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Abstract— Numerous variations of Particle Swarm 

Optimization (PSO) algorithms have been recently 

developed, with the best aim of escaping from local 

minima. One of these recent variations is PSO-LA 

model which employs a Learning Automata (LA) that 

controls the velocity of the particle. Another variation 

of PSO enables particles to dynamically search 

through global and local space. This paper presents a 

Dynamic Global and Local Combined Particle Swarm 

Optimization based on a 3-action Learning Automata 

(DPSOLA). The embedded learning automaton  

accumulates the information from individuals, local 

best and global best particles then combines them to 

navigate the particle through the problem space. The 

proposed algorithm has been tested on eight 

benchmark functions with different dimensions. The 

work is unique from its test bed; evaluations contain 

large population size (150) and high dimension (150). 

The results show that, fitness and convergence pace is 

better than traditional PSO, DGLCPSO and previous 

PSO based LA algorithms. 

I. INTRODUCTION 

One of the common methods for optimization of 
continuous nonlinear functions is particle swarm 
optimization (PSO) [1], [2]. This algorithm has two main 
concepts: artificial life and collective intelligent of brutes. 
The inertia weight (w) [3–5] is one of the PSO parameters 
to bring about a balance between the exploration and 
exploitation characteristics of PSO. Cooperative PSO 
(CPSO) is a variation on standard PSO which used 
multiple swarms [6]. Recently it is proposed a combined 
dynamic global and local particle swarm optimization 
(DGLCPSO) algorithm to improve the performance of 
original PSO [7]. 

Learning automaton (LA) [8] is a multi-propose casual 
tool, which is an expansion model for learning machines. 
PSO, like other stochastic search methods, is highly 
sensitive to adjustment of affective parameters. Recently a 
LA based PSO model [9–12] called PSO-LA has been 
reported to improve the performance of PSO. In [10] a 
PSO-LA model is proposed in which the LA is 
responsible for configuring the behavior of the swarm and 
also balancing the process of global and local search. In 
[11] a Cellular LA (CLA) based discrete PSO is 
introduced as a solution of premature convergence. To 
reduce the probability of trapping PSO-LA into local 
minima, in [12] four modifications on PSO-LA model are 

proposed. Also the ability of LA for adaptive PSO 
parameter selection studied in [13], [14]. 

In an attempt to enhance the performance of DGLCPSO 
we introduce a dynamic global and local combined 
particle swarm optimization based on 3-action learning 
automata (DPSOLA). We use the three dynamic searching 
Strategies of DGLCPSO as 3 actions of LA to control the 
path and velocity of the particles. 

The formula used in previous PSO-LA models [9–12]  
for updating the velocities and trajectories of particles is 
based on standard PSO [1], [2]. Also this work differ from 
the existing ones by its dynamic global and local 
combined particle swarm optimization iterative formula, 
in which all particles dynamically share the best 
information of themselves, local particle and global 
particle. To control the behavior of whole swarm, one LA 
is used in [10]. This kind of using LA; easily increase the 
probability of trapping particles in local minima or even 
worse than expected, avoid the particles to continue their 
suitable search path in order to coordinate with the swarm 
search path. In [12] one LA is assigned to each particle 
and tests run on small number of particles and dimensions 
but large number of iteration.  Although a small number of 
iterations are needed for convergence, the proposed 
algorithm is tested on eight benchmark functions with 
large number of particles and dimensions. Experimental 
results indicate that the DPSOLA algorithm improves the 
performance on the benchmark functions significantly. 

The rest of this paper is organized as follow: The next 
section introduces the standard PSO and DGLCPSO 
algorithm. LA and PSO-LA models are presented in 
section 3. The DPSOLA algorithm and its area of 
improvements will be noted in section 4. Section 5 is 
devoted to parameter settings and simulation results. 
Finally section 6 concludes the paper. 

II. DYNAMIC GLOBAL AND LOCAL PSO ALGORITHM 

PSO is an optimization algorithm which is based on 
extrinsic behavior of population. In standard PSO the 
particles are manipulated by the following equations [2]: 

1 1 2 2

( 1) ( )

( ( ) ( )) ( ( ) ( ))

id id

id id gd id

v k wv k

c r p k x k c r p k x k

 

   
 

 

(1) 

( 1) ( ) ( 1)
id id id

x k x k v k     (2) 

In PSO algorithms, each solution is like a „„fish‟‟, and 
each fish „„swim‟‟ around in the multidimensional 
problem space with an acceleration. For more information 
about standard PSO the reader may refer to [2]. 

