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Abstract 

An Adaptive Cooperative Particle Swarm Optimizer (ACPSO) is introduced in 

this paper, which facilitates cooperation technique through usage of Learning 

Automata (LA) algorithm. Cooperative learning strategy of ACPSO optimizes the 

problem collaboratively and evaluates it in different contexts. In ACPSO 

algorithm, a set of learning automata associated with dimensions of the problem 

are trying to find the correlated variables of the search space and optimize the 

problem intelligently. This collective behavior of ACPSO will fulfill the task of 

adaptive selection of swarm members. Simulations were conducted on four types 

of benchmark suits which contain three state-of-the-arts numerical optimization 

benchmark functions in addition to one new set of active coordinate rotated test 

functions. The results demonstrate the learning ability of ACPSO in finding 

correlated variables of the search space and also describe how efficiently it can 

optimize the coordinate rotated multimodal problems, composition functions and 

high-dimensional multimodal problems. 

 

1 Introduction 

Swarm Intelligence (SI) [1] is an abstract system which contains a population of 

agents interacting locally with each other and with their corresponding 

environment. SI is inspired from the discipline that lies behind the behavior of 

flocks of birds, insect colonies and fish schooling. Optimization methods are 

*Manuscript
Click here to view linked References
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currently one of the most applicable approaches to solve real world problems. 

Particle Swarm Optimizer (PSO) [2], [3] is an optimization algorithm which uses 

SI as a model of social interactions between multiple agents. PSO [2], [3] 

optimizes a problem by keeping track of the best values of each individual and the 

entire population. 

Standard PSO [4] is a heuristic-based iterative technique which uses a population 

of particles. An N-dimensional community is evaluated through an eligibility test 

in each generation of the algorithm with the best quantities of each individual and 

the whole population being updated. Another population based optimization 

technique is Genetic Algorithm (GA) [5] which uses mating and mutation during 

evolution part of the population. The term cooperation was first introduced by 

Potter in the field of GA [6]. The model consists of three major steps: first; it 

splits the problem dimensions into smaller parts; second, it solves each of these 

sub-problems by a single GA; and finally, it combines each subpopulation 

solution to form an N-dimensional solution vector which is feasible to evaluate 

through the designated fitness function. The same scenario was brought to PSO 

technique by Van den Bergh [7], [8], including a PSO that splits the solution 

space into multiple subspaces. The dilemma remains in all cooperative 

optimization techniques how to select the coherent dimensions in order to solve 

the problem efficiently? 

Learning Automaton (LA) [9], [10] is an autonomous machine which is designed 

to automatically learn instructions from the environment. The first publication that 

introduced LA to the science community was a survey conducted by Narendra in 

1970s [9]. Since the first introduction of LA, there have been many applications 

of this learning method such as traffic congestion [11], channel assignment [12] in 

cellular mobile networks and dynamic point coverage in wireless sensor networks 

[13]. More recently, LA has been successfully applied to the context of PSO for 

adaptive parameter selection [14]. Also in [15] a new hybrid model of PSO and 

cellular automata is developed to address the dynamic optimization. 

In order to adaptively select the correlated dimensions of the problem, this paper 

combines the cooperative PSO [7], [8] with the learning methodology of a group 

of learning automata [16]. This combination leads to present an optimizer which 

cooperatively optimizes the problem and intelligently places the correlated 

dimensions in a same swarm. The performance of ACPSO is evaluated in IEEE 
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Conference on Evolutionary Computation 2005 (CEC 2005) [17] and IEEE 

Transaction on Evolutionary Computation 2006 (TEC 2006) [18]. Experimental 

results show that ACPSO algorithm could optimize the rotated multimodal 

problems better than its counterpart algorithms. 

The feature selection [19] is an NP-hard problem and currently has become the 

focus of much research areas of application. Considering the fact that, we 

necessarily need specific problems to study the ACPSO correlation detection 

feature, we have applied it to some active coordinate rotated test functions. The 

results produced by ACPSO are promising for future design of feature extraction 

algorithms. 

In order to investigate the performance of ACPSO in large-scale optimization 

problems, it we also tested it on six multimodal benchmark functions in 300 

dimensions of TEC 2009 [20] and was especially compared with one of the non-

cooperative optimization algorithms called Group Search Optimizer [20], [21].  

The results indicate that ACPSO could alleviate the curse of dimensionality [22] 

while optimizing the 300 dimensional problems. The secondary aim of this paper 

is to provide a brief survey on cooperative optimization techniques the framework 

of which are originated from Potter’s Cooperative Coevolutionary Genetic 

Algorithm (CCGA) [6]. Moreover, some applications of learning automata in 

Evolutionary Algorithm (EA) are reviewed. 

The rest of this paper is organized as follows: Standard PSO is introduced in 

section 2 and then a review of some cooperative algorithms is carried out. In 

Section 3 learning automata, its application in PSO and the technological 

advances due to its usage are presented. Section 4 adopts to describe the adaptive 

particle swarm optimization. Section 5 is dedicated to empirical study of the 

proposed method on several test functions and finally in section 6 some 

conclusions are drawn. 

 

2 Particle Swarm Optimizer Concepts and 

Applications 

In PSO [23] a number of particles fly in the problem space and each of them 

evaluates its current position through the designated objective function. Then, 

each particle calculates its move by combining its own best information and best 
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information of all the swarm members. PSO has been used in a wide range of 

applications including bandwidth minimization problem [24], distributed local 

area networks [25], e-learning systems [26] and armored vehicle design [27]. 

2 – 1 conventional Particle Swarm Optimizer 

Assume that an N-dimensional problem exists; the corresponding PSO contains a 

population of N-dimensional particles. Each particle indicates a feasible solution 

in the search space. Three features are assigned to the ith particle of population: 

the position vector  1 2, ,..., N

i i i iX x x x , the velocity vector  1 2, ,..., N

i i i iV v v v and 

the best position which is met  1 2, ,..., N

i i i iX pbest pbest pbest . The velocity D

iV  

and position D

iX of the i
th

 particle are updated through the following equations [4], 

[18]: 

   1 21 2D D D D D D D D

i i i i i i iV w V c rand pbest X c rand gbest X         
 

(1) 
D D D

i i iX X V   (2) 

Where  1 2, ,..., Dgbest gbest gbest gbest is the best position which is met by the 

whole population, c1 and c2 are acceleration constants in which they control the 

absorption degree of pbest and gbest positions, also rand1 and rand2  0,1  are 

two random numbers and finally w [28] is called inertia weight which is designed 

to balance the exploration and exploitation characteristics of PSO. The algorithm 

of the original PSO is given in Fig. 1. 

 

Algorithm 1 Standard PSO  

for each generation do 

 for each individual i in the population do 

  update position of ith individual: 

     1 21 2D D D D D D D D

i i i i i i iV w V c rand pbest X c rand gbest X           

  
D D D

i i iX X V   

  calculate individual fitness f(xi) 

  update pbesti and gbest 

 end for 

end for 

Fig 1. Pseudocode for the standard PSO 

 

2 – 2 Some Population-based Optimization Approaches 

Since introducing PSO for the first time [3], there has been a great deal of 

research on improving the performance of original PSO. Comprehensive Learning 
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Particle Swarm Optimizer (CLPSO) [18] is a PSO with a new learning strategy. 

The main goal of CLPSO is to avoid premature convergence when solving 

multimodal problems. In the new learning strategy each particle learns from pbest 

information of all particles. The velocity of particles in each dimension is updated 

by an exemplar function. The exemplar function collects pbest of all particles and 

assigns an exemplar to each dimension of them using a tournament selection. 

Since this novel learning schema maintains the diversity of population, CLPSO 

could avoid premature convergence. 

The Group Search Optimizer (GSO) [20], [21] is an optimization heuristic which 

adopts Producer-Scrounger (PS) framework. The PS model is a group living 

methodology with two strategies: (1) producing or searching food; (2) scrounging 

or joining resources uncovered by others. Besides producer and scrounger 

members, the population of GSP algorithm also contains some additional 

dispersed members which perform random walks to avoid being trapped in 

pseudominima. 

Original PSO doesn’t offer a fast convergence speed and thus easily trapped in 

local optima. To obtain the abovementioned goals, Adaptive Particle Swarm 

Optimization (APSO) is proposed in [29]. APSO includes two main phases. First, 

observing the population distribution and computing the evolutionary factor f by 

the distance of particles. Based on the information which given by f, one of the 

four evolutionary states, namely exploration, exploitation, convergence and 

jumping out will be chosen for the next generation. These evolutionary strategies 

are developed to adaptively control the acceleration coefficients (c1 and c2). 

Moreover, APSO dynamically adjusts the inertia weight w. Second, if the selected 

state was convergence, an elitist learning would be performed. Similar to 

Simulated Annealing (SA), elitist learning chooses one dimension of gbest and 

changes it by a Gaussian perturbation. 

DNA sequence compression algorithm [30] is an approach that tries to find the 

most effective way of data encoding to reduce the space needed to store the data. 

In [30], a novel Adaptive Particle Swarm Optimization-based Memetic Algorithm 

(POMA) is proposed for DNA sequence compression. After computing the 

codebooks, each codebook is encoded into a particle. Then, in order to find the 

optimal codebook, the particles are given to CLPSO algorithm [18] which 

performs a global search over the population. Finally, Adaptive Intelligence 
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Single Particle Optimizer (AdpISPO) is run which implements the search with 

only one particle and performs a local search.  AdpISPO is an adaptive version of 

ISPO [31] which splits the solution vector into a certain number of subvectors and 

updates them sequentially. The key characteristic of IPSO is its learning factor 

that intelligently tunes the particle velocity during the search process. By 

combining these two PSO algorithms, POMA keeps track of global and local 

search strategies promisingly. 

Due to the shortcomings of conventional PSO, an Orthogonal Learning Particle 

Swarm Optimization (OLPSO) is recommended in [32]. Similar to CLPSO [18] 

the Orthogonal Learning (OL) strategy tries to construct a direction-efficient 

exemplar. There are three motivations for a typical OL strategy: First, building an 

accurate guidance vector based on search information from the best personal and 

neighborhood positions of the particles. Second, applying Orthogonal 

Experimental Design (OED) [33] to construct a beneficial learning exemplar. 

Third, using the notion of CLPSO learning strategy [18] to develop OL strategy 

which can determine the search direction accurately. 

Light Adaptive PSO (LADPSO) [34] is a PSO in which fuzzy logic is utilized to 

improve the standard PSO. LADPSO adds two operators to PSO, a plow operator 

for efficient initializing and a mutation operator to avoid getting trapped in local 

minima. The combination of these two operators facilitates both global and local 

searches of LADPSO. 

A PSO is designed in [35] for dynamic environments. Furthermore, master-slave 

architecture is applied to PSO algorithm in [36]. Each of the slave swarms evolve 

independently while the master swarm combines its own information with the 

information received from the slave swarms in order to evolve more efficiently. A 

multi swarm cooperative PSO with four subswarms is introduced in [37]. In this 

PSO algorithm, various techniques are employed to maintain the diversity of 

population, escape from pseudominima and acquire a better solution. In [38] a 

novel PSO based on emotional behavior is proposed to solve real optimization 

problems. In this approach an emotional factor splits up the search space into 

potential regions that are finely explored by subswarms.  
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2 – 3 Review of Cooperative Optimization Heuristics 

The first attempt to develop cooperative optimization was based on Genetic 

Algorithms (GA) [6]. Genetic Algorithm (GA) [5] is one of the basic branches of 

Evolutionary Computing (EC) which is founded by Holland. Particle Swarm 

Optimization (PSO) [4] is a newfound optimization method which has a lot of 

applications in spite of its simple structure. For solving multimodal problems or 

functions which cannot be solved by other heuristics, PSO offers more promising 

results than other methods. The current publication trend marks the usage of this 

method in rather new and different applications. The main categories of PSO 

applications include video analyzing, design and reconstruction of electronic 

networks, control applications, scheduling applications, biologic, medical and 

pharmacy applications [23]. 

Having inspired from natural evolution flow, GA employs recombination, 

selection and mutation operators to produce an optimal set or entity from its early 

population. In this context, Potter considered a typical solution of the optimization 

problem as an N-dimensional vector where each dimension represents a 

subpopulation of the primary population. In order to evaluate one member of a 

subpopulation, an N-dimensional vector should be constructed by combining the 

other selected members of each subpopulation. Similar to standard GA, the 

constructed vector could easily be evaluated through the designated objective 

function. The Cooperative Coevolutionary Genetic Algorithm (CCGA) of Potter 

is sensitive to the correlation of dimensions and its performance deteriorates upon 

optimizing correlated variables of the optimization problems. Ong, Keane and 

Nair [39] raised the idea of Potter’s cooperative GA by Radial Basis Function 

(RBF) and used it to solve some problems of the correlated parameters. 

A Cooperative PSO (CPSO) was first introduced by Van den Bergh and 

Engelbrecht in [7]. The CPSO algorithm splits the input vector into several 

subvectors and optimizes them using the assigned subpopulation. In CPSO, each 

swarm act as the representative of one to several dimensions of the problem while 

the cooperative swarms collaboratively optimize the problem solution. Van den 

Bergh utilized these subpopulations for training the neural network (CPSO-S). He 

also used this cooperative approach in function optimization and eventually 

introduced Hybrid Cooperative PSO (CPSO-H) [8]. The CPSO-H algorithm is a 

cooperative PSO which combines standard features of PSO with the cooperative 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 

behavior of CPSO by the aim of utilizing both beneficial characteristics of the 

aforementioned PSOs. 

Evolutionary Strategy (ES) [40] is introduced by Rechenberg and Schwefel in 

1970s in Germany. At that time, the applications of ES were limited to optimizing 

the nasal shape. Sofge, De Jong, and Schultz [41] brought the cooperation concept 

into ES. Cooperative Coevolution Evolutionary Strategy (CCES) divides the 

population of ES into some subspecies and lets them evolve. By means of a 

migration operator, Sofge could hybridize the cooperative evolutionary behavior 

of Potter with ES. The proposed model controls the interaction of subspecies 

properly and exhibits good performance results.  

