACPSO algorithm
define

Initialize PSO parameters: population size PS, dimension number N, number of swarms K, generation ge = 0,

fitness evaluation fe = 0, maximum fitness evaluations FE, maximum generations GE, train epoch TE,

Improvement Tag t = 0 and inertia weight w.

Initialize SWARM_TABLE[K N] data structure.

Initialize position x and associated velocity v.

Initialize pbest = [pbest1, …, pbestN] and gbest = [gbest1, …, gbestN] of population.

Initialize K swarms: S = {S1,…,SK}

Initialize sbestj | j [1, …, K]

Let D = {D1, …, DN} be the set of problem dimensions.

Let A(d) B(d) | d D overwrites d positions of vector B in the corresponding d positions of vector A. Also,

let A B(d) | d D overwrites d positions of vector B in vector A.

Initialize LA parameters: action probability vector P, alpha (reward signal), beta (penalty signal) and action

number r, where r = K.

Call procedure ACTION_SELECTION and fill SWARM_TABLE.

Call procedure INITIALIZE_CONTEXT_VECTOR.

Let b (d,p) as procedure CONTEXT_VECTOR (dimension, position) which builds context vector in different

contexts of different swarms.

Let f be the fitness value.

repeat //Symbiosis phase

 for each swarm 1,...j K :

 find Sj swarm members:

 Let d be the set of Sj dimension members.

 d D | SWARM_TABLE(j,d) = 1

 for each particle 1,...,i PS :

 Evaluate the particle through the context vector:

 Let p be the position that is going to evaluate in the context of Sj.

 Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj.

 if f (b(d,xi(d)) < f (b(d,pbesti(d))) then

 pbesti(d) xi(d)

 end if

 if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then

 gbest(d) pbesti(d)

 sbestj pbesti(d)

 t = 1

 end if
 fe = fe + 1

 end for
 Perform PSO update for Velocity and Position on Sj using (1) and (2).

 if g>0 AND j == (g mod N) + 1

 Call procedure REINFORCEMENT_SIGNAL (t,j) // calculate signal

 Call procedure ISOLATE_UPDATE (signal,j) // deploy signal

 end if

 t = 0

 end for

 Call procedure ACTION_REFINEMENT (g) and refine the action of associated LA.

 ge = ge + 1

until ge < EP

repeat //Synergy phase

 for each swarm 1,...j K :

 find kj swarm members:

 d D | SWARM_TABLE(j,d) = 1

 Let d be the set of Sj dimension members.

 for each particle 1,...,i PS :

 Evaluate the particle through the context vector:

 Let p be the position that is going to evaluate in the context of Sj.

Figure
Click here to download Figure: figure_17.docx

http://www.editorialmanager.com/apin/download.aspx?id=44111&guid=3c446d4e-4c6a-4f90-9774-ea30382c5695&scheme=1

 Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj.

 if f (b(d,xi(d)) < f (b(d,pbesti(d))) then

 pbesti(d) xi(d)

 end if

 if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then

 gbest(d) pbesti(d)

 sbestj pbesti(d)

 t = 1

 end if
 fe = fe + 1

 end for
 Perform PSO update for Velocity and Position on Sj using (1) and (2).

 Call procedure REINFORCEMENT_SIGNAL (t,j). // calculate signal

 Call procedure ENSEMBLE_UPDATE (signal,j). // deploy signal

 t = 0

 end for
 Call procedure ACTION_SELECTION and fill SWARM_TABLE for the next generation.

 ge = ge + 1

until (ge <= G AND fe <= FE)

Fig 17. Pseudocode for the generic ACPSO algorithm.

Algorithm 5 pseudocode of active rotation matrix
Define

Rotation Matrix M, Number of dimensions N, number of swarms K and swarm length L.

Let x = [x1, …, xD]
T
 be the original variable.

Let y = [y1, …, yD]
T
 be the new rotated variable.

Let S = {S1,…,SK} denotes the set of swarms.

Let D = {D1, …, DN} denotes the set of problem dimensions.

K1 = n mod K; L1 =
N

K

K2 = K – (n mod K) ; L2 =
N

K

for each Ki | i [1,2]

 Initialize Ki Li-dimensional rotation matrix:

 for each swarm Sj | 1,...,j K
i

...
11 12 1

...
21 22 2

...

...
1 2

i

i

i ii i

m m m
L

m m m
L

M j

m m mL LL L

 Split the corresponding dimensions of Sj:

 Let r = [1, …, d] be the range of associated swarm, where d = Li.

 yj = [x1, …, xd]
 T

 Mj

 end for

end for

y = [y1, …, yK]
 T

Use variable y to calculate the fitness value f.

Fig. 18. Rotation matrix generator.

Figure
Click here to download Figure: figure_18.docx

http://www.editorialmanager.com/apin/download.aspx?id=44112&guid=67d35c08-1dc2-4c55-bce3-e37ebbf3a65b&scheme=1

