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Many engineering optimization problems have not standard mathematical techniques, and cannot be solved using exact 
algorithms. Evolutionary algorithms have been successfully used for solving such optimization problems. Differential evolution 
is a simple and efficient population-based evolutionary algorithm for global optimization, which has been applied in many real 
world engineering applications. However, the performance of this algorithm is sensitive to appropriate choice of its parameters as 
well as its mutation strategy. In this paper, we propose two different underlying classes of learning automata based differential 
evolution for adaptive selection of crossover probability and mutation strategy in differential evolution. In the first class, genomes 
of the population use the same mutation strategy and crossover probability. In the second class, each genome of the population 
adjusts its own mutation strategy and crossover probability parameter separately. The performance of the proposed methods is 
analyzed on ten benchmark functions from CEC 2005 and one real-life optimization problem. The obtained results show the 
efficiency of the proposed algorithm for solving real-parameter function optimization problems. 

Keywords: Evolutionary Algorithms; Continuous Optimization; Differential Evolution; Learning Automata; parameter 
adaptation. 
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List of acronyms 

EAs Evolutionary Algorithms 

GA Genetic Algorithm 

ACO Ant Colony Optimization 

AIS Artificial Immune System 

PSO Particle Swarm Optimization 

DE Differential Evolution 

LA Learning Automata 

CLA Cellular Learning Automata 

FA Firefly Algorithm 

PC Parameter vector Change magnitude 

FC Function value Change 

CoDE Composite DE 

EDA Estimation of Distribution Algorithm 

CDE Crowding-based Differential Evolution 

QOX Quantization Orthogonal crossover 

VSLA Variable Structure Learning Automata 

GLADE Group Learning Automata based Differential Evolution 

ILADE Individually Learning Automata based Differential Evolution 

NFL No Free Lunch 

FEs Function Evaluations 

LADE Learning Automata based DE 

FMSW Frequency-Modulated Sound Waves 

 

1.   Introduction 

Global optimization has been widely applied across different branches of engineering and science. Typical 
examples of global optimization in real-world applications include: financial planning optimization, chemical 
engineering design/control, mathematical function optimization and electrical circuit optimization/ design. The 
objective of global optimization is to find the best solution of a given problem, in a set of all feasible solutions, 
in order to satisfy some optimality measures. Comprehensive study on global optimization can be found in [1-2].  
One of the most widely used numerical methods for solving global optimization problems are Evolutionary 
Algorithms (EAs). EAs are global probabilistic search techniques based on natural evolution that have been used 
successfully in a variety of applications. Compared to the classical methods of optimization, EAs offer several 
practical advantages when facing complex optimization problems. Some of these advantages include the simple 
structure of the procedure, robustness to changing circumstances and the ability to self-adapt the optimum 
seeking process during the run. Hence, they seem to be a good candidate for solving global optimization 
problems. Several evolutionary algorithms have been proposed for function optimization. Genetic Algorithm 
(GA) [4], Ant Colony Optimization (ACO) [5], Artificial Immune System (AIS) [6], Particle Swarm 
Optimization (PSO) [7, 16], Group Search Optimizer [72] and Differential Evolution (DE) [8][73] are examples 
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of such methods. However, most of these methods suffer from premature convergence and have a slow 
convergence rate. 
Recently, many researchers have incorporated Learning Automata (LA) into mentioned algorithms with the aim 
to enhance their performance in function optimization. For instance, Rastegar et al. [9] proposed a combination 
of EAs and Cellular Learning Automata (CLA) called CLA-EC. They have assigned each genome of the 
population to a cell of the CLA and equipped each cell with a set of LAs to determine the string genome for that 
cell. In each cell, they generate a reinforcement signal based on a local rule for selecting an action and updating 
the internal structure of the LA. Abtahi et al. [10] used LA along with co-evolutionary GA to learn whether or 
not the variables of a given problem are dependant. Then in each case they choose an appropriate approach to 
solve the problem. Rezvanian et al. [11] used LA for tuning the mutation rate of antibodies in order to establish a 
balance between the process of global and local search in AIS. Hashemi et al. [12] introduced two classes of LA 
based algorithms for adaptive selection of value for inertia weight and acceleration coefficients in PSO. In both 
classes, they used an LA per w, c1 and c2 in order to choose an optimal value for corresponding parameter at 
each stage of the algorithm. Vafashoar et al. [13] proposed a model based on CLA and DE, namely CLA-DE. In 
CLA-DE, the search dimensions of the problem are iteratively partitioned via LA in the CLA and learning 
process is guided toward the most admissible partition. Moreover, they used DE to facilitate the incorporation 
among neighboring cells. Farahani et al. [14] applied LA for adjusting the parameters of the Firefly Algorithm 
(FA). In comparison with standard FA, their proposed method shows a better performance on a set of standard 
test functions. 
Recently, DE has attracted a considerable deal of attention regarding its potential as an optimization technique 
for numerical problems and several modifications of DE proposed and applied in various domains [22-27]. 
Compared to some other competitive optimization algorithms, DE exhibits much better performance [22]. That 
is the reason why in this paper we have chosen DE as the foundation of our work. Despite its effectiveness, the 
performance of DE is highly sensitive to the value of its control parameters (i.e. F and CR). In this paper we 
propose two classes of LA based algorithms to improve the performance of standard DE. The rest of the paper is 
organized as follows: The general principles of DE are given in Section 2Error! Reference source not found.. 
Section 3 reviews the related works on DE. Section 4 briefly presents LA. The proposed algorithms are 
introduced in Section 5. Section 6 is devoted to experimental setup. Experimental results are reported in Section 
7. Finally, Section 8 concludes the paper.  
 