Differential Evolution (DE) [42] is a population-based parallel search method 

which is used for global optimization problems. In each generation of this 

algorithm, the population moves towards the global optimum by mutation, cross 

over and selection operators. Shi, Teng and Li [43] applied the cooperative 

behavior of Potter to DE and invented Cooperative Co-evolutionary Differential 

Evolution (CCDE). This CCDE fragmented the standard problem into several 

subproblems and allocated a subpopulation to each of them. Yang, Tang and Yao 

[44] introduced a randomized grouping mechanism and used an adaptive 

weighting strategy in order to adapt the separated components. The idea was 

accomplished to bring the interacted variables into a similar subcomponent. Later, 

Yang introduced a self-adaptive neighborhood search into DE (SaNSDE), which 

could tackle the non-separable problems with more than 1000 dimensions inside. 

Artificial Bee Colony (ABC) [45] which is inspired from natural bee colonies is 

another swarm intelligence method. El-Abd [46] exerted the cooperative approach 

of Potter into ABC and produced Cooperative Artificial Bee Colony (CABC). 

Like two variants of CPSO, he introduced two versions of split swarm and hybrid 

for CABC. CABC_S algorithm can efficiently optimize the separable problems 

and CABC_H algorithm has the ability to escape from the local minima. 

The discussed cooperative issues assert that the cooperative coevolutionary 

approach is implemented in several EAs, among which the following cooperative 

techniques are reviewed: Genetic Algorithm (GA) [5], Particle Swarm 

Optimization (PSO) [2], Evolutionary Strategy (ES) [40], Differential Evolution 

(DE) [42] and Artificial Bee Colony (ABC) [45]. 
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2 – 4 Comprehensive study of Particle Swarm Optimizer 

Standard PSO [4] and cooperative PSO [8] were introduced in sections 2-1 and 2-

3, respectively. The key entity of these optimization approaches is related to their 

corresponding population. The standard PSO contains a single population where 

this single population is divided into multiple swarms in cooperative PSO.  

There is a paradigm in conventional PSO algorithm which could be extended to 

Cooperative PSO: "In order to find a proper solution vector, each particle of the 

swarm fly through an N–dimensional search space by N values corresponded to 

each dimension of the space". To understand this phrase, consider the population 

as a matrix [MN] where M and N respectively represent the number of particles 

and dimensions, respectively as:  # #of Particles of Dimensions (see Fig. 2) .In this 

framework, velocity and position of the standard PSO [4] population were 

updated row wise. The interpretation of this framework in CPSO [8] is quite 

different from that of standard PSO algorithm. In CPSO algorithm the population 

is optimized column wise (dimension wise) with the dimension of each particle 

being evaluated by a context vector (CV) which is built from the best particle of 

corresponding swarm and the best particles of other swarms.  

 

     

     

     

    

    

1 2

1

2

/

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,
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P D D D D

P P P P N

P P P P N

P P M P M P M N

PSO f P fitness P D

CPSO f P S fitness CV P S j

 



 
 
 
 
 
 
 
 
  

 

Fig. 2 Comprehensive view of the PSO population. f(Pi) represents the ith particle of population 

which evaluates through the traditional PSO mechanism and f(Pi,Sj) indicates the evaluation 

process of the ith particle (Pi) of jth swarm (Sj) of CPSO population. 

3 Learning Automata 

Learning Automaton (LA) [16] is a typical model of observation which adapts 

itself to the dynamic environment. The learning process of an automaton is 

acquired and applied simultaneously. The concept of learning systems is an 
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inevitable phenomenon which has rapidly grown in the last decades. This 

emergence of intelligent systems is due to the easiness of learning task which 

tends to replace the manual adjustment of chores and applications simply and 

automatically. The following will review some interesting and new applications of 

LA. 

To attain high coverage in wireless sensor networks, an automatic node 

deployment is proposed in [47]. For solving vertex coloring problem, Torkestani 

and Meybodi proposed an algorithm in [48]. Moreover, learning automaton was 

successfully applied to Traveling Tournament Problem in [49]. 

 

Several methods have been proposed for using learning automata in Evolutionary 

Computing (EC). For Differential Evolution (DE) algorithm, Noroozi, Hashemi 

and Meybodi invented an optimization model which combines the DE algorithm 

with Cellular Automata (CA) for dynamic environments [50]. Meanwhile, a CA 

splits the problem space into cells with the subpopulation placed at each cell in 

CellularDE [50]. Vafashoar, Meybodi and Momeni proposed another DE variant 

based on learning automata. Their proposed method called CLA-DE algorithm 

[51] combines Cellular Learning Automata (CLA) with differential evolution. 

CLA-DE iteratively partitions the dimensions of search problem and learns the 

most promising regions of the corresponding dimensions. In order to avoid the 

population diversity loss, a CA is used in [52] to evaluate the structure of genetic 

algorithm.  

Artificial Immune System (AIS) [53] is one of the computational intelligence 

branches which inspired from natural immune system. In [56] a new method of 

AIS utilizing cooperative concept of learning automata is proposed. Firefly 

algorithm [54] is a new evolutionary optimization algorithm which works based 

on the flashing characteristics of the fireflies. In [55], parameter adaption of 

firefly algorithm is handled by learning automata. 

Below explains the operation of LA in more details. Learning automata [9]–[11] 

are stochastic learning machines which gradually adapt with the corresponding 

environment. An automaton contains a set of actions every time the automaton 

interacts with the environment. Then, one of the actions is selected and the 

environment sends a reinforcement signal as a feedback. Eventually the 

automaton could recognize whether its selected action is wrong and update its 
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action probability vector. A schematic representation of leaning automaton is 

depicted in Fig. 3. 

 

Random 

Environment

Learning 

Automata

Performance 

Evaluation

Reinforcement 
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Environment 
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Selected 

Action

 

Fig. 3 Visualization of a learning automaton in a stochastic circumstance. 

 

The objective of a learning automaton is to grasp an optimal choice from a 

random environment. This perception is not acquired, unless the automaton 

randomly selects an action and little by little learns the optimal action. Variable-

structure automatons are a typical example of the stochastic systems. A Variable-

Structure learning Automaton (VLSA) is identified by a quadruple  , , ,p T  , 

where        1 , ,p n T p n n n       is the reinforcement scheme of the 

automaton. If  1p n  is a linear function of  p n  the schema is called linear, 

otherwise it is nonlinear. In the noted learning scheme, T is the learning algorithm, 

 1 2, ,..., r    is the set of actions,  1 2, ,..., r    is the set of inputs and 

 1 2, ,..., rp p p p is the probability of each action. The pseudo code of a variable 

structure learning automaton in a stationary environment with  0,1   and r 

actions is shown in Figure 4: 

 

Algorithm 2 Learning automata probability vector update framework 
define 

Initialize r-dimensional action set:  
1 2
, ,...,

r
     where r is the number of actions. 

Initialize r-dimensional action probability vector:  
1 2

1 1 1
, , ...,

r

p
r r r


     
     
     

 

while (the automaton converge to one of its action) 

     The learning automaton selects an action based on the probability distribution of p. 

     The environment evaluates the action and calculates the reinforcement signal  0,1  . 
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     The environment feedbacks   to the learning automaton. 

     Consider i as the selected action of the automaton, j as the current checking action and 

     n as the n
th

 step of evolution. 

     Update the probability vector: 

     for each action [1,..., ]j r do 

          if 0    \\ positive response 

 
    
   

. 1
1

. 1

j j

j

j

p n a p n if i j
p n

p n a if i j

   
  

   

(3) 

          else if 1   \\ negative response 

 
   

   

. 1

1
1 .

1

j

j

j

p n b if i j

p n b
b p n if i j

r

  


  
  

  

(4) 

          end if 

     end for 

end while 

Fig. 4 Learning automata updating schema 

  

In (3) and (4), a and b are called learning parameters and they are associated with 

the reward and penalty responses. Considering the values of a and b, there are 

three types of learning algorithms. In Linear Reward-Penalty algorithm (LR-P), it is 

considered that a and b are equal. In Linear Reward-Inaction (
R IL 

) the learning 

parameter b is set to 0. And finally in Linear Reward-epsilon-Penalty ( R PL  ) the 

learning parameter b is much smaller than a. 

3 – 1 Improved PSOs using Learning Automata 

Parameter adaption [14], [55]–[57] is a successful application of learning 

automata. Due to sensitive parameters of PSO, Hashemi and Meybodi adaptively 

adjusted the values of inertia weight and acceleration coefficients of PSO at two 

levels of population, swarm degree and particle degree [14]. In order to address 

the diversity loss of PSO population in dynamic environment, a multi swarm PSO 

has been put forward in [15]. This Cellular PSO [15] used an N-dimensional CA 

with C
D
 cells in an N-dimensional problem space. The developed method 

contributed to save the population diversity. 

 Rastegar, Meybodi and Badie designed a LA-based Discrete PSO (DPSO) 

algorithm [58], which benefits from a collection of LA to comprehend the 

topological space of the optimization problem. Each LA is assigned to one 

dimension of the particle and can be viewed as the controller of it. The Bitwise 

LA which was used in DPSO algorithm estimates the particles position and moves 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

them through the search space. Jafarpour, Meybodi and Shiry [59] enhanced the 

LA-based DPSO using a CLA neighborhood topology, in which each particle was 

placed in a cell being affected by its best personal information and best 

information of neighboring particles. Learning automaton has greatly influenced 

the way in which particles fly in the search space. 

There have been lots of publications on trend and usage of learning in particle 

swarm optimization. The new model PSO-LA by Sheybani and Meybodi [60] 

introduced the usage of LA for path and velocity control of PSO in real parameter 

optimization. An application of PSO-LA in sensor network is addressed in [61]. 

PSO-LA used one LA to determine the trajectories of particles in PSO. Other 

efforts toward using LA to control the behavior of the PSO population have been 

described in [62]. In order to balance the process of global and local searched in 

this new PSO-LA algorithm, one learning automaton is assigned to each particle 

of the swarm. A recent advancement in combining learning automata with PSO 

was Dynamic PSO-LA (DPSOLA) [63]. The proposed model used three types of 

existing information, namely individual, neighboring and swarm information. In 

order to confirm the velocity update equation of PSO, LA selected a combination 

of the aforementioned information. The new algorithm had the ability to escape 

from the pseudominima and fast convergence speed. Another hybrid algorithm 

based on PSO and learning automata was Cooperative PSO-LA (CPSOLA) [64] 

which improved the performance of CPSO-H [8] using a learning automaton as an 

adaptive switching mechanism.  

4 Adaptive Cooperative Particle Swarm 

Optimizer 

Cooperative PSO [7], [8] divides the initial population into some subpopulations 

and each of these subswarms optimizes their designated dimensions individually. 

There are two layers of cooperation in a cooperative PSO. The first layer lies 

under the collaborative behavior of particles in specific dimensions and the 

second one is the schema that produces a solution vector by means of sharing the 

best information of each subpopulation to constitute a valid solution vector. In 

order to evaluate each member of the subpopulation, one requires constructing a 

context vector which aggregates the prime solution of each subpopulation within 

an N-dimensional vector. Typically to evaluate the current subpopulation, the 
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corresponding dimensions filled with the position of particle and the other 

dimensions are considered constant. The following is a typical cooperative 

coevolutionary pseudocode (Fig. 5):  

Algorithm 3 Cooperative Evolutionary Algorithm Framework 
define 

Split N-dimensional search space into j subpopulations of entities. 

Calculate the best individual of each subpopulation (sbest). 

Construct a Context Vector (CV) through the best individuals of each subpopulation: 

CV = [sbest1, sbest2, …, sbestj] 

for each generation i do 

     for each subpopulation j do 

           for each entity k do 

                  Replace current entity of the j
th

 subpopulation by its corresponding positions in the CV 

                  Evaluate the N-dimensional output vector through the fitness function. 

                  k=k+1 // next entity 

           end for 

           Apply cooperative behavior of EA to j
th

 subpopulation. 

           Update sbestj. 

           j=j+1 // next swarm 

     end for 

     i=i+1 // next generation 

end for 

Fig. 5 Pseudocode of the cooperative coevolutionary algorithms 

Finding correlated variables is an important application of cooperative 

approaches. Two variables are correlated since changing one of them shows an 

impact on the other one. A simple example of two correlated variables is the 

relationship between weight and height of people. If the height of someone is 

more than the average value, it is usually expected that his/her weight is also 

above the average. Correlation is a measure for calculating the power of 

association between two variables. However, covariance is a measure of 

calculating the correlation between each pair of correlated variables. In standard 

benchmark functions which are used in [6], [7], [41], [43], [46], all dimensions are 

independent from each other, but in coordinate rotated test functions which are 

introduced in [8], [18], dimensions of the problem are correlated. The rotation 

matrix which is used to rotate the variables of the problem correlates all 

dimensions of the search space. The correlation behind sub dimensions is a reason 

to divide the search space and optimize each division by a subpopulation. 

However, all dimensions of the standard coordinate rotated benchmark functions 

are correlated together. What if one changes the benchmark consciously? If one 

rotates the objective function so that the correlation lies exactly behind some 

specific dimensions of the problem, he/she will have the chance to allocate 

isolated subpopulations into the correlated sub dimensions. This kind of credit 
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assignment to swarms will eventually lead to improve the performance of the 

algorithm and make the test function more realistic. In order to show the impact of 

correlated variables on the performance of PSO, several active coordinate rotated 

test functions are designed the sub dimensions of which are affected by the 

rotation. 

The benchmark functions which are used to evaluate the cooperative PSO [7], [8] 

and other cooperative coevolutionary algorithms [6], [41], [43], [46]  considered 

the dimensions of problem independently. There are three drawbacks in these 

cooperative approaches. First of all, neglecting the correlation between variables 

by a fully coordinate rotation matrix which is used to rotate the problem 

dimensions is one major problem. Second, there is no term of correlation or 

covariance considered in their updating schema. And finally, the lack of a proper 

selection mechanism for the correlated sub dimensions can consequently lead to 

select the correlated dimensions unadvisedly in a random or fixed fashion. 