CINTI 2011 • 12th IEEE International Symposium on Computational Intelligence and Informatics • 21–22 November, 2011 • Budapest, Hungary

– 291 –978-1-4577-0045-3/11/$26.00 ©2011 IEEE



In the rest of this section we review a Dynamic Global 
and Local Combined Particle Swarm Optimization 
(DGLCPSO) algorithm [7]. There are three types of 
information involved in DGLCPSO: best information of 
own particle, local particle and global particle. During the 
search process each particle shares this information by 
their associated particles. 

Assume that we have a D-dimensional search space and 
m particles. The ith particle is presented as a D-

dimensional vector
1 2

( , ,..., ); 1, 2...,
i i i iD

X x x x i m  . It 

means that the ith particle specifies the position Xi in the 
search space and the particle‟s position indicate probable 
solution. We can calculate the particle‟s fitness by putting 
its position in the objective function. Likewise the ith 

particle‟s velocity is presented as
1 2

( , ,..., )
i i i iD

V v v v . 

Denote the best position of the ith particle as 

1 2
( , ,..., )

i i i iD
P p p p and the best position of particle‟s 

local neighborhood as
1 2

( , ,..., )
l i i iD

P p p p and the best 

position of global space as
1 2

( , ,..., )
g i i iD

P p p p . After 

calculating these three best values, the velocity and 
position of each particle is updated according to the 
following equations [7]: 
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( 1) ( ) ( 1)
id id id

x k x k v k     (4) 

( 1) ( 1, 2,...1) ( )
l l

p k pl k k p k      (5) 

Where [0,1]w is inertia weight which controls the 

degree of global and local search. k is the current 

generation number. , [0.6,1.2]a b are weights index, and 

endgen represent the maximum number of iterations. The 
constant c is acceleration constant that controls the 
movement of particle in a single iteration. 

III. LEARNING AUTOMATA: APPLICATIONS IN PSO 

A. Learning Automata (LA) 

Learning Automaton [8], [13] is a machine that can 
perform number of finite actions. Each selected action is 
evaluated by a probabilistic environment and the result of 
evaluation as a feedback, returns to the automaton in form 
of a positive or negative signal, and consequently the 
automaton takes this signal into account, in the next action 
selection phase. Learning how to select the best action 
from a finite set of actions is the final target of automaton. 
The best action is an action that maximizes the probability 
of gaining the reward. 

Variable Structure Learning Automata (VSLA) [13] is 

represented by the quadruple ( , , , )p T  which, 

1
( ,..., )

r
   is a set of actions, 

1
( ,..., )

r
   is a set 

of inputs, 
1

( ,..., )
r

p p p is the probability vector in which 

each action may choose by it and 

( 1) [ ( ), ( ), ( )]p k T k k p k     is the learning algorithm. 

The following is a typical linear learning algorithm. 

Assume that the action 
i

 is chosen at time k as a sample 

realization from distribution (k). By considering {0,1}   

, A linear schema for updating probability vector of LA 
with r actions is defined as (6) when 0   (favorable 

answer) and (7) when 1   (unfavorable answer). 
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Where a, b are respectively the reward and penalty 
parameters. By considering their values, they could have 
three states. When a=b, the algorithm named as the linear 
reward-penalty (LRP). When 0<b<<a<1, the algorithm 
named as LRɛP and When b=0, the algorithm named as 
LRI. For more information about learning automata the 
reader may refer to [8]. 

B. PSO based on Learning Automata algorithms 

From the family of PSO-LA model [10–12]. In [10] an 
intellectual and social movement algorithm based on 
learning automata has been proposed, in which one LA 
controls the behavior of the whole swarm. This automaton 
has two actions: „„Follow the best‟‟ and „„Continue your 
way‟‟. If the LA chooses „„Follow the best‟‟ action, based 
on (8) best personal experience and best global experience 
will have role on updating the particle‟s velocity. In this 
case also the particles will ignore their current velocity. If 
the LA chooses „„Continue your way‟‟ action, the current 
velocity of the particles will be set as the new velocity of 
them and particles will continue their current path. 