Originally, these algorithms do not see the correlation of variables and they are 

not suitable for real life optimization problems such as wireless communications, 

nuclear science, signal processing and etc. For these kinds of applications an 

alternative approach is needed which intelligently selects the correlated variables 

and optimizes them in mutual cooperation manner. In addition to accelerate the 

optimization process, optimizing correlated variables together could also make 

reaching the problem optimum more accurate. 

Based on the previous discussions, Adaptive Cooperative Particle Swarm 

Optimizer (ACPSO) is proposed here. The key idea of ACPSO algorithm is to 

find the correlated variables of the search space and integrate them into a joint 

swarm. A set of learning automata are used to extract the correlated dimensions. 

A learning automaton is an autonomous machine with finite number of actions. 

The automaton is originally like an inhabitant of stochastic ecosystem which 

interacts with the environment during the evolution part of its life. The responses 

of environment to the automaton gradually lead to emerge a survival behavior for 

the automaton. 

A typical ACPSO algorithm consists two phases: symbiosis and synergy. In 

symbiosis stage, the learning automata are allowed to learn the correlated 

parameters, while in synergy stage, these correlated dimensions are put in the 

same swarm and are optimized directly by CPSO algorithm. Also in the synergy 
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phase, the selected dimensions of each group may vary such that the learning 

automata still have the chance to learn the correlation. The schematic view of 

ACPSO algorithm is illustrated in Fig. 6. 

Symbiotic Evolution:

Individual life of a learning automaton by 

performing local search on its actions

Synergic Evolution:

Swarm life of the set of learning automata 

which are mounted on the particles dimensions

Start

Stop
 

Fig. 6 Two key steps of the ACPSO algorithm 

4 – 1 Introducing the Binary Swarm Table 

The fundamental data structure of ACPSO algorithm is a swarm table. Swarm 

table characterizes which dimensions belong to which swarm. A schematic view 

of this table is shown in Fig. 7. Each row of the swarm table represents a swarm 

and each column represents a dimension of the search problem. In Fig. 7, K 

denotes the number of predefined swarms and N is the dimensions of the problem. 

Having assigned the dimensions to the swarms, the corresponding dimensions of 

each swarm will be set to 1 and others to 0. Note that, each dimension can be only 

placed in one swarm. 

 

LA1 LANLA3LA2 ...

DND1 D3D2 ...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

0/1 0/1 0/1 0/1...

S1

S2

SK
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Fig. 7 Binary swarm table and the embedded learning automaton for each dimension.

 
1
, ,

K
S S S indicates the swarm set,  

1
, ,

N
D D D indicates the problem dimensions and 

 
1

LA LA ,..., LA
N

 represents the learning automaton set which are allocated to each dimension. 

4 – 2 Embedding Learning Automata in the Swarm Table 

In order to assign problem dimensions to swarms, a learning automaton was 

placed upon each dimension (|LA| = |D| = N where, ‘| |’ indicates the cardinality of 

a set, D = {D1,…,DN} is the set of problem dimensions with |D| = N and |LA| 

gives the cardinality of LA set ). The placed learning automata have total number 

of actions equal to the initial number of swarms in PSO population (r = |S| = K 

where, S = {S1,…,SK} and K denotes the number of swarms(|S| = K)). The initial 

probability of each action is 1/r (where r is the number of actions). Fig. 8 presents 

the assignment of learning automata to the swarm table and the mapping 

procedure of swarm table to the population. Each learning automaton is mounted 

on a particular dimension of the search space. There are two basic tasks of the 

learning automata: action selection and swarm dimension assignment that each 

automaton should perform them in each trial. At first context vector is required to 

evaluate the particles of population. For simplicity in Fig. 8 the context vector is 

formed through concatenating gbest particle of each dimension. Note that during 

further development of ACPSO algorithm the context vector will be constructed 

from the best position of swarm (sbest) while each sbest is not a sequential subset 

of discussed context vector from this section. Finally the particles of a swarm will 

evaluate through the context vector based on the 0/1 values of the swarm table. 

This mapping procedure is a part of ACPSO framework which will be discussed 

in details in the following section. 
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PM

P2

P1

D1 D2

P1D1 P1D2 P1D3    ... P1DN

P2D1 P2D2 P2D3    ... P2DN

PMD1 PMD2 PMD3     ... PMDN

D3 ... DN

PiD1 PiD2 PiD3    ... PiDNPi

LA1

S2

S1

S3

LA2 ...LA3

1 1 0 ... 0

0 0 0 ... 1

0 0 1 ... 0

LAN

PiD1   PiD2       gbestD3    …  gbestDNS1

S2

S3

gbestD1    gbestD2    PiD3           …  gbestDN

gbestD1   gbestD2    gbestD3      …       PiDNCV

Evaluate ith
 particle through Context Vector

gbestD1     gbestD2       gbestD3         …         gbestDN

Swarm TablePSO Population(a) (b)

(c) (d)

 

Fig. 8 Mapping process between PSO population and swarm table. The example consists of M 

particles with N dimensions: P = {P1,…,PM} | Pi = { PiD1, …, PiDN} (part a). Typically the 

number of swarms is set to 3. In first step the learning automata select their actions and scatter the 

dimensions into the swarms. After selecting the action, corresponding dimensions of the swarm 

will be marked as 1 in the swarm table (part b). Moreover, if we want to evaluate the i
th

 member of 

the j
th

 swarm, we will look up into the j
th

 row of swarm table (part c). To form an N-dimensional 

solution vector and calculate the fitness for the i
th

 particle of j
th

 swarm the components with 0 in 

the j
th

 row are remained constant as their values in the context vector (CV), while the components 

with 1 are replaced by corresponding values of the i
th

 particle (part d).  

4 – 3 ACPSO framework  

Adaptive cooperative PSO is a learning, Cooperative and Optimization algorithm. 

To simultaneously gather all these aspects together, one should establish a 

collective behavior between PSO population and a set of learning automata 

mounted on each dimension. A fuser module is first needed to match the learning 

ability of LA to the PSO population. A fuser gathers all information from the PSO 

population and computes a reinforcement signal for the learning automata. The 

schematic of such a module is shown in Fig. 9. The PSO population is the 

environment from which the learning automata should learn from it. The action 

set for each leaning automaton is  1,..., ;r r K    . Also the action 

probability vectors are associated with each learning automaton of the fuser 
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module. Each LA of the fuser module selects an action based on its action 

probability vector. The learning automata correlate with the swarm table and the 

selected action maps into it. Each particle of the current swarm evaluates through 

the context vector and the fitness of the related swarm spreads to the fuser module 

as reinforcement signals. The fuser combines these reinforcement signals and 

obtains the reinforcement signal for all learning automata of the swarm. For each 

automaton of the swarm, the action probability vector is updated according to its 

previous action and its received reinforcement signal.  

FUSER

LA1

LAN

LA2

 1 N21N 2

D1

DN

D2

S1

SK

Context

Vector

Swarm

Table

PSO

Population

 

Fig. 9  Module of learning automata 

The proposed algorithm consists of two steps nominated as symbiosis and 

synergy. The following will explain them more clearly: 

ACPSO Symbiosis Step 

The aim of symbiosis step is to give LA the required time to learn the correlated 

variables of the search space, before the algorithm starts to optimize the problem 

intentionally. At first the learning automata select their actions based on their 

initial probability vectors which are equal to 1 divided by the number of actions 

(as mentioned before the action set size of each automaton is equal to the number 

of swarms). After filling the swarm table, the particles of each group are evaluated 

using a context vector. Note that, a context vector is constructed from the swarm 

best positions of each swarm (sbest). As mentioned, the basic goal of symbiosis 

step is to let the learning automata grasp a comprehensive view about the 
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correlation of variables. The following procedures describe details of this step, 

while some of them are common with symbiosis step. 

Initialize Context Vector: In order to calculate each swarm best position (sbest) 

and concatenate them to form the context vector, this procedure will be used at the 

beginning of ACPSO algorithm. At first, corresponding dimensions of each 

swarm is extracted from the swarm table. Then the best particle among each 

subpopulation is chosen and considered as sbest. Concatenation of these particles 

leads to form the context vector. The discussed procedure is illustrated in Fig 10. 

Procedure 1 Initialize Context Vector 
define 

Number of swarms K and number of dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let A(d) B(d) | d D overwrites d positions of vector B in corresponding d positions of vector 

A. Also,let A B(d) | d D overwrites d positions of vector B in vector A. 

Let x denotes PSO population. 

Let gbest = [gbest1, gbest2, …, gbestN]  denotes the global best position of initial population. 

Initialize CV by global best position of population: CV = gbest  

begin 

     for each swarm j [1, …, K] 

          Find Sj swarm members: 

               Let d be the set of corresponding dimensions of Sj: 

                    d D | SWARM_TABLE(j,d) = 1 

          for each particle  1,...,i PS   

               Replace d positions of CV with corresponding values in xi: CV(d) xi(d)  

               if fitness (CV) < fitness (gbest) 

                    sbestj xi(d) 

               end if 

          end for 

     end for  
     Let CV = [sbest1, sbest2, …, sbestK] be the context vector. 

end 

Fig. 10  Initializing the context vector based on all global best particles. 

Context Vector: In cooperative approaches, the global best particle of the 

population includes sbest information of each swarm, while the information 

composition of these sbest's would construct an N-dimensional context vector. 

While evaluating the particles of j
th

 swarm, the context vector function returns an 

N-dimensional vector which consists of all the global best particles in all swarms, 

except for j
th

 swarm, which is replaced with the position of any particle of j
th

 

swarm. Fig. 11 presents the context vector subroutine. 

Procedure 2 Context Vector (d,p) 
define 

Current particle p, number of swarms K and number of dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let d D be a subset of D. 
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Let A(d) B(d) | d D  overwrites d positions of vector B in the corresponding d positions of 

vector A. Also, let A B(d) | d D  overwrites d positions of vector B in vector A. 

Build CV from all swarms best position: CV = [sbest1, sbest2, …, sbestK]  

begin 

     Replace d positions of CV with the corresponding values in p: CV(d) p(d)  

     Return CV. 

end 

Fig. 11  Evaluating the PSO population through the context vector. 

Action Refinement: In this subroutine and after completing each evolution round 

of PSO population, sequentially one of the swarm table dimensions will be chosen 

and its corresponding learning automaton will change its action randomly. In the 

next generation, the impact of this change is evaluated in the swarm table with the 

isolate update procedure being applied to the corresponding learning automaton. 

This procedure performs a local search on the learning automaton action set and 

lets the reward and penalty signals be more effective. Besides giving vague 

reinforcement signals to the learning automata from the beginning, the LA is let to 

identify the correlated variables more preciously and gradually. Fig. 12 depicts 

pseudocode of the action refinement procedure. 

Procedure 3 Action Refinement (i) 
define 

Current generation i, number of dimensions N and swarm number K. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let LA = {LA1, …, LAN} denotes the set of learning automaton designated to each dimension. 

begin 

     Calculate LA index for refinement: 

          d = (i mod N) +1 | d D  

     Select random swarm j: 

          [1,..., ]j K  | SWARM_TABLE(j,d) 1 

     Change the selected action of LAd to j. 

     Let V = {V1, …, Vq} denotes a subset of swarms set S. 

     Let V = {S1, …, SK} - Sj | V S be the subset of S except for Sj, while q = K -1. 

     Update swarm table: 

          Fill j
th

 row of swarm table with 1: 

               SWARM_TABLE(j,d) = 1 

          Fill V row members of swarm table with 0: 

               SWARM_TABLE(Vl,d) = 0 | l  [1,…,q] 

end 

Fig. 12 Action refinement procedure 

Reinforcement Signal: The learning automata should detect a signal from the 

environment, regarding the impact of their actions. Having a suitable feedback 

from the population of swarms and fusing it to convey an operational token will 

play an important role in building an efficient reinforcement signal. In order to 

construct a suitable reinforcement signal, several ways are examined such as: 

mean improvement on pbest's information of the particles, mean gbest 

improvement of the population and gbest improvement of the population. This 
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observation implies that the signal made from gbest information of PSO 

population is the most effective one and also takes into consideration fairness 

about the population. Reinforcement signal shows to the set of learning automata 

whether their actions are right or wrong. The signal is defined by (5) below: 

   10

1

i ifitness gbest fitness gbest
ReinforcemeSignal

otherwise

 
 
  

(5) 

Where, i is the current iteration number. As all test problems are a kind of 

minimization functions, the smaller their fitness, the better they are. If the fitness 

of global best particle of the population (gbest) is improved (decreased) by a 

specific swarm, then the corresponding swarm will get the reward signal. Since 

the gbest improvement is equal surpass of swarm best position (sbest), one can 

additionally define the reinforcement signal via sbest information of each swarm. 

This schema is executed after evaluating each swarm of PSO population. The 

signal is only applied to a learning automaton (in isolate update procedure) or a 

set of LA that are associated with the current swarm (in ensemble update 

procedure). Then the corresponding probability vectors of LA are modified based 

on learning algorithm of automata using (3) and (4). Procedure of the 

reinforcement signal is illustrated in Fig. 13.  

Procedure 4 Reinforcement Signal (t,j) 
define 
Improvement tag t and current swarm j. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let sbestj | j  [1, …, K] denotes the swarm best position of Sj. 

begin 

     if t == 1 

          Reinforcement Signal = 0 // gbest is improved by Sj or sbestj  is improved. 

     else if t == 0 

          Reinforcement Signal = 1 // gbest is not improved by Sj or sbestj  is not improved. 

     end if 

     signal = Reinforcement Signal 
     Return signal. 

end 

Fig. 13  Calculation of the reinforcement signal based on equation (5). 