1 1 2 2
( 1) ( ( ) ( )) ( ( ) ( ))

id id id gd id
v k c r p k x k c r p k x k      (8) 

The Learning Automaton [8], [13] has a number of 
actions which selects them stochastically. LA has a 
probability vector in which the probability of all actions is 
subscribed in it and LA does not aware of this 
probabilities. At first LA selects actions by chance, but in 
long time the aim is to take an action which gain the 
utmost reward. 

In an attempt to reduce the probability of trapping PSO-
LA into local minima, four new versions of PSO-LA 
model are introduced in [12], named as LAPSO1, 
LAPSO2, LAPSO3 and LAPSO4. LAPSO1 is similar to 
PSO-LA model introduced in [10]. Unlike [10], LAPSO2 
uses one LA per each particle. The LA acts as the leader 
of the swarm and controls the particle‟s movement in the 
search space. Each LA has two actions: „„Follow the 
best‟‟ and „„Continue your way‟‟. If the LA chooses 
„„Follow the best‟‟ action, with initial zero inertia weight, 
the particle moves in the search space toward the best 
position that meet by the whole swarm (gbest) and its best 
personal position (pbest). According to (8), this action 
performs local search. If the LA chooses „„Continue your 
way‟‟ action, the particle will move with particular 
acceleration in the search space and will continue to move 
on its current path. According to (1), this action leads to 
global search and explore the unknown areas of space. 

LAPSO3 is similar to LAPSO2; except for its way to 
reinitialize the particle‟s velocity while it is trapped into 
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local minima. Also LAPSO4 is similar to LAPSO2 except 
for the way, the reinforcement signal is computed. For 
more details about evaluation methods of PSO-LA model 
the reader may refer to [12]. 

IV. DYNAMIC GOBAL AND LOCAL COMBINED PSO 

BASED ON 3-ACTION LEARNING AUTOMATA (DPSOLA) 

A. The proposed alterations and additions to the 

reviewed algorithms 

In fact the trend of DGLCPSO algorithm [7] is similar 
to standard PSO [2]; however in DGLCPSO algorithm, an 
iterative dynamic global and local particle swarm 
optimization formula has been used (compare (1) with 
(3)). Simulation results show that DGLCPSO algorithm 
has faster convergence rate than standard PSO and also 
the algorithm shows better performance in large 
optimization problems. The DGLCPSO algorithm 
searches according to three strategies: (1) Individual 
knowledge of each particle which contains particle‟s best 
previous position and denoted as pbest. (2) Local 
knowledge of swarm's subgroup which is extracted from a 
specific neighborhood of particles, denoted as lbest. (3) 
Public knowledge of the whole swarm which is the best 
current solution, denoted as gbest. So, for updating 
particle‟s velocities, we can simultaneously use these three 
types of knowledge. The standard PSO just searches 
through the first and third strategies. 

Using LA has two advantages: (1) using the existing 
knowledge for tuning the weight inertia or other adaptive 
parameters. (2) By getting feedback from the 
environment, trend will correct itself. In the proposed 
model, in each generation the LA controls the trend of 
particle‟s search by selecting an action from a finite set of 
actions. The LA tries to determine the optimal action, 
iteratively. Having one LA for the whole swarm may 
cause to lose the useful information of the particles [01] . 
Assigning one LA per each particle saves this useful 
information and leads to have diverse particles in the 
swarm. So, the proposed model reduces the probability of 
trapping in the local minima. 

There is always a risk of trapping in local minima [10], 
[12].when the LA selects the „„Follow the best‟‟ action 
and repeatedly gain reward, the particle performs a local 
search. If the particle converges to a point which is a local 
minima, after some iterations the LA will select the 
„„Continue your way‟‟ action and particle‟s velocity will 
be set to zero. Since the velocity become zero the particle 
couldn‟t move and will trapped in that point. By 
combining the three noted search strategies, the proposed 
model will have better flexibility while the particle traps 
in local minima. The particle can use its local knowledge 
to escape from the local minima and eventually has higher 
exploration ability. 

By reviewing the simulation results of introduced PSO-
LA models in [12], the parameters which have been set for 
benchmark functions are so week, in contrast to our work. 
The maximum number of dimensions there, is 30 while in 
our algorithm, it is set to 150. The maximum number of 
generation there is 30000 while we have set it to 5000 for 
both unimodal and multimodal functions. Although 
DPSOLA run in much more realistic environment while 
still the proposed algorithm shows better results. Although 
DPSOLA run in much more realistic environment, the 
proposed algorithm shows better results. 