Parameter t is obtained from the body of ACPSO algorithm. Also the result of 

reinforcement signal procedure will be coupled with isolate update and ensemble 

update procedures in symbiosis and synergy steps, respectively. 

Isolate Update: If someone wants to apply reward and punishment signal in just 

one dimension, he/she will use isolate update procedure (see Fig. 14). The 

function uses the reinforcement signal which is calculated for the current 

dimension and lets the learning automaton independently performs its update task 
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on the corresponding dimension (reinforcement signal will be defined later). The 

isolate update procedure will be further developed with in synergy step which has 

additional applications in the swarm table. 

Procedure 5 Isolate Update (signal, j) 
define 

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and 

number of dimensions N. 

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension. 

Let  LA 1,...,|i i N  denotes the selected automaton for updating its probability vector by input 

signal.  

Let  
1
, ...,

r
   denotes the action set of LAi, where r = K. 

Let  1,...,|j j K   be the selected action of LAi. 

Let Z = {Z1, …, Zq} denotes a subset of action set  . 

Let  
1
, ..., |

r j
Z Z      be the subset of LAi action set except for j , where q = r-1. 

begin 

     if signal = 0 

          Reward j action of LAi. 

          Penalize Z action members of LAi: Zl | l   [1,…,q]. 

          Update corresponding probability vector of LAi by using (3). 

     else if signal = 1 

          Penalize j action of LAi. 

          Reward Z action members of LAi: Zl | l   [1,…,q]. 

          Update corresponding probability vectors of LAi by using (4). 

     end if  

end 

Fig. 14 Isolate update procedure 

ACPSO Synergy Step 

After selecting dimensions in symbiosis step, which would place the correlated 

subsets of variables in the same swarms, the synergy step is initiated. Till now, the 

swarm table may assign wrong or incomplete dimensions to the swarms and these 

noisy swarms may deteriorate the fitness value during evaluation. The aim of this 

phase is to exploit the correlation detection power of the set of learning automata 

and also to optimize the test function explicitly. 

Similar to symbiosis interval, the swarms contribute to the context vector and 

each particle optimizes the problem through different contexts. As discussed in 

the isolate update procedure, the reinforcement signal leads to find the best policy 

of the automaton. In other words, the reinforcement signal helps the automaton to 

identify a subset of correlated variables in the search space. The swarms contain a 

collection of learning automata and the reinforcement signal should be provided 

for all of them. Thus, a procedure is required to apply the reinforcement signal for 

a bunch of LA. 
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Finally, ACPSO algorithm needs a function to initialize the swarm table at the end 

of each generation. This mechanism is performed based on the probability vector 

of each automaton. The following procedures sketch work flow of the synergic 

step: 

Ensemble Update: Regardless of the number of swarm members, all the swarm 

components are evaluated together in synergy step and the reinforcement signal is 

calculated based on either gbest information at population level or sbest 

information at swarm level. The signal deploys only on corresponding learning 

automata which are associated with the specified swarm. If at least one of the 

swarm members can improve the gbest fitness, this swarm might have a good 

configuration of dimensions. Such configuration is expected to include more 

correlated variables of the search space and the associated learning automata may 

identify the coherent choice of dimensions. Fig. 15 illustrates the grouping update 

procedure in which the set of learning automata associated with j
th

 swarm 

retrieves the reward or penalty signal. 

Procedure 6  Ensemble Update (signal,j) 
define 

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and 

number of dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension. 

Find Sj swarm members: 

     Let d D | SWARM_TABLE(j,d) = 1 denotes  a subset of dimensions set D. 

     Let d = {d1, …, dp} be the set of corresponding dimensions of S j, where |d| = p. 

Find set of learning automata associated to Sj for updating their probability vectors by input signal.  

     Let LA_S = {LA_S1, …, LA_Sp} donates a subset of LA corresponding to Sj. 

     Let LA_S = {LA1, …, LAN} – {LAd1, …, LAdp} | LA_S   LA be the of corresponding 

     learning automata of Sj. 

Let  
1
, ...,

r
  

 
denotes the action set of each automaton of LA_S, where r = K. 

Let  1,...,|j j K  denotes the selected action of LA_S which are designated to Sj. 

Let Z = {Z1, …, Zq} denotes a subset of action set . 

Let  
1
, ..., |

r j
Z Z      be the subset of LA_Sd | d = {d1, …, dq}action set except for j , 

where q = r-1. 

begin 

     for each LA_S i  [1, …, p]: 

          if signal = 0 

               Reward j action of LA_Si. 

               Penalize Z action members of LA_Si: Zl | l   [1,…,q]. 

               Update corresponding probability vector of LA_Si by using (3). 

          else if signal = 1 

               Penalty j action of LA_Si. 

               Reward Z action members of LA_Si: Zl | l   [1,…,q] 

               Update corresponding probability vectors of LA_Si by using (4). 

          end if   

     end for 
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end 

Fig 15. Deployment of reinforcement signal for the LA which are associated with j
th

 swarm. 

 Action Selection: At the end of each generation, the swarm table should be refill 

based on the new probability vectors of automata. The updating procedure 

contributes the algorithm to detect the correlated dimensions more accurately. 

Thus, at the end of each generation each automaton distinguishes every attached 

dimensions of it belongs to which swarm (Fig. 16). 

Procedure 7 Action Selection 
define 

Number of swarms K and number of dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms disseminated in problem dimensions. 

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension. 

Let  
1
, ...,

r
   denotes the action set of each automaton, where r = K. 

Let p = {p1, …, pr} denotes the probability vector corresponding to action set of each automaton. 

begin 

     for each LA [1, ... ]i N  

          LAi selects the j  action based on its current probability vector p from its action set . 

          Let  | 1, ...,
j

j K  be the selected action of LAi. 

          Let Z = {Z1,…, Zq} denotes a subset of action set . 

          Let  
1
, ..., |

r j
Z Z      be the subset of LAi action set except for j , while q = r-1. 

          Update swarm table: 

               Fill j
th

 row of swarm table with 1 

                    SWARM_TABLE(j,i) = 1 

               Fill Z row members of swarm table with 0: 

                    SWARM_TABLE(Zl,d) = 0 | l  [1,…,q] 

     end for 

end 

Fig 16.  Function describes how learning automata fill the swarm table. 

The intelligent framework of ACPSO algorithm employs a set of learning 

automata and utilizes the correlated variables to extend the global and local search 

abilities of the cooperative PSO. The pseudocode of the ACPSO algorithm is 

presented in Fig. 17. 

Algorithm 4 ACPSO algorithm 
define 

Initialize PSO parameters: population size PS, dimension number N, number of swarms K, 

generation ge = 0, fitness evaluation fe = 0, maximum fitness evaluations FE, maximum 

generations GE, train epoch TE, Improvement Tag t = 0 and inertia weight w. 

Initialize SWARM_TABLE[K N] data structure. 

Initialize position x and associated velocity v.  

Initialize pbest = [pbest1, …, pbestN] and gbest = [gbest1, …, gbestN] of population. 

Initialize K swarms: S = {S1,…,SK} 

Initialize sbestj | j  [1, …, K] 

Let D = {D1, …, DN} be the set of problem dimensions. 

Let A(d) B(d) | d D  overwrites d positions of vector B in the corresponding d positions of 

vector A. Also, let A B(d) | d D overwrites d positions of vector B in vector A. 

Initialize LA parameters: action probability vector P, alpha (reward signal), beta (penalty signal) 

and action number r, where r = K. 

Call procedure ACTION_SELECTION and fill SWARM_TABLE. 
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Call procedure INITIALIZE_CONTEXT_VECTOR. 

Let b (d,p) as procedure CONTEXT_VECTOR (dimension, position) which builds context vector 

in different contexts of different swarms. 

Let f be the fitness value. 

repeat  //Symbiosis phase 

     for each swarm  1,...j K : 

          find Sj swarm members: 

               Let d be the set of Sj dimension members. 

               d D | SWARM_TABLE(j,d) = 1 

          for each particle  1,...,i PS :  

               Evaluate the particle through the context vector: 

                    Let p be the position that is going to evaluate in the context of Sj. 

                    Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj. 

                    if f (b(d,xi(d)) < f (b(d,pbesti(d))) then 

                         pbesti(d)  xi(d) 

                    end if 

                    if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then 

                         gbest(d)  pbesti(d) 

                         sbestj pbesti(d) 

                         t = 1 

                    end if 
               fe = fe + 1 

          end for 
          Perform PSO update for Velocity and Position on Sj using (1) and (2). 

          if g>0 AND j == (g mod N) + 1 

              Call procedure REINFORCEMENT_SIGNAL (t,j) // calculate signal 

              Call procedure ISOLATE_UPDATE (signal,j)        //  deploy signal 

          end if 

          t = 0 

     end for 

     Call procedure ACTION_REFINEMENT (g) and refine the action of associated LA. 

     ge = ge + 1 

until ge < EP 

repeat  //Synergy phase 

     for each swarm  1,...j K : 

          find kj swarm members: 

               d D | SWARM_TABLE(j,d) = 1 

               Let d be the set of Sj dimension members. 

          for each particle  1,...,i PS :  

               Evaluate the particle through the context vector: 

                    Let p be the position that is going to evaluate in the context of Sj. 

                    Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj. 

                    if f (b(d,xi(d)) < f (b(d,pbesti(d))) then 

                         pbesti(d)  xi(d) 

                    end if 

                    if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then 

                         gbest(d)  pbesti(d) 

                         sbestj pbesti(d) 

                         t = 1 

                    end if 
               fe = fe + 1 

          end for 
               Perform PSO update for Velocity and Position on Sj using (1) and (2). 

               Call procedure REINFORCEMENT_SIGNAL (t,j). // calculate signal  

               Call procedure ENSEMBLE_UPDATE (signal,j).   // deploy signal 

               t = 0 

     end for 
     Call procedure ACTION_SELECTION and fill SWARM_TABLE for the next generation. 
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     ge = ge + 1 

until (ge <= G AND fe <= FE) 

Fig 17. Pseudocode for the generic ACPSO algorithm. 

5 Simulation Results 

In this section the benchmark functions which are used for experimental 

simulation and modeling are briefly introduced. In order to examine the 

performance of proposed algorithm, four kinds of experiments are conducted in 

the following subsections. The first experiment is conducted on TEC 2006 [18] 

benchmark functions which are proposed in [18] to test CLPSO algorithm. The 

second experiment consists of optimization problems of TEC 2006 [18] which are 

unrotated and rotated functions. This set of new benchmark shows how 

interestingly ACPSO optimizes the rotated problems and suppresses its 

competitors. The third selected set of test functions is composition benchmark 

functions of CEC 2005 [17], which are quite difficult optimization problems. The 

last and fourth experiment is carried out on six 300-dimensional multimodal 

functions of TEC 2009 [20] with the aim of extending ACPSO application to real 

world optimization problems. 

Since the aim of ACPSO algorithm is to learn the correlated variables of the 

search space, the learning parameters and swarm size have been playing an 

important role in achieving better results. The number of generations which is 

considered for symbiosis stage is set to 500. Due to this restriction, the associated 

set of learning automata should learn the correlated variables of the search space 

in symbiosis step much faster. Moreover, convergence to the optimal action will 

occur later in synergy stage. 

ACPSO algorithm was tested on various settings of parameters and finally the LR-

P learning algorithm was selected with learning parameters alpha = beta = 0.1. 

The number of swarms in ACPSO algorithm is a static parameter which should be 

set prior to running the algorithm. In order to observe the impact of this 

parameter, it is set to 3 and 6 for all 30 dimensional experiments conducted in this 

paper and also 30 and 60 for 300-dimensional experiment. Tables 1-3 summarize 

the experimental results for 30D problems while Table 4 lists those from 300-

dimensional cases. 
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5 – 1 Experiment 1: IEEE TEC 2006 Benchmark Functions 

Test Functions and Parameter Settings 

There are 16 different optimization benchmark functions which are introduced in 

TEC 2006 [18]. These test functions are categorized in four main groups: 

Group A: Unimodal and Simple Multimodal Problems: f1-f2 

Group B: Unrotated Multimodal Problems: f3-f8 

Group C: Rotated Multimodal Problems: f9-f14 

Group D: Composition Problems: f15-f16 

To show the performance of the proposed method, ACPSO algorithm was run on 

these 16 test problems with 30 dimensions and compared with two famous PSO 

variants. Essentially one of our counterparts is CPSO-H [8] and the other one is 

CLPSO [18]. The parameter settings which are used for these two PSOs are 

similar to TEC 2006 [18]. For 30-dimensional problems the population size is set 

to 40 and the maximum fitness evaluation is set to 200,000, respectively. For each 

of these test functions 30 independent runs being conducted and the average and 

standard deviation of results being reported in Table 1. 

30-dimensional problems 

Table 1 shows the overall performance of ACPSO and other algorithms on 16 

different 30-dimensional benchmark functions. The obtained results demonstrate 

that ACPSO alleviates curse of dimensionality and retains its performance in 30-D 

problems. In both unimodal and multimodal problems (f1-f8), ACPSO outperforms 

CPSO-H. f1 problem is a simple and convex one which can be optimized by 

ACPSO faster than other PSOs. In f2, ACPSO can avoid getting trapped in local 

minima by changing its search direction through the problem space. In unrotated 

multimodal problems (f3-f8), global and local searches are managed 

simultaneously. The algorithms that see dimensions of the problem independently 

fail to optimize these kinds of problems. 

Cooperative algorithms divide the solution space into several subspaces and 

assign each subspace to a swarm. The cooperation avoids early stagnation of the 

algorithm and balances both exploration and exploitation features of PSO. 