B. Neighborhood definition 

Since in DPSOLA algorithm, particles search through 
their local neighborhood and share their local information, 
we define three types of neighborhood topology for the 
proposed method. Having different types of neighborhood 
topology, let the particles to „„fly freely‟‟ in the subspace 
of the problem. (1) Fixed neighborhood (Fix): In this 
topology the initial swarm considers as a vector and will 
slice to fixed pieces which contain specific number of 
particles. The particles neighborhood will not alter during 
the run. (2) Ring neighborhood (Ring): In this topology 
swarm consider as a circle and will slice by the specific 
radius. Similar to the previous topology the neighborhood 
is fixed during the run. (3) Euclidean neighborhood 
(Ed): In this topology the particles neighborhood will be 
defined dynamically according to the Euclidean distance 
between them. After calculating the fitness of all particles 
which place in the same neighborhood, the best fitness 
will consider as lbest. 

C. DPSOLA algorithm 

In order to obviate the cons of [2], [7], [10–12] in this 
paper we propose a new Dynamic Global and Local 
Combined Particle Swarm Optimization based on 3-action 
Learning Automata (DPSOLA) algorithm. For matching 
the structure of LA with DPSOLA, we use a three action 
learning automaton which can cover three aspects of 
proposed algorithm. 

In DPSOLA, we assign one LA to each particle of the 
swarm. Each LA acts as the particle kernel and leads the 
particle‟s movement. Each LA has three actions: „„Global 
and Local Combined Search‟‟, „„Local Search‟‟, „„Global 
Search‟‟. If the LA chooses „„Global and Local Combined 
Search‟‟, according to (3), the particle will move with 
fixed acceleration and perform global and local search in 
the problem space. If the LA chooses „„Local Search‟‟, 
according to (9), the particle will move toward the best 
position that meet by lbest with zero initial inertia weight. 
If the LA chooses „„Global Search‟‟, according to (10) the 
particle will move toward the best position that meet by 
gbest with zero initial inertia weight. 

1
( 1) ( 1 / ( 1 )) * ( ( ) ( ))

( 1 / ( 1 )) * ( ( ) ( ))

id id id

ld id

v k r a endgen k p k x k

b endgen k p k x k

     

    
 (9) 

1

2

( 1) ( 1 / ( 1 )) * ( ( ) ( ))

( ( ) ( ))

id id id

g id

v k r a endgen k p k x k

cr p k x k

     


 (10) 

Updating the velocity and position vectors of each 
particle, the reinforcement signal  will be generated 

according to (11) which are given below: 

0 ( ( 1)) ( ( ))

1

i i
if fitness X k fitness X k

otherwise


 
 


 (11) 

Evaluating the reinforcement signal, the probability 
vector of LA will be updated according to (6) or (7). 

D. Pseudocode of DPSOLA 

Algorithm 1 shows the Pseudocode algorithm for the 
DPSOLA, a PSO that splits the search method into 3 sub-
methods. The probability vector of LA is updated at the 
end of each evaluation. This algorithm has the advantage 
that the condition checking performs in each evaluation.  
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Algorithm 1. DPSOLA 

Step 1: Initialize parameters including: number of 

particles (PS), maximum generation number (endgen) and 

the other useful parameters. 

Step 2: Scheduling and assignment 

 Randomly generate initial population and particles 

velocity 

 Calculate particles fitness from fitness function 

 Initialize gbest position with the swarm's lowest 

fitness. 

 Initialize pbest position with the current particle‟s 

components. 

 Initialize lbest position with the best particle of 

particle‟s local neighborhood. 

 Initialize Learning Automata parameters 

while (do not reach the maximum generation (endgen)) 

 LA randomly selects an action and generate next 

swarm 

 Evaluate swarm 

- Updating particle velocity 

 If LA selects „„Global and Local Combined 

Search‟‟, then the velocity will update by (3). 