ACPSO algorithm generally performed similar to CLPSO and better than CPSO-

H in rotated multimodal problems (f9-f14) and composition functions (f15-f16) 
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which are the most complex problems of this experiment. Since the swarm 

members are stochastically selected in ACPSO and there is no helpful feedback 

about the swarm configuration, the results are tolerable as compared to CLPSO 

algorithm. Population of CLPSO learns from different exemplars in different 

dimensions, which implies the large potential search space of CLPSO. For this 

purpose, CLPSO algorithm emphasizes on diverse feasible solutions of the search 

space. This set of diverse solutions which are originated from theoretical search 

experience of each particle, leads to the superior performance of CLPSO on 

highly multimodal problems. Having a look on rank (R) columns of Table 1 

reveals that ACPSO statistically outperforms CLPSO and CPSO-H in 62.5 % and 

93.75 % of the test cases, respectively. 

 

Table 1 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H [8] 

and CLPSO [18] algorithms in 30-D problems. The last three rows represent the performance 

compassion between ACPSO and other algorithms, where ''−'', ''+'' and ''='' indicate that the 

performance of ACPSO is worse, better and similar to counterpart algorithms, respectively. The 

values listed in the “R” columns are used to specify this performance measure. 

F CLPSO R CPSO-H R ACPSO3-LR-P ACPSO6-LR-P 

f1 4.46E-14 ± 1.73E-14 + 1.16E-113  ± 2.92E-113 + 0.00E+00 ± 0.00E+00 2.43E-188 ± 0.00E+00 

f2 2.10E+01 ± 2.98E+00 + 7.08E+00  ± 8.01E+00 + 3.18E-05 ± 4.01E-05 2.89E-06 ± 2.34E-06 

f3 0.00E+00 ± 0.00E+00 − 4.93E-14 ± 9.17E-14 + 8.76E-15 ± 3.06E-15 1.85E-14 ± 6.00E-15 

f4 3.14E-10 ± 4.64E-10 − 3.63E-02 ± 3.60E-02 + 3.47E-02 ± 2.29E-02 4.84E-02 ± 3.04E-02 

f5 3.45E-07 ± 1.94E-07 + 7.82E-15 ± 8.50E-15 + 0.00E+00 ± 0.00E+00 5.45E-15  ± 5.81E-15 

f6 4.85E-10 ± 3.63E-10 + 0.00E+00 ± 0.00E+00 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

f7 4.36E-10 ± 2.44E-10 + 1.00E-01 ± 3.16E-01 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

f8 1.27E-12 ± 8.79E-13 − 1.83E+03 ± 2.59E+02 + 8.94E+02 ± 8.14E+01 4.93E+02 ± 1.22E+02 

f9 3.43E-04 ± 1.91E-04 + 2.10E+00 ± 3.84E-01 + 8.20E-15 ± 2.61E-15 1.65E-14 ± 4.65E-15 

f10 7.04E-10 ± 1.25E-11 − 5.54E-02 ± 3.97E-02 + 2.85E-02 ± 2.41E-02 3.61E-02 ± 3.48E-02 

f11 3.07E+00 ± 1.61E+00 − 1.43E+01 ± 3.53E+00 + 2.95E+00 ± 1.33E+00 3.62E+00 ± 1.41E+00 

f12 3.46E+01 ± 1.61E+00 + 1.01E+02 ± 3.53E+00 + 3.27E+01 ± 5.07E+00 3.61E+01 ± 8.13E+00 

f13 3.77E+01 ± 5.56E+00 + 8.80E+01 ± 2.59E+01 + 2.58E+01 ± 6.29E+00 2.95E+01 ± 4.21E+00 

f14 1.70E+03 ± 1.86E+02 − 3.64E+03 ± 7.41E+02 + 3.89E+03 ± 5.72E+02 3.51E+03 ± 4.20E+02 

f15 7.50E-05 ± 1.85E-04 + 1.30E+02 ± 1.64E+02 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

f16 7.86E+00 ± 3.64E+00 − 7.83E+01 ± 1.60E+02 − 5.27E+02 ± 1.10E+02 4.97E+02 ± 1.17E+02 

+  9  15   

−  7  1   

=  1  0   

 

If the dimensionality of problem increases, then the optimization of it by PSO will 

be become more difficult. This is exactly due to exponential growth of the search 

space. In order to confront the mentioned problem known as curse of 
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dimensionality, the volume of search space is divided and assigned to small 

swarms in cooperative approaches. ACPSO algorithm dynamically exploits from 

these small volumes during the evolution and modifies their configuration in an 

attempt to discover correlated components of the search space. So in ACPSO 

algorithm, the results will not deteriorate if the dimensionality of the problem 

increases. 

In TEC 2006 benchmark functions [18], increasing the number of swarms from 3 

to 6 incurs detrimental effect on the performance of ACPSO algorithm. This 

phenomenon especially occurs in 30-D problems of TEC2006 and almost fades in 

300-D problems of [20]. Large numbers of swarms suffer from two major 

drawbacks: first, it increases the number of function evaluations needed for 

convergence of the algorithm; and second, leads to a large action set per 

automaton. When there are no sub correlated variables in the search space to 

produce a suitable reinforcement signal, the automata cannot select an optimal 

policy efficiently. In an attempt to enhance the performance of ACPSO algorithm, 

a set of new benchmarks are conducted in the next experiment, which precisely 

uncovers a subtle performance for ACPSO. 

5 – 2 Experiment 2: Active Coordinate Rotated Benchmark 

Functions 

To have a fair compassion of ACPSO and other PSOs, one should design some 

new test functions with correlated dimensions. In order to show the correlation 

detection feature of ACPSO during solving an optimization problem, some active 

coordinate rotated benchmark functions are introduced here. Moreover, one 

should adapt CPSO-H and CLPSO algorithms [8], [18] to fit this new validation 

method. 

Building New Benchmark Functions 

A new set of benchmark functions is proposed for correlation detection in this 

subsection. Originally, these functions are taken from TEC 2006 [18]. Based on 

the previously mentioned features of ACPSO, capacities of the algorithm emerge 

entirely just when the coordinate rotation is applied to dimensions of the specific 

problem. The test functions used in [8], [18], apply the rotation matrix to all 

dimensions and create a correlation between all dimensions of the problem. Due 
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to the globally coordinate rotated benchmark functions which are utilized in [8], 

[18], the search space is divided into multiple sub dimensions with these sub 

dimensions being rotated intentionally. This process leads to have some correlated 

subspaces in the search space. 

The pseudocode of partitioning mechanism is outlined in Fig. 18 these new 

benchmarks. First, the problem dimensions are split and some rotation matrixes 

are created according to the number of swarms. Then, while evaluating each 

member of the population, these correlated sub dimensions are pre multiplied to 

their designated rotation matrix. Finally, multiple correlated sub dimensions are 

created which are independent from each other. If these correlated variables are 

put into one same swarm, performance of the algorithm will be improved 

significantly. This process is applied to coordinate rotated multimodal functions 

(f9-f14) of TEC 2006 [18] and leads to create new active coordinate rotated 

benchmark functions. 

Algorithm 5 pseudocode of active rotation matrix 
Define 

Rotation Matrix M, Number of dimensions N, number of swarms K and swarm length L. 

Let x  = [x1, …, xD]
T
 be the original variable. 

Let y  = [y1, …, yD]
T
 be the new rotated variable. 

Let S  = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

K1 = n mod K; L1 = 
N

K

 
  

 

K2 = K – (n mod K) ; L2 = 
N

K

 
  

 

for each Ki | i [1,2] 

     Initialize Ki Li-dimensional rotation matrix: 

          for each swarm Sj | 1,...,j K
i

     

               

...
11 12 1

...
21 22 2

... ... ... ...

...
1 2

i

i

i ii i

m m m
L

m m m
L

M j

m m mL LL L



 
 
 
 
 
 
   

          Split the corresponding dimensions of Sj: 

               Let r = [1, …, d] be the range of associated swarm, where d = Li. 

               yj = [x1, …, xd]
 T

  Mj 

          end for 

end for 

y = [y1, …, yK]
 T

 

Use variable y to calculate the fitness value f. 

Fig. 18. Rotation matrix generator. 
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Before evaluating the particles by these new benchmark functions, one should 

adapt PSOs with the proposed procedure. Besides modification of CLPSO 

algorithm, two versions of CPSO-H algorithm are implemented as discussed in 

the following: 

Randomized CPSO-H (rCPSO-H): Due to the nature of the rotation matrix 

generator, correlated variables of the search space will be place sequentially 

together. Since naïve selection of the correlated dimensions in CPSO-H algorithm 

is going to be shown, a permutation will be applied to the swarm members at the 

beginning of this algorithm. Then, the correlated dimensions are not exactly 

placed in the same swarm. Consequently, this partitioning mechanism has been 

simulating the hopeless structure of CPSO-H algorithm in finding some correlated 

variables for the same swarm. 

Idealized CPSO-H (iCPSO-H): Since the partitioning mechanism blindly takes 

the value c (c<N) in CPSO-H [8], some correlated variables are expected to end 

up in the same swarm. The rotation matrix was exactly applied on sub dimensions 

of the problem which are placed in the same swarm. As a result, the correlated 

variables will be optimized together and performance of the algorithm will 

obviously dominate that of rCPSO-H. 

Both rCPSO-H and iCPSO-H algorithms determine their swarm members at the 

beginning of the algorithm and sustain the initial configuration of the correlated 

variables during evolution. In the current arranged experiment, the lack of 

learning ability for CPSO-H will be sensed more considerably and the power for 

correlation detection of ACPSO algorithm will emerge strongly. 

Benchmark Functions and Parameter Configurations 

In the following experiment, the discussed rotation matrix of Fig. 18 is applied to 

the multimodal coordinate rotated test functions (f9-f14) of TEC 2006 [18] and they 

are employed to compare the proposed method with CLPSO, rCPSO-H  and 

iCPSO-H algorithms. All the algorithms run on 30-D problems with 40 particles 

per population. The experiments are repeated 30 times with the standard deviation 

and mean of these runs being reported in Table 2. Similar to experiment 1, the 

corresponding set of learning automata use a LR-P learning algorithm with alpha = 

beta = 0.1. 
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Table 2 The mean and standard deviation of function error values for ACPSO-LR-P, iCPSO-H, 

rCPSO-H and CLPSO algorithms in 30-D problems. The last 3 columns represent the performance 

compassion between ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the 

performance of ACPSO is worse, better and similar to counterpart algorithms, respectively. The 

values listed in the “R” columns are used to specify this performance measure. The column S 

represents the number of swarms. 

Algorithm S f9 R f10 R f11 R + − = 

CLPSO 3 5.39E-12 ± 2.68E-11 
+ 

3.68E-10 ± 1.84E-09 
− 

4.77E-01 ± 4.20E-01 
− 1 2 0 

 
6 5.66E-14 ± 1.07E-13 5.47E-15 ± 2.59E-14 1.56E-01 ± 1.48E-01 

iCPSO-H 3 1.65E-01 ± 3.93E-01 
+ 

3.14E-02 ± 3.08E-02 
+ 

1.92E+00 ± 1.62E+00 
− 2 1 0 

 
6 2.77E-14 ± 6.49E-15 6.35E-02 ± 6.53E-02 6.59E-02 ± 9.52E-02 

rCPSO-H 3 8.53E-01 ± 8.82E-01 
+ 

2.64E-02 ± 2.39E-02 
+ 

6.04E+00 ± 2.09E+00 
+ 3 0 0 

 
6 5.76E-01 ± 7.44E-01 3.82E-02 ± 4.38E-02 5.60E+00 ± 2.48E+00 

ACPSO-LR-P 3 7.84E-15 ± 2.20E-15  2.42E-02 ± 2.14E-02  1.74E+00 ± 1.18E+00     

 
6 1.29E-14 ± 3.43E-15  4.05E-02 ± 3.78E-02  2.92E+00 ± 1.44E+00     

Algorithm S f12 R f13 R f14 R + − = 

CLPSO 3 2.56E+01 ± 7.62E+00 
− 

1.99E+01 ± 5.49E+00 
+ 

3.39E+03 ± 4.05E+02 
+ 2 1 0 

 
6 2.35E+01 ± 6.38E+00 1.69E+01 ± 3.27E+00 3.11E+03 ± 5.91E+02 

iCPSO-H 3 3.06E+01 ± 7.71E+00 
− 

1.92E+01 ± 3.90E+00 
− 

2.77E+03 ± 4.16E+02 
− 0 3 0 

 
6 1.30E+01 ± 3.59E+00 9.40E+00 ± 1.53E+00 1.65E+03 ± 3.51E+02 

rCPSO-H 3 5.11E+01 ± 1.71E+01 
+ 

4.46E+01 ± 1.47E+01 
+ 

3.80E+03 ± 6.20E+02 
+ 3 0 0 

 
6 5.06E+01 ± 1.48E+01 2.98E+01 ± 1.45E+01 3.93E+03 ± 5.09E+02 

ACPSO-LR-P 3 2.80E+01 ± 3.92E+00  1.85E+01 ± 2.17E+00  3.60E+03 ± 4.14E+02     

 
6 3.14E+01 ± 7.30E+00  1.59E+01 ± 2.81E+00  3.06E+03 ± 4.43E+02     

Discussion of results 

All the problems which are used in this experiment are active coordinate rotated 

multimodal functions. Since swarm members of iCPSO-H are fully tuned on 

correlated dimensions of the problem space, the performance of iCPSO-H is 

superior to other algorithms. Although iCPSO-H exactly knows the correlation 

configuration, ACPSO learning ability can suppress iCPSO-H in almost half of 

the benchmark functions. There is a chance that ACPSO produces noisy swarms 

or roughly finds correlated dimensions. These phenomena may balance the 

abilities of global and local searches and improve performance of the search to 

some context.  

rCPSO-H algorithm is a cooperative PSO without any information about 

correlated parameters of the search space (like CPSO-H in [8]). In 30-D problems, 

ACPSO suppress rCPSO-H in all test cases almost 100 %. The learning ability of 

ACPSO is clearly evident in the experiment conducted with rCPSO-H. However, 

the new learning strategy of CLPSO is based on pbest information from each 

individual of the population and thus can exploit the required solution diversity 
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from the designed benchmark functions; CLPSO algorithm maintains its 

performance. By comparing the proposed method with CLPSO, ACPSO 

outperforms CLPSO algorithm in 3 out of 6 problems. 

From Table 2, one can realize that in addition to simplifying the problem, 

increasing the number of applied separate rotations will also improve performance 

of algorithm. This case obviously occurs in iCPSO-H algorithm. This algorithm 

knows the exact location of correlated variables. ACPSO algorithm tries to find 

the proper set of dimensions for each of the swarms. This functionality needs a 

proper feedback from the environment which is defined as the improvement of 

gbest information of the population. Since the reinforcement signal is defined 

globally and there is enough number of generations, the set of learning automata 

can converge to an optimal configuration of swarms and its performance achieves 

better results than CLPSO and rCPSO-H. 

 

 

 

5 – 3 Experiment 3: IEEE CEC 2005 Benchmark Functions 

In the special session of CEC 2005 [17], 25 benchmark functions are defined for 

real-parameter optimization. The mathematical formula and properties of these 

functions are described in [17]. The test functions are divided into four basic 

groups: 

1) Unimodal Functions (5)  

2) Basic Multimodal Functions (7) 

3) Expanded Multimodal Functions (2) 

4) Hybrid Composition Functions (11) 

To show the eligibility of ACPSO algorithm in different benchmark functions, in 

this section ACPSO is compared with CPSO-H (randomized version) and CLPSO 

algorithms. For each algorithm, the population size, number of dimensions and 

termination condition are set to 30 particles, 30 dimensions and 300,000 fitness 

evaluations (FEs). The results for ACPSO and CPSO-H are reported for 6 swarms 

per population. All algorithms were run 25 times with the average and standard 

deviation of function error values (
*( ) ( )f x f x ) being reported in Table 3. 
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Similar to experiment 1 and 2, the learning algorithm is an LR-P schema with 

alpha = beta = 0.1. 

Discussion of Results 

The experimental results are presented in Table 3. On unimodal functions (f1-f5), 

CPSO-H algorithm performs very well. Since it partitions the problem space into 

fixed number of subspaces and each subpopulation exploits its designated 

subspace, CPSO-H will outperform other PSOs. Although ACPSO is a 

cooperative PSO, it doesn't show a steady swarm configuration. As ACPSO may 

benefit from different parts of the problem space cooperatively, it will not perform 

the best for unimodal problems. In simple multimodal functions (f6-f12) ACPSO 

completely suppresses its parent PSO, i.e. CPSO-H, in 5 out of 7 test functions. 

Especially in rotated multimodal functions (f7, f8, f10, f11) where the problem 

dimensions are non-separable and correlation occurs between subspaces, ACPSO 

will perform better than CPSO-H. Each dimension learns from different 

exemplars in CLPSO, so it achieves superior results over ACPSO in unrotated 

multimodal functions (f6, f9). 

The expanded multimodal functions (f13-f14) and hybrid decomposition functions 

(f15-f25) are the hardest ones to optimize since they mix properties of different 

functions together. The intelligence dimension selection of ACPSO leads to an 

efficient sub dimension configuration, thus it reduces the effectiveness of 

decomposition of the problems. The aim of learning automata is to exploit the 

correlation by using multiple swarms and maintaining a mechanism 

simultaneously for these swarms in order to cooperate toward solving the 

problem. The performance of ACPSO is better than CLPSO and CPSO-H on 

seven and thirteen test functions, respectively and is similar to CLPSO in two 

problems. 

 

Table 3 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H and 

CLPSO [65] algorithms for 30-D problems. The last three rows represent the performance 

compassion between ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the 

performance of ACPSO is worse, better and similar to counterpart algorithms, respectively. The 

values listed in the “R” columns are used to specify this performance measure. 

F CLPSO R CPSO-H R ACPSO-LR-P 

Unimodal Functions f1 0.00E+00 ± 0.00E+00 − 1.32E-13 ± 3.16E-14 − 2.08E-03 ± 7.21E-04 
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f2 8.40E+02 ± 1.90E+02 + 3.19E-02 ± 5.14E-02 − 3.33E+00 ± 1.59E+00 

f3 1.42E+07 ± 4.19E+06 + 5.02E+05 ± 2.77E+05 − 4.03E+06 ± 1.48E+06 

f4 6.99E+03 ± 1.73E+03 + 7.72E-02 ± 1.38E-01 − 2.89E+00 ± 1.03E+00 

f5 3.86E+03 ± 4.35E+02 + 6.88E+03 ± 2.20E+03 + 5.52E+03 ± 1.04E+03 

Basic Multimodal 

Functions 

f6 4.16E+00 ± 3.48E+00 − 7.11E+01 ± 1.53E+02 − 1.01E+02 ± 4.07E+01 

f7 4.51E-01 ± 8.47E-02 + 2.57E-02 ± 1.89E-02 + 1.72E-01 ± 5.78E-02 

f8 2.09E+01 ± 4.41E-02 + 2.03E+01 ± 7.21E-02 + 2.00E+01 ± 9.40E-03 

f9 0.00E+00 ± 0.00E+00 − 9.95E-01 ± 9.53E-01 + 1.16E-02 ± 5.36E-03 

f10 1.04E+02 ± 1.53E+01 − 1.90E+02 ± 6.32E+01 + 1.25E+02 ± 2.12E+01 

f11 2.60E+01 ± 1.63E+00 + 2.66E+01 ± 3.56E+00 + 2.06E+01 ± 3.22E+00 

f12 1.79E+04 ± 5.24E+03 + 2.64E+03 ± 4.38E+03 − 1.60E+04 ± 5.57E+03 

Expanded Multimodal 
Functions 

f13 2.06E+00 ± 2.15E-01 + 1.12E+00 ± 4.70E-01 + 5.77E-01 ± 2.50E-01 

f14 1.28E+01 ± 2.48E-01 + 1.29E+01 ± 5.04E-01 + 1.27E+01 ± 4.08E-01 

Hybrid Composition 
Functions 

f15 5.77E+01 ± 2.76E+01 − 3.57E+02 ± 2.18E+02 + 2.58E+02 ± 7.15E+01 

f16 1.74E+02 ± 2.82E+01 − 3.28E+02 ± 1.49E+02 + 2.20E+02 ± 6.09E+01 

f17 2.46E+02 ± 4.81E+01 + 3.13E+02 ± 1.61E+02 + 1.96E+02 ± 5.52E+01 

f18 9.13E+02 ± 1.42E+00 + 8.34E+02 ± 2.47E+00 + 8.32E+02 ± 1.77E+00 

f19 9.14E+02 ± 1.45E+00 + 8.35E+02 ± 3.39E+00 + 8.33E+02 ± 2.42E+00 

f20 9.14E+02 ± 3.62E+00 + 8.35E+02 ± 3.24E+00 + 8.33E+02 ± 1.74E+00 

f21 5.00E+02 ± 3.39E-13 = 6.06E+02 ± 2.48E+02 + 5.00E+02 ± 2.55E-04 

f22 9.72E+02 ± 1.20E+01 + 8.18E+02 ± 1.66E+02 + 6.42E+02 ± 1.54E+02 

f23 5.34E+02 ± 2.19E-04 = 8.51E+02 ± 2.32E+02 + 5.34E+02 ± 5.06E-04 

f24 2.00E+02 ± 1.49E-12 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00 

f25 2.00E+02 ± 1.96E+00 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00 

 +  15  19  

 −  8  6  

 =  2  0  

 

In summary, the adaptive cooperative approach offered performance improvement 

in terms of correlation detection. In unimodal and simple multimodal functions 

(groups A and B) ACPSO performs much poorer than CPSO-H. The dimensions 

of these test cases are separable and they could be easily optimized by splitting 

them into some fixed subswarms. Since ACPSO couldn’t find any proper 

correlation in the search space, the swarm configuration of it might vary during 

the evolution and achieves rather weak results in comparison with CPSO-H. 

Although in hybrid composition test functions [17], [65] there is no active 

coordinate rotation test function like test cases of experiment 2, ten different 

functions are dealt with simultaneously here. Meanwhile, a flexible mechanism is 

still needed to balance exploration and exploitation in these tough problems. The 

column R in Table 3 indicates that, ACPSO has collectively performed better than 

CLPSO and CPSO-H algorithms in 68 % and 76 % of test functions, respectively. 
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5 – 4 Experiment 4: High Dimensional Multimodal Benchmark 

Functions 

Real world optimization problems probably contain more than hundreds of 

variables. The GSO introduced in [20], [21]  is used to handle large-scale 

optimization problems. In [20], GSO is tested on six 300-D multimodal test 

functions (f8 – f13). In order to evaluate ACPSO performance on high dimensional 

problems, these benchmark functions are used. The results of ACPSO are 

compared with CPSO-H [8], CLPSO [18] and GSO [20]. Similar to the 

experimental setting of [20], population size and maximum number of function 

evaluations are set to 50 and 3,750,000, respectively. Note that according to [20] 

the population size of GSO in set to 48. All experiments were run for 5 trials and 

the reported results are the final average from four algorithms. In this experiment 

the swarm size is also scaled based on the problem dimensions. Since dimensions 

are 10 times larger than 30-D problems, the swarm size is set to be 60 for each 

Cooperative PSO. Finally, each automaton of ACPSO uses LR-P learning 

algorithm with alpha = beta = 0.1. 

 

Table 4 The Mean of function error values for ACPSO-LR-P, CPSO-H, CLPSO and GSO [20], 

algorithms in 300-D problems. The last three rows represent the performance comparison between 

ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO 

is worse, better and similar to counterpart algorithms, respectively. The values listed in the “R” 

columns are used to specify this performance measure. 

F GSO R CLSPO R CPSO-H R ACPSO-LR-P 

f8 −125351.2 + -12566.7 + -12569.4 + -12569.5 

f9 9.89E+02 + 5.87E+01 + 4.03E-01 + 1.02E-07 

f10 1.35E-03 + 8.36E-01 + 8.94E-08 − 1.01E-04 

f11 1.82E-07 + 4.91E-02 + 4.08E-02 + 6.06E-09 

f12 8.26E-08 + 2.28E-02 + 1.49E-07 + 1.85E-10 

f13 2.02E-07 + 8.86E-02 + 1.68E-05 + 2.63E-08 

+  6  6  5  

−  0  0  1  

=  0  0  0  

 

Comparing to GSO, CLPSO and CPSO-H, ACPSO performed significantly better 

on most benchmark functions. The optimal solution for f9 (Schwefel function) is 

supposed to be equal to -125351.2 and ACPSO algorithm consistently achieves 

this optimal value. Meanwhile, this function is quiet easy to optimize for both 
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ACPSO and CPSO-H because both algorithms could work on a sub-dimension of 

the problem which would extremely increase diversity of the solution. 

f10 (Ackley's function) is a non-separable benchmark function with numerous local 

minima. In cooperative framework CPSO-H performed significantly better than 

ACPSO. The learning automata of ACPSO have 60 actions corresponding to the 

number of swarms. As an environment, f10 test function could not supply a 

suitable reinforcement signal for learning automata, because the probability 

vectors of action sets vary during evolution and the selected action out of this 

large action set needs further steps for reaching convergence. Since ACPSO could 

not find any correlated dimensions, it wandered around different configuration of 

swarm table. But CPSO-H swarm members are fixed and they exploit specific 

configuration of dimensions from the beginning of the evolution process. 

  f11 (Griewank's function) has a cosine term which make the problem harder to 

optimize. An interesting phenomenon of this function is that it is more difficult to 

optimize for lower dimensions (e.g. 30-D problems of experiment 1) than higher 

dimensions (e.g. 300-D problems of this experiment).  

In f12 and f13 (two generalized penalized functions), ACPSO gets the best results. 

Furthermore, GSO optimizes these benchmarks properly. There is a random 

sampling procedure in GSO algorithm for finding the best fitness value 

(scrounging) combined with ranging behavior of low number of members. In each 

searching bout (generation), GSO performs a global optimizer as well as a local 

optimizer. 

From Table 4 it can also be seen that CLPSO cannot be properly scaled to handle 

300-D problems despite the satisfactory results of Table 1 (30-D problems). 

Finally, ACPSO outperformed GSO, CLPSO and CPSO-H algorithms in 100 %, 

100 % and 83 % of test functions. 
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Conclusion 

Many PSOs have been introduced in the literature for global numerical 

optimization but none of them aims to intelligently exploit from specific sub 

dimensions of the search space. The ACPSO proposed in this paper followed an 

adaptive scheme along this goal. It used cooperative swarms to optimize the 

problem and also employed a learning automaton on each dimension to define 

membership of the swarms. In ACPSO, each automaton generated its own action 

based on its probability vector and assigned the corresponding dimension into a 

swarm. 

Four different kinds of experiments were carried out in this paper including three 

state-of-the-art function optimization benchmark functions in addition to one new 

set of benchmark functions. In 30-D problems, ACPSO was compared with two 

other well-known PSO versions, i.e. CLPSO and CPSO-H. Since the correlation 

detection of ACPSO needs an efficient feedback from the problem, it couldn't 

perform its best on unimodal and simple multimodal. This behavior is due to the 

separable search space of these test functions which were addressed by designing 

several active coordinate rotated benchmark functions. The ACPSO utilizes the 

increase in degree of correlation between the subspaces, and performs very well 

on rotated and composition cases. ACPSO was also used as a high-dimensional 

optimizer and was compared with three other EAs. The results show that ACPSO 

is very effective in tackling 300 dimensional problems. 

Obviously, the “no free lunch” theorem [66] has emerged in the searching 

behavior of ACPSO. Although ACPSO is not very successful in solving simple 

problems, the environment structure is unknown from the beginning when solving 

real-life problems. Thus, having an adaptive learning mechanism could be really 

beneficial in solving highly complicated and large-scale problems. Simple 

problems will be optimized more efficiently by combining ACPSO with a PSO 

technique such as standard PSO or Comprehensive Learning PSO (CLPSO). 
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Table 1 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H [8] and CLPSO 

[18] algorithms in 30-D problems. The last three rows represent the performance compassion between ACPSO 

and other algorithms, where ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse, better and 

similar to counterpart algorithms, respectively. The values listed in the “R” columns are used to specify this 

performance measure. 