 If LA selects „„Local Search‟‟, then the velocity 

will update by (9) 

 If LA selects „„Global Search‟‟, then the velocity 

will update by (10) 

- Check the boundary and velocity conditions 

- Updating particle‟s position by (4) 

- Calculate new particle‟s fitness by fitness function 

- Check the boundary conditions 

- Calculate new values of gbest, pbest and lbest of 

each particle by comparison 

- Update lbest by (5) 

- Updating LA probability vector by (6),(7),(11) 

 End of Evaluation 

end of While. 

Step 3: show results 

V. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Benchmark functions 

In order to show the performance of DPSOLA 
algorithm, we use eight benchmark functions. The first 
half of Table I lists the function parameters. f1-f4 are 
unimodal functions,  f5-f8 are multimodal functions with 
many local minima [2], [6], [7]. The reader should keep 
the following in mind: ND (Number of Dimensions), FB 
(Feasible Bounds). In all experiments the population size 
is set to 150. Each experiment runs for 5000 iteration per 
function. The mean of results, over 10 separate runs, are 
shown in tables II through IX. 

B. Analysis of results 

To evaluate the performance of DPSOLA algorithm we 
compare it with Original PSO and DGLCPSO algorithms 
[2], [7]. The proposed method is tested with both LRP and 
LRɛP learning algorithms. The second half of table I lists 
the neighborhood parameters used to evaluate DPSOLA. 
The column „„NT‟‟ denotes the Neighborhood Type and 
the column „„NS‟‟ denotes the Neighborhood Size. 

TABLE I.   
TEST FUNCTIONS PARAMETERS 

Function Status 
Topology Status 

LRP LReP 

Function ND Range NT NS NT NS 

Sphere (f1) 150 [-100, 100] Ring 5 Ring 5 

Schwefel 1.2 (f2) 30 [-100, 100] Ring 5 Ring 5 

Schwefel 2.21 (f3) 30 [-100, 100] Ed 5 Ring 5 
Rosenbrock (f4) 25 [-100, 100] Ring 7 Ring 7 

Ackley (f5) 30 [-32, 32] Ed 7 Ed 7 

Griewank (f6) 150 [-600, 600] Ring 7 Ring 7 

Penalized P8 (f7) 100 [-50, 50] Ring 7 Fix 7 
Penalized P16 (f8) 100 [-50, 50] Ring 7 Fix 7 

 

In all experiments acceleration constants (c, c1 and c2) 
are set to 2. The following format used in tables II through 
IX. The first column lists the inertia weight (w) values 
which consider as a constant. The third column lists 
weights index (a, b). LRP and LRɛP in the two last columns 
denote as LA learning algorithm which is used in 
DPSOLA. In LRP learning algorithm, alpha=beta=0.01 
and in LRɛP alpha=0.001 and beta = 0.01. The boundary 
condition is set to the whole feasible bounds. Since 
DPSOLA is implemented as a full parametric algorithm, 
the trend of performing the experiments is as follow: 
Because of the large number of feasible experiments for 
DPSOLA, first we run every possible combination of 
parameters and then choose the best fitness of them. For 
each test function, we run this optimal solution for 10 
times and the average of these solutions is reported in II 
through IX. The optimum solutions of proposed method 
were marked with bold letters. 

TABLE II.   
SPHERE (f1) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 4.07E+05 1.05 2.80E+00 6.91E-18 1.47E-01 

 
 

1.005 5.90E-03 7.35E-03 1.84E-01 
 

 
1.0005 2.40E-03 1.48E-07 2.07E-01 

0.2 3.92E+05 1.05 9.54E-04 1.82E-02 1.34E-01 

 
 

1.005 4.96E-02 1.79E-02 1.17E-01 
 

 
1.0005 5.34E-01 2.50E-02 8.17E-02 

0.3 3.91E+05 1.05 2.83E-02 1.87E-25 5.91E-02 

 
 

1.005 7.80E+00 5.67E-04 7.36E-02 
 

 
1.0005 1.61E-01 3.87E-87 1.53E-01 

0.4 3.88E+05 1.05 3.90E-03 1.41E-42 1.20E-01 

 
 

1.005 3.66E-02 3.76E-05 6.36E-02 
 

 
1.0005 3.48E-02 1.38E-212 9.33E-02 

0.5 3.99E+05 1.05 8.06E-01 1.12E-122 4.76E-02 

 
 