F CLPSO R CPSO-H R ACPSO3-LR-P ACPSO6-LR-P 

f1 4.46E-14 ± 1.73E-14 + 1.16E-113  ± 2.92E-113 + 0.00E+00 ± 0.00E+00 2.43E-188 ± 0.00E+00 

f2 2.10E+01 ± 2.98E+00 + 7.08E+00  ± 8.01E+00 + 3.18E-05 ± 4.01E-05 2.89E-06 ± 2.34E-06 

f3 0.00E+00 ± 0.00E+00 − 4.93E-14 ± 9.17E-14 + 8.76E-15 ± 3.06E-15 1.85E-14 ± 6.00E-15 

f4 3.14E-10 ± 4.64E-10 − 3.63E-02 ± 3.60E-02 + 3.47E-02 ± 2.29E-02 4.84E-02 ± 3.04E-02 

f5 3.45E-07 ± 1.94E-07 + 7.82E-15 ± 8.50E-15 + 0.00E+00 ± 0.00E+00 5.45E-15  ± 5.81E-15 

f6 4.85E-10 ± 3.63E-10 + 0.00E+00 ± 0.00E+00 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

f7 4.36E-10 ± 2.44E-10 + 1.00E-01 ± 3.16E-01 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

f8 1.27E-12 ± 8.79E-13 − 1.83E+03 ± 2.59E+02 + 8.94E+02 ± 8.14E+01 4.93E+02 ± 1.22E+02 

f9 3.43E-04 ± 1.91E-04 + 2.10E+00 ± 3.84E-01 + 8.20E-15 ± 2.61E-15 1.65E-14 ± 4.65E-15 

f10 7.04E-10 ± 1.25E-11 − 5.54E-02 ± 3.97E-02 + 2.85E-02 ± 2.41E-02 3.61E-02 ± 3.48E-02 

f11 3.07E+00 ± 1.61E+00 − 1.43E+01 ± 3.53E+00 + 2.95E+00 ± 1.33E+00 3.62E+00 ± 1.41E+00 

f12 3.46E+01 ± 1.61E+00 + 1.01E+02 ± 3.53E+00 + 3.27E+01 ± 5.07E+00 3.61E+01 ± 8.13E+00 

f13 3.77E+01 ± 5.56E+00 + 8.80E+01 ± 2.59E+01 + 2.58E+01 ± 6.29E+00 2.95E+01 ± 4.21E+00 

f14 1.70E+03 ± 1.86E+02 − 3.64E+03 ± 7.41E+02 + 3.89E+03 ± 5.72E+02 3.51E+03 ± 4.20E+02 

f15 7.50E-05 ± 1.85E-04 + 1.30E+02 ± 1.64E+02 + 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

f16 7.86E+00 ± 3.64E+00 − 7.83E+01 ± 1.60E+02 − 5.27E+02 ± 1.10E+02 4.97E+02 ± 1.17E+02 

+  9  15   

−  7  1   

=  1  0   
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Table 2 The mean and standard deviation of function error values for ACPSO-LR-P, iCPSO-H, rCPSO-H and 

CLPSO algorithms in 30-D problems. The last 3 columns represent the performance compassion between 

ACPSO and other algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse, 

better and similar to counterpart algorithms, respectively. The values listed in the “R” columns are used to 

specify this performance measure. The column S represents the number of swarms. 

Algorithm S f9 R f10 R f11 R + − = 

CLPSO 3 5.39E-12 ± 2.68E-11 
+ 

3.68E-10 ± 1.84E-09 
− 

4.77E-01 ± 4.20E-01 
− 1 2 0 

 
6 5.66E-14 ± 1.07E-13 5.47E-15 ± 2.59E-14 1.56E-01 ± 1.48E-01 

iCPSO-H 3 1.65E-01 ± 3.93E-01 
+ 

3.14E-02 ± 3.08E-02 
+ 

1.92E+00 ± 1.62E+00 
− 2 1 0 

 
6 2.77E-14 ± 6.49E-15 6.35E-02 ± 6.53E-02 6.59E-02 ± 9.52E-02 

rCPSO-H 3 8.53E-01 ± 8.82E-01 
+ 

2.64E-02 ± 2.39E-02 
+ 

6.04E+00 ± 2.09E+00 
+ 3 0 0 

 
6 5.76E-01 ± 7.44E-01 3.82E-02 ± 4.38E-02 5.60E+00 ± 2.48E+00 

ACPSO-LR-P 3 7.84E-15 ± 2.20E-15  2.42E-02 ± 2.14E-02  1.74E+00 ± 1.18E+00     

 
6 1.29E-14 ± 3.43E-15  4.05E-02 ± 3.78E-02  2.92E+00 ± 1.44E+00     

Algorithm S f12 R f13 R f14 R + − = 

CLPSO 3 2.56E+01 ± 7.62E+00 
− 

1.99E+01 ± 5.49E+00 
+ 

3.39E+03 ± 4.05E+02 
+ 2 1 0 

 
6 2.35E+01 ± 6.38E+00 1.69E+01 ± 3.27E+00 3.11E+03 ± 5.91E+02 

iCPSO-H 3 3.06E+01 ± 7.71E+00 
− 

1.92E+01 ± 3.90E+00 
− 

2.77E+03 ± 4.16E+02 
− 0 3 0 

 
6 1.30E+01 ± 3.59E+00 9.40E+00 ± 1.53E+00 1.65E+03 ± 3.51E+02 

rCPSO-H 3 5.11E+01 ± 1.71E+01 
+ 

4.46E+01 ± 1.47E+01 
+ 

3.80E+03 ± 6.20E+02 
+ 3 0 0 

 
6 5.06E+01 ± 1.48E+01 2.98E+01 ± 1.45E+01 3.93E+03 ± 5.09E+02 

ACPSO-LR-P 3 2.80E+01 ± 3.92E+00  1.85E+01 ± 2.17E+00  3.60E+03 ± 4.14E+02     

 
6 3.14E+01 ± 7.30E+00  1.59E+01 ± 2.81E+00  3.06E+03 ± 4.43E+02     
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Table 3 The mean and standard deviation of function error values for ACPSO-LR-P, CPSO-H and CLPSO [65] 

algorithms for 30-D problems. The last three rows represent the performance compassion between ACPSO and 

other algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse, better and similar 

to counterpart algorithms, respectively. The values listed in the “R” columns are used to specify this 

performance measure. 

F CLPSO R CPSO-H R ACPSO-LR-P 

Unimodal Functions 

f1 0.00E+00 ± 0.00E+00 − 1.32E-13 ± 3.16E-14 − 2.08E-03 ± 7.21E-04 

f2 8.40E+02 ± 1.90E+02 + 3.19E-02 ± 5.14E-02 − 3.33E+00 ± 1.59E+00 

f3 1.42E+07 ± 4.19E+06 + 5.02E+05 ± 2.77E+05 − 4.03E+06 ± 1.48E+06 

f4 6.99E+03 ± 1.73E+03 + 7.72E-02 ± 1.38E-01 − 2.89E+00 ± 1.03E+00 

f5 3.86E+03 ± 4.35E+02 + 6.88E+03 ± 2.20E+03 + 5.52E+03 ± 1.04E+03 

Basic Multimodal Functions 

f6 4.16E+00 ± 3.48E+00 − 7.11E+01 ± 1.53E+02 − 1.01E+02 ± 4.07E+01 

f7 4.51E-01 ± 8.47E-02 + 2.57E-02 ± 1.89E-02 + 1.72E-01 ± 5.78E-02 

f8 2.09E+01 ± 4.41E-02 + 2.03E+01 ± 7.21E-02 + 2.00E+01 ± 9.40E-03 

f9 0.00E+00 ± 0.00E+00 − 9.95E-01 ± 9.53E-01 + 1.16E-02 ± 5.36E-03 

f10 1.04E+02 ± 1.53E+01 − 1.90E+02 ± 6.32E+01 + 1.25E+02 ± 2.12E+01 

f11 2.60E+01 ± 1.63E+00 + 2.66E+01 ± 3.56E+00 + 2.06E+01 ± 3.22E+00 

f12 1.79E+04 ± 5.24E+03 + 2.64E+03 ± 4.38E+03 − 1.60E+04 ± 5.57E+03 

Expanded Multimodal Functions 
f13 2.06E+00 ± 2.15E-01 + 1.12E+00 ± 4.70E-01 + 5.77E-01 ± 2.50E-01 

f14 1.28E+01 ± 2.48E-01 + 1.29E+01 ± 5.04E-01 + 1.27E+01 ± 4.08E-01 

Hybrid Composition Functions 

f15 5.77E+01 ± 2.76E+01 − 3.57E+02 ± 2.18E+02 + 2.58E+02 ± 7.15E+01 

f16 1.74E+02 ± 2.82E+01 − 3.28E+02 ± 1.49E+02 + 2.20E+02 ± 6.09E+01 

f17 2.46E+02 ± 4.81E+01 + 3.13E+02 ± 1.61E+02 + 1.96E+02 ± 5.52E+01 

f18 9.13E+02 ± 1.42E+00 + 8.34E+02 ± 2.47E+00 + 8.32E+02 ± 1.77E+00 

f19 9.14E+02 ± 1.45E+00 + 8.35E+02 ± 3.39E+00 + 8.33E+02 ± 2.42E+00 

f20 9.14E+02 ± 3.62E+00 + 8.35E+02 ± 3.24E+00 + 8.33E+02 ± 1.74E+00 

f21 5.00E+02 ± 3.39E-13 = 6.06E+02 ± 2.48E+02 + 5.00E+02 ± 2.55E-04 

f22 9.72E+02 ± 1.20E+01 + 8.18E+02 ± 1.66E+02 + 6.42E+02 ± 1.54E+02 

f23 5.34E+02 ± 2.19E-04 = 8.51E+02 ± 2.32E+02 + 5.34E+02 ± 5.06E-04 

f24 2.00E+02 ± 1.49E-12 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00 

f25 2.00E+02 ± 1.96E+00 − 2.92E+02 ± 2.90E+02 + 2.08E+02 ± 5.32E+00 

 +  15  19  

 −  8  6  

 =  2  0  
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Table 4 The Mean of function error values for ACPSO-LR-P, CPSO-H, CLPSO and GSO [20], algorithms in 

300-D problems. The last three rows represent the performance comparison between ACPSO and other 

algorithms, where the ''−'', ''+'' and ''='' indicate that the performance of ACPSO is worse, better and similar to 

counterpart algorithms, respectively. The values listed in the “R” columns are used to specify this performance 

measure. 

F GSO R CLSPO R CPSO-H R ACPSO-LR-P 

f8 −125351.2 + -12566.7 + -12569.4 + -12569.5 

f9 9.89E+02 + 5.87E+01 + 4.03E-01 + 1.02E-07 

f10 1.35E-03 + 8.36E-01 + 8.94E-08 − 1.01E-04 

f11 1.82E-07 + 4.91E-02 + 4.08E-02 + 6.06E-09 

f12 8.26E-08 + 2.28E-02 + 1.49E-07 + 1.85E-10 

f13 2.02E-07 + 8.86E-02 + 1.68E-05 + 2.63E-08 

+  6  6  5  

−  0  0  1  

=  0  0  0  
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Algorithm 1 Standard PSO  

for each generation do 

 for each individual i in the population do 

  update position of ith individual: 

     1 21 2D D D D D D D D

i i i i i i iV w V c rand pbest X c rand gbest X           

  
D D D

i i iX X V   

  calculate individual fitness f(xi) 

  update pbesti and gbest 

 end for 

end for 

Fig 1. Pseudocode for the standard PSO 
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Fig. 2 Comprehensive view of the PSO population. f(Pi) represents the ith particle of population which 

evaluates through the traditional PSO mechanism and f(Pi,Sj) indicates the evaluation process of the ith particle 

(Pi) of jth swarm (Sj) of CPSO population. 
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Fig. 3 Visualization of a learning automaton in a stochastic circumstance. 

 

Figure
Click here to download Figure: figure_3.docx 

http://www.editorialmanager.com/apin/download.aspx?id=44089&guid=e410a772-5185-4a94-b542-4e020e87cff3&scheme=1


 

Algorithm 2 Learning automata probability vector update framework 
define 

Initialize r-dimensional action set:  
1 2
, ,...,

r
     where r is the number of actions. 

Initialize r-dimensional action probability vector:  
1 2

1 1 1
, , ...,

r

p
r r r


     
     
     

 

while (the automaton converge to one of its action) 

     The learning automaton selects an action based on the probability distribution of p. 

     The environment evaluates the action and calculates the reinforcement signal  0,1  . 

     The environment feedbacks   to the learning automaton. 

     Consider i as the selected action of the automaton, j as the current checking action and 

     n as the n
th

 step of evolution. 

     Update the probability vector: 

     for each action [1,..., ]j r do 

          if 0    \\ positive response 

 
    
   

. 1
1

. 1

j j

j

j

p n a p n if i j
p n

p n a if i j

   
  

   

(3) 

          else if 1   \\ negative response 

 
   

   

. 1

1
1 .

1

j

j

j

p n b if i j

p n b
b p n if i j

r

  


  
  

  

(4) 

          end if 

     end for 

end while 

Fig. 4 Learning automata updating schema 
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Algorithm 3 Cooperative Evolutionary Algorithm Framework 
define 

Split N-dimensional search space into j subpopulations of entities. 

Calculate the best individual of each subpopulation (sbest). 

Construct a Context Vector (CV) through the best individuals of each subpopulation: 

CV = [sbest1, sbest2, …, sbestj] 

for each generation i do 

     for each subpopulation j do 

           for each entity k do 

                  Replace current entity of the j
th

 subpopulation by its corresponding positions in the CV 

                  Evaluate the N-dimensional output vector through the fitness function. 

                  k=k+1 // next entity 

           end for 

           Apply cooperative behavior of EA to j
th

 subpopulation. 