1.005 9.04E-02 5.42E-172 2.47E-02 
 

 
1.0005 6.86E-02 5.61E-102 1.04E-01 

TABLE III.   
SCHWEFEL 1.2 (f2) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 8.36E+01 1.05 3.84E-01 2.62E-03 1.33E+01 

 
 

1.005 5.09E-04 2.90E-03 2.77E+02 
 

 
1.0005 1.27E-04 7.26E-04 1.16E+03 

0.2 1.24E+00 1.05 1.10E-05 1.30E-03 1.68E-03 

 
 

1.005 1.15E-08 4.46E-03 1.09E+02 
 

 
1.0005 4.77E-09 2.84E-03 1.98E+02 

0.3 6.67E-02 1.05 4.52E-07 8.26E-04 2.80E-03 

 
 

1.005 4.94E-10 1.47E-36 7.47E-03 
 

 
1.0005 1.36E-01 7.62E-04 2.27E+01 

0.4 5.67E-01 1.05 3.33E-06 1.34E-03 1.15E+02 

 
 

1.005 4.16E-09 3.93E-04 1.94E+02 

 
 

1.0005 1.28E-09 8.09E-04 6.26E+01 

0.5 9.32E+00 1.05 8.10E-03 7.21E-04 5.09E+01 

 
 

1.005 3.61E-05 1.72E-172 6.33E+01 
 

 
1.0005 4.48E-06 7.47E-175 3.33E-03 
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TABLE IV.   
SCHWEFEL 2.21 (f3) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 9.41E+00 1.05 6.07E-02 3.85E-11 2.73E-07 
 

 
1.005 8.08E-04 1.26E-10 1.49E-05 

 
 

1.0005 5.87E-04 1.60E-10 4.72E-05 

0.2 5.25E-01 1.05 3.40E-05 1.37E-11 8.63E-09 
 

 
1.005 1.94E-06 3.55E-11 1.38E-07 

 
 

1.0005 5.52E-07 8.55E-11 4.13E-07 

0.3 2.92E-02 1.05 1.16E-06 6.37E-13 2.42E-10 
 

 
1.005 8.09E-08 1.76E-12 5.49E-09 

 
 

1.0005 4.35E-08 1.04E-10 1.34E-08 

0.4 8.21E-02 1.05 6.85E-07 8.75E-13 1.88E-12 
 

 
1.005 5.07E-08 1.49E-11 3.48E-11 

 
 

1.0005 6.06E-08 5.00E-12 1.82E-10 

0.5 9.89E-01 1.05 5.13E-05 2.63E-12 3.18E-13 

 
 

1.005 1.36E-06 1.85E-12 1.34E-12 

 
 

1.0005 5.61E-07 2.83E-12 4.05E-13 

TABLE V.   
ROSENBROCK  (f4) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 7.61E+01 1.05 7.09E+01 1.41E+00 7.60E-01 
 

 
1.005 1.42E+01 7.66E-01 3.46E-01 

 
 

1.0005 7.75E+00 1.38E+00 1.11E+00 

0.2 1.35E+02 1.05 1.43E+02 7.40E-01 1.00E+00 
 

 
1.005 5.45E+01 4.26E-01 7.53E-01 

 
 

1.0005 2.77E+00 7.66E-01 5.55E-01 

0.3 9.69E+01 1.05 6.92E+00 1.55E+00 3.90E-01 
 

 
1.005 2.92E+01 9.12E-01 1.05E+00 

 
 

1.0005 8.95E+00 4.91E-01 1.24E+00 

0.4 1.20E+01 1.05 5.54E+00 2.76E-01 1.07E+00 
 

 
1.005 2.36E+01 7.41E-01 2.75E-01 

 
 

1.0005 4.43E+01 3.72E-01 1.34E+00 

0.5 1.41E+02 1.05 2.70E+02 9.20E-01 2.96E-01 

 
 

1.005 1.25E+02 4.47E-01 6.98E-01 

 
 

1.0005 9.74E+00 3.83E-01 6.98E+00 

TABLE VI.   
ACKLEY (f5) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 5.49E-05 1.05 7.28E-15 1.72E-14 1.58E-14 
 

 
1.005 5.15E-15 2.43E-14 2.54E-14 

 
 

1.0005 5.86E-15 2.72E-14 2.33E-14 

0.2 6.88E-01 1.05 5.51E-15 1.72E-14 1.87E-14 
 

 
1.005 2.84E-01 2.50E-14 1.55E-14 

 
 

1.0005 5.86E-15 2.97E-14 2.15E-14 

0.3 9.31E-02 1.05 6.22E-15 1.97E-14 1.87E-14 
 

 
1.005 1.03E-01 2.61E-14 1.83E-14 

 
 

1.0005 4.80E-15 2.86E-14 2.18E-14 

0.4 7.64E-15 1.05 5.51E-15 1.97E-14 1.69E-14 
 

 
1.005 4.80E-15 2.75E-14 1.94E-14 

 
 

1.0005 4.80E-15 2.22E-14 2.36E-14 

0.5 9.41E-15 1.05 6.93E-15 2.26E-14 2.43E-14 
 

 
1.005 5.51E-15 3.29E-14 1.83E-14 

 
 

1.0005 5.51E-15 3.07E-14 2.65E-14 

 

All swarms in eight PSO algorithm initialized in an area 
equal to primary feasible bounds in each dimension, this 
kind of initialization provide a realistic test bed. Having a 
look on table I, One can understand that in unimodal 
functions, Ring neighborhood topology with 5 particles in 
it, has the best fitness on the benchmark functions. The 
first three unimodal functions (f1-f3) are easily optimized 
by the DPSOLA, with the 5 particles in each local 
neighborhood. f4 needs a little more particles (7) to 
perform as well as  DGLCPSO. In order to have better 
results and keep the balance between subswarms, in all 
multimodal functions (f5-f8), we put 7 particles in each 
local neighborhood of the swarm. Again Ring 
neighborhood remains as the majority choice. 

TABLE VII.   
GRIEWANK  (f6) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 3.72E+03 1.05 4.52E-01 3.19E+00 6.01E+01 
 

 
1.005 1.26E-02 1.20E+01 6.14E+01 

 
 

1.0005 6.45E-02 9.82E+00 4.91E+01 

 3.84E+03 1.05 1.14E-01 1.23E+01 5.02E+01 
 

 
1.005 6.12E-01 1.35E+01 6.21E+01 

0.2 
 

1.0005 2.77E-01 2.72E+00 6.37E+01 

0.3 3.58E+03 1.05 6.14E-02 3.87E+00 6.65E+01 
 

 
1.005 2.65E-01 4.89E+00 6.62E+01 

 
 

1.0005 2.07E-01 6.68E+00 6.00E+01 

0.4 3.27E+03 1.05 3.75E-02 2.69E-01 6.94E+01 
 

 
1.005 2.18E-01 4.36E+00 6.44E+01 

 
 

1.0005 6.66E-02 7.12E+00 7.34E+01 

0.5 3.67E+03 1.05 2.78E-01 2.29E-03 5.43E+01 
 

 
1.005 6.41E-02 9.88E+00 5.43E+01 

 
 

1.0005 5.83E-02 1.46E+01 5.43E+01 

TABLE VIII.   
PENALIZED P8 (f7) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 2.52E+09 1.05 8.54E+07 9.65E-02 1.24E-02 
 

 
1.005 5.25E-02 4.07E-01 1.25E-02 

 
 

1.0005 9.70E-03 1.25E-01 6.24E-03 

0.2 2.45E+09 1.05 3.12E-02 9.03E-02 9.34E-03 
 

 
1.005 3.11E-02 9.64E-02 2.18E-02 

 
 

1.0005 3.12E-02 5.60E-02 1.24E-02 

0.3 2.36E+09 1.05 4.05E-02 9.96E-02 2.80E-02 
 

 
1.005 6.54E-02 1.31E-01 3.11E-03 

 
 

1.0005 2.18E-02 4.67E-02 1.24E-02 

0.4 2.29E+09 1.05 4.07E-02 3.42E-02 6.22E-03 
 

 
1.005 1.12E-01 1.53E-01 2.18E-02 

 
 

1.0005 3.73E-02 1.21E-01 9.33E-03 

0.5 2.27E+09 1.05 3.97E+01 8.09E-02 3.11E-02 

 
 

1.005 8.69E-02 8.09E-02 1.56E-02 

 
 