           Update sbestj. 

           j=j+1 // next swarm 

     end for 

     i=i+1 // next generation 

end for 

Fig. 5 Pseudocode of the cooperative coevolutionary algorithms 

 

Figure
Click here to download Figure: figure_5.docx 

http://www.editorialmanager.com/apin/download.aspx?id=44091&guid=7799d3f7-9760-49d6-8673-8abd4e949414&scheme=1


Symbiotic Evolution:

Individual life of a learning automaton by 

performing local search on its actions

Synergic Evolution:

Swarm life of the set of learning automata 

which are mounted on the particles dimensions

Start

Stop
 

Fig. 6 Two key steps of the ACPSO algorithm 
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Fig. 7 Binary swarm table and the embedded learning automaton for each dimension.  
1
, ,

K
S S S

indicates the swarm set,  
1
, ,

N
D D D indicates the problem dimensions and  

1
LA LA ,..., LA

N


represents the learning automaton set which are allocated to each dimension. 
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Fig. 8 Mapping process between PSO population and swarm table. The example consists of M particles with 

N dimensions: P = {P1,…,PM} | Pi = { PiD1, …, PiDN} (part a). Typically the number of swarms is set to 3. In 

first step the learning automata select their actions and scatter the dimensions into the swarms. After selecting 

the action, corresponding dimensions of the swarm will be marked as 1 in the swarm table (part b). Moreover, if 

we want to evaluate the i
th

 member of the j
th

 swarm, we will look up into the j
th

 row of swarm table (part c). To 

form an N-dimensional solution vector and calculate the fitness for the i
th

 particle of j
th

 swarm the components 

with 0 in the j
th

 row are remained constant as their values in the context vector (CV), while the components with 

1 are replaced by corresponding values of the i
th

 particle (part d).  
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Fig. 9  Module of learning automata 

 

Figure
Click here to download Figure: figure_9.docx 

http://www.editorialmanager.com/apin/download.aspx?id=44095&guid=c5a373f5-8cb2-4caf-8f3e-d6f27bbd21cf&scheme=1


Procedure 1 Initialize Context Vector 
define 

Number of swarms K and number of dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let A(d) B(d) | d D overwrites d positions of vector B in corresponding d positions of vector A. Also,let A

 B(d) | d D overwrites d positions of vector B in vector A. 

Let x denotes PSO population. 

Let gbest = [gbest1, gbest2, …, gbestN]  denotes the global best position of initial population. 

Initialize CV by global best position of population: CV = gbest  

begin 

     for each swarm j [1, …, K] 

          Find Sj swarm members: 

               Let d be the set of corresponding dimensions of Sj: 

                    d D | SWARM_TABLE(j,d) = 1 

          for each particle  1,...,i PS   

               Replace d positions of CV with corresponding values in xi: CV(d) xi(d)  

               if fitness (CV) < fitness (gbest) 

                    sbestj xi(d) 

               end if 

          end for 

     end for  
     Let CV = [sbest1, sbest2, …, sbestK] be the context vector. 

end 

Fig. 10  Initializing the context vector based on all global best particles. 
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Procedure 2 Context Vector (d,p) 
define 

Current particle p, number of swarms K and number of dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let d D be a subset of D. 

Let A(d) B(d) | d D  overwrites d positions of vector B in the corresponding d positions of vector A. Also, 

let A B(d) | d D  overwrites d positions of vector B in vector A. 

Build CV from all swarms best position: CV = [sbest1, sbest2, …, sbestK]  

begin 

     Replace d positions of CV with the corresponding values in p: CV(d) p(d)  

     Return CV. 

end 

Fig. 11  Evaluating the PSO population through the context vector. 
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Procedure 3 Action Refinement (i) 
define 

Current generation i, number of dimensions N and swarm number K. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let LA = {LA1, …, LAN} denotes the set of learning automaton designated to each dimension. 

begin 

     Calculate LA index for refinement: 

          d = (i mod N) +1 | d D  

     Select random swarm j: 

          [1,..., ]j K  | SWARM_TABLE(j,d) 1 

     Change the selected action of LAd to j. 

     Let V = {V1, …, Vq} denotes a subset of swarms set S. 

     Let V = {S1, …, SK} - Sj | V S be the subset of S except for Sj, while q = K -1. 

     Update swarm table: 

          Fill j
th

 row of swarm table with 1: 

               SWARM_TABLE(j,d) = 1 

          Fill V row members of swarm table with 0: 

               SWARM_TABLE(Vl,d) = 0 | l  [1,…,q] 

end 

Fig. 12 Action refinement procedure 
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Procedure 4 Reinforcement Signal (t,j) 
define 
Improvement tag t and current swarm j. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let sbestj | j  [1, …, K] denotes the swarm best position of Sj. 

begin 

     if t == 1 

          Reinforcement Signal = 0 // gbest is improved by Sj or sbestj  is improved. 

     else if t == 0 

          Reinforcement Signal = 1 // gbest is not improved by Sj or sbestj  is not improved. 

     end if 

     signal = Reinforcement Signal 
     Return signal. 

end 

Fig. 13  Calculation of the reinforcement signal based on equation (5). 
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Procedure 5 Isolate Update (signal, j) 
define 

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and number of 

dimensions N. 

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension. 

Let  LA 1,...,|i i N  denotes the selected automaton for updating its probability vector by input signal.  

Let  
1
, ...,

r
   denotes the action set of LAi, where r = K. 

Let  1,...,|j j K   be the selected action of LAi. 

Let Z = {Z1, …, Zq} denotes a subset of action set  . 

Let  
1
, ..., |

r j
Z Z      be the subset of LAi action set except for j , where q = r-1. 

begin 

     if signal = 0 

          Reward j action of LAi. 

          Penalize Z action members of LAi: Zl | l   [1,…,q]. 

          Update corresponding probability vector of LAi by using (3). 

     else if signal = 1 

          Penalize j action of LAi. 

          Reward Z action members of LAi: Zl | l   [1,…,q]. 

          Update corresponding probability vectors of LAi by using (4). 

     end if  

end 

Fig. 14 Isolate update procedure 
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Procedure 6  Ensemble Update (signal,j) 
define 

Reinforcement signal signal, current swarm j, current dimension i, number of swarms K and number of 

dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension. 

Find Sj swarm members: 

     Let d D | SWARM_TABLE(j,d) = 1 denotes  a subset of dimensions set D. 

     Let d = {d1, …, dp} be the set of corresponding dimensions of S j, where |d| = p. 

Find set of learning automata associated to Sj for updating their probability vectors by input signal.  

     Let LA_S = {LA_S1, …, LA_Sp} donates a subset of LA corresponding to Sj. 

     Let LA_S = {LA1, …, LAN} – {LAd1, …, LAdp} | LA_S   LA be the of corresponding 

     learning automata of Sj. 

Let  
1
, ...,

r
  

 
denotes the action set of each automaton of LA_S, where r = K. 

Let  1,...,|j j K  denotes the selected action of LA_S which are designated to Sj. 

Let Z = {Z1, …, Zq} denotes a subset of action set . 

Let  
1
, ..., |

r j
Z Z      be the subset of LA_Sd | d = {d1, …, dq}action set except for j , where q = r-1. 

begin 

     for each LA_S i  [1, …, p]: 

          if signal = 0 

               Reward j action of LA_Si. 

               Penalize Z action members of LA_Si: Zl | l   [1,…,q]. 

               Update corresponding probability vector of LA_Si by using (3). 

          else if signal = 1 

               Penalty j action of LA_Si. 

               Reward Z action members of LA_Si: Zl | l   [1,…,q] 

               Update corresponding probability vectors of LA_Si by using (4). 

          end if   

     end for 

end 

Fig 15. Deployment of reinforcement signal for the LA which are associated with j
th

 swarm. 
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Procedure 7 Action Selection 
define 

Number of swarms K and number of dimensions N. 

Let S = {S1,…,SK} denotes the set of swarms disseminated in problem dimensions. 

Let LA = {LA1, …, LAN} denotes the set of learning automata designated to each dimension. 

Let  
1
, ...,

r
   denotes the action set of each automaton, where r = K. 

Let p = {p1, …, pr} denotes the probability vector corresponding to action set of each automaton. 

begin 

     for each LA [1, ... ]i N  

          LAi selects the j  action based on its current probability vector p from its action set . 

          Let  | 1, ...,
j

j K  be the selected action of LAi. 

          Let Z = {Z1,…, Zq} denotes a subset of action set . 

          Let  
1
, ..., |

r j
Z Z      be the subset of LAi action set except for j , while q = r-1. 

          Update swarm table: 

               Fill j
th

 row of swarm table with 1 

                    SWARM_TABLE(j,i) = 1 

               Fill Z row members of swarm table with 0: 

                    SWARM_TABLE(Zl,d) = 0 | l  [1,…,q] 

     end for 

end 

Fig 16.  Function describes how learning automata fill the swarm table. 
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Algorithm 4 ACPSO algorithm 
define 

Initialize PSO parameters: population size PS, dimension number N, number of swarms K, generation ge = 0, 

fitness evaluation fe = 0, maximum fitness evaluations FE, maximum generations GE, train epoch TE, 

Improvement Tag t = 0 and inertia weight w. 

Initialize SWARM_TABLE[K N] data structure. 

Initialize position x and associated velocity v.  

Initialize pbest = [pbest1, …, pbestN] and gbest = [gbest1, …, gbestN] of population. 

Initialize K swarms: S = {S1,…,SK} 

Initialize sbestj | j  [1, …, K] 

Let D = {D1, …, DN} be the set of problem dimensions. 

Let A(d) B(d) | d D  overwrites d positions of vector B in the corresponding d positions of vector A. Also, 

let A B(d) | d D overwrites d positions of vector B in vector A. 

Initialize LA parameters: action probability vector P, alpha (reward signal), beta (penalty signal) and action 

number r, where r = K. 

Call procedure ACTION_SELECTION and fill SWARM_TABLE. 

Call procedure INITIALIZE_CONTEXT_VECTOR. 

Let b (d,p) as procedure CONTEXT_VECTOR (dimension, position) which builds context vector in different 

contexts of different swarms. 

Let f be the fitness value. 

repeat  //Symbiosis phase 

     for each swarm  1,...j K : 

          find Sj swarm members: 

               Let d be the set of Sj dimension members. 

               d D | SWARM_TABLE(j,d) = 1 

          for each particle  1,...,i PS :  

               Evaluate the particle through the context vector: 

                    Let p be the position that is going to evaluate in the context of Sj. 

                    Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj. 

                    if f (b(d,xi(d)) < f (b(d,pbesti(d))) then 

                         pbesti(d)  xi(d) 

                    end if 

                    if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then 

                         gbest(d)  pbesti(d) 

                         sbestj pbesti(d) 

                         t = 1 

                    end if 
               fe = fe + 1 

          end for 
          Perform PSO update for Velocity and Position on Sj using (1) and (2). 

          if g>0 AND j == (g mod N) + 1 

              Call procedure REINFORCEMENT_SIGNAL (t,j) // calculate signal 

              Call procedure ISOLATE_UPDATE (signal,j)        //  deploy signal 

          end if 

          t = 0 

     end for 

     Call procedure ACTION_REFINEMENT (g) and refine the action of associated LA. 

     ge = ge + 1 

until ge < EP 

repeat  //Synergy phase 

     for each swarm  1,...j K : 

          find kj swarm members: 

               d D | SWARM_TABLE(j,d) = 1 

               Let d be the set of Sj dimension members. 

          for each particle  1,...,i PS :  

               Evaluate the particle through the context vector: 

                    Let p be the position that is going to evaluate in the context of Sj. 
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                    Call procedure b(d, p) for evaluating xi particle of Sj swarm in the context of Sj. 

                    if f (b(d,xi(d)) < f (b(d,pbesti(d))) then 

                         pbesti(d)  xi(d) 

                    end if 

                    if f (b(d,pbesti(d))) < f (b(d,gbest(d))) then 

                         gbest(d)  pbesti(d) 

                         sbestj pbesti(d) 

                         t = 1 

                    end if 
               fe = fe + 1 

          end for 
               Perform PSO update for Velocity and Position on Sj using (1) and (2). 

               Call procedure REINFORCEMENT_SIGNAL (t,j). // calculate signal  

               Call procedure ENSEMBLE_UPDATE (signal,j).   // deploy signal 

               t = 0 

     end for 
     Call procedure ACTION_SELECTION and fill SWARM_TABLE for the next generation. 

     ge = ge + 1 

until (ge <= G AND fe <= FE) 

Fig 17. Pseudocode for the generic ACPSO algorithm. 

 



Algorithm 5 pseudocode of active rotation matrix 
Define 

Rotation Matrix M, Number of dimensions N, number of swarms K and swarm length L. 

Let x  = [x1, …, xD]
T
 be the original variable. 

Let y  = [y1, …, yD]
T
 be the new rotated variable. 

Let S  = {S1,…,SK} denotes the set of swarms. 

Let D = {D1, …, DN} denotes the set of problem dimensions. 

K1 = n mod K; L1 = 
N

K

 
  

 

K2 = K – (n mod K) ; L2 = 
N

K

 
  

 

for each Ki | i [1,2] 

     Initialize Ki Li-dimensional rotation matrix: 

          for each swarm Sj | 1,...,j K
i

     

               

...
11 12 1

...
21 22 2

... ... ... ...

...
1 2

i

i

i ii i

m m m
L

m m m
L

M j

m m mL LL L



 
 
 
 
 
 
   

          Split the corresponding dimensions of Sj: 

               Let r = [1, …, d] be the range of associated swarm, where d = Li. 

               yj = [x1, …, xd]
 T

  Mj 

          end for 

end for 

y = [y1, …, yK]
 T

 

Use variable y to calculate the fitness value f. 

Fig. 18. Rotation matrix generator. 
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