1.0005 5.84E-02 3.42E-02 1.87E-02 

TABLE IX.   
PENALIZED P16 (f8) AFTER 10 TIMES OF 5000 EVALUATIONS 

W OPSO a, b DGLCPSO DPSOLRP DPSOLRɛP 

0.1 2.46E+09 1.05 1.60E+08 2.61E-01 6.76E-02 
 

 
1.005 7.01E-04 2.04E-01 4.69E-02 

 
 

1.0005 2.34E-04 2.84E-01 1.75E-05 

0.2 2.38E+09 1.05 2.70E-04 1.26E-01 5.52E-02 
 

 
1.005 1.97E-05 1.24E-01 1.81E-02 

 
 

1.0005 1.20E-04 1.04E+00 2.72E-02 

0.3 2.24E+09 1.05 5.13E-02 8.48E-02 1.81E-02 
 

 
1.005 3.51E-06 1.63E-01 1.81E-02 

 
 

1.0005 2.00E-02 2.93E-01 3.71E-02 

0.4 2.43E+09 1.05 4.00E-02 2.62E-01 3.62E-02 
 

 
1.005 6.98E-05 2.90E-01 9.06E-03 

 
 

1.0005 4.20E-05 2.73E-01 3.70E-02 

0.5 2.24E+09 1.05 2.61E+01 1.35E-01 3.79E-02 
 

 
1.005 5.67E-02 9.55E-02 4.27E-12 

 
 

1.0005 4.21E-02 3.79E-02 6.67E-02 

 

By overall observation on tables II through V, there are 
a very large difference in performance between the LRP 
and LRɛP learning algorithms. In all unimodal functions 
LRP learning algorithm with alpha, beta = 0.01 performs 
better. Using LRP learning algorithm lets the LA to select 
the best action for its current path. In f1-f3, DPSOLA 
algorithms show significantly better performance. Having 
a look on tables VI through IX, in multimodal functions 
(f5-f8), the proposed algorithms again suppress both 
DGLCPSO and PSO. Except for Ackley‟s function that 
the mean fitness of DPSOLA cannot exactly reach 
DGLCPSO but the answer is still reasonable. In 
multimodal functions the overall performance of LRɛP is 
better than LRP learning algorithm. 
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From tables II through IX one can understand that the 

best solutions are for (0.4,0.5)w   and especially w = 

0.4 offers better performance. The best values for a, b 
coefficients are a, b = 1.0005. The best embedded 
learning automaton is LRP for unimodal functions and LRɛP 
for multimodal functions. By comparing these results, it 
can be clearly perceived that DPSOLA always has better 
solution than PSO and DGLCPSO, in both unimodal and 
multimodal functions. Although we discussed about the 
variation effects of a, b coefficients, there still remain 
some area of open search, which will be consider later. 

Convergence graph of DGLCPSO, DPSOLA, PSO and 
PSOLA algorithms on Penalized P16 function is shown in 
figure 1. The standard PSO and PSOLA algorithms 
trapped in local minima, as can be seen from the flat 
aggregated lines in figure 8. The DPSOLRP manage to 
continue but trapped in local minima. The DPSOLRɛP 
algorithm is able to continue its solution and offer the best 
performance. 

 

Figure 1.  Penalized P16 (f8) Convergence graph 

VI. CONCLUSION 

In this paper we introduced a new algorithm from the 
family of PSO-LA model named as DPSOLA and study 
its internal mechanism.  Standard PSO [2], DGLCPSO [7] 
and previous PSO-LA models [10–12] always have the 
problem of searching around local minima, now by a set 
of three search strategies introduced by DPSOLA, we 
suggest a scapegoat solution. DPSOLA splits the swarm 
into the subswarms in which the particles could share their 
useful information. The LA takes the responsibility of 
moving each particle in problem space. The proposed 
algorithm tested in eight benchmark functions with large 
scale swarm size, high dimension, sufficient number of 
iterations, equal initialization range to feasible range and a 
few particles in local neighborhood (subswarms). These 
intensive conditions make the experiments so realistic. 
The approach performs better and better by increasing the 
inertia weight. Results show that the proposed method 
reduces the probability of trapping in local minima and 
obtains the optimum fitness. Also the 3 action learning 
automaton embedded in DPSOLA makes the convergence 
process faster. Keeping the number of subswarms 
members lowly noticeable (considering 5 or 7 in the 
current experimental setup), leads the subswarms particles 
to the best fitness they can reach in unimodal and 
multimodal problems in contrast with other algorithms. 
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