2.   Differential Evolution 

DE [56] is among the most powerful stochastic real-parameter optimization algorithms, proposed by Storn and 

Price [20-21]. The main idea of DE is to use spatial difference among the population of vectors to guide the 
search process toward the optimum solution. The main steps of DE are illustrated in Figure 1. 
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Fig. 1. Schematic view of the main stages of DE algorithm 

 
The rest of this section describes the main operational stages of DE in detail.   

2.1.   Initialization of vectors 

DE starts with a population of NP randomly generated vectors in a D-dimensional search space. Each vector i, 
also known as genome or chromosome, is a potential solution to an optimization problem which is represented 
by ��� = (��� , �	� , … , ���). The initial population of vectors is simply randomized into the boundary of the search 
space according to a uniform distribution as follows: 
 ��� = 
� +	������0,1� × ��� − 
��  (1) 

where ���1,2, … , !"� is the index of ith vector of the population, #��1,2, … , $� represents jth dimension of the 
search space, ������0,1� is a uniformly distributed random number corresponding to jth dimension. Finally, 
� 
and �� are the lower and upper bounds of the search space corresponding to jth dimension of the search space.  

2.2.   Difference-vector based mutation  

After initialization of the vectors in the search space, a mutation is performed on each genome i of the 
population to generate a donor vector %�� = (%�� , %	� , … , %��)  corresponding to target vector ���. Several strategies 
have been proposed for generating donor vector %��. In this paper, we use the following mutation strategies to 
create donor vector [25]:  $& ����⁄ 1⁄ :   %�) = ��� + ℱ. (��	 − ��,)  (2) $& ����⁄ − -. − /01- 2⁄ :   %�) = ��� + ℱ. (��2345 − ���) + ℱ. (��	 − ��,) + ℱ. (��6 − ��7)  (3) 

where %�� is the donor vector corresponding to ith genome. ��� ≠	��	 ≠	��, ≠	��6	 	≠ 	 ��7 are five randomly 
selected vectors from the population. ℱ is the scaling factor used to control the amplification of difference 
vector. The effect of different mutation strategies on the performance of DE has been studied in [8]. If the 
generated mutant vector is out of the search boundary, a repair operator is used to make %�)  back to the feasible 
region. Different strategies have been proposed to repair the out of bound individuals. In this article, if the jth 

element of the ith mutant vector, i.e. %�� , is out of the search region  �
/� , �/��, then it is repaired as follows: 

%�� = 9:;<=	>?<	 		�@	%�� < 
/�:;<=	B?<	 �@	%�� > �/� 	  (4) 

where ���  is the jth element of the ith target vector. 

2.3.   Crossover 

To introduce diversity to the population of genomes, DE utilizes a crossover operation to combine the 
components of target vector ��� and donor vector DE��, to form the trial vector FEE��. Two types of crossover are 
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commonly used in the DE community, which are called binomial crossover and exponential crossover. In this 
article we focus our work on binomial crossover which is defined as follows [22]: 

��� = 	G%�� �@	�������0,1� ≤ IJ	.�	# = #������� .-ℎ0�L�10																																													  (5) 

where �������0,1� is a random number drawn from a uniform distribution between 0 and 1, IJ is the crossover 

rate used to control the approximate number of components transferred to trial vector from donor vector. #���� 
is a random index in the range [1, D], which ensures the transmission of at least one component of donor vector 
into the trial vector. The reason why we have chosen the binomial crossover over the other crossover types is 
that its behavior is less sensitive to the problem size [67]. 

2.4.   Selection 

Finally, a selection approach is performed on vectors to determine which vector (��� or FEE��) should be survived in 
the next generation. The most fitted vector is chosen to be the member of the next generation as follows: 

���,M=� = 	GFEE��,M �@	@����,M� ≤ @�FEE��,M�																										���,M .-ℎ0�L�10																																													  (6) 

Different variations of DE are specified with a general convention DE/x/y/z, where DE stands for “Differential 
Evolution”, x represents a string denoting the base vector to be perturbed, y is the number of difference vectors 
considered for perturbation of x, and z stands for the type of crossover being used (exponential or binomial) 
[22]. Algorithm 1 shows a sample pseudo-code for DE.  
 
Algorithm 1. Pseudo-code for DE with binomial crossover 

1. Setting parameters  

2. Randomly initialize population in the D-dimensional search space 

3. repeat 

4.    for each genome i in the population do 

5.       select three mutually exclusive random genomes ��� ≠ ��	 ≠ ��,    

6.       generate a donor vector according to Eq. (2) 

   %�� =	��� + 	ℱ	. (��	 − ��,)      
7.       repair %�� if it violates the boundary conditions 
8.       jRand = a random integer in the range of [1,D] 

9.       generate a trial vector �E��  using binomial crossover by Eq. (4) 
   ��� = 	G%�� �@	�������0,1� ≤ IJ	.�	# = #������� .-ℎ0�L�10																																													                  

10.       evaluate the candidate �E��  
11.       replace ��� with �E��, if fitness of �E�� is better than fitness of ��� 
12.    end-for 

13. until a termination condition is met  
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Fig. 2. Pseudo-code for DE with binomial crossover. 
 
DE has several advantages that make it a powerful tool for optimization tasks [22]: Specifically, (1) DE has a 
simple structure and is easy to implement; (2) despite its simplicity, DE exhibits a high accuracy; (3) the number 
of control parameters in DE are very few (i.e. NP, F and CR); (4) due to its low space complexity, DE is suitable 
for handling large scale problems. 

3.   Related works 

Since the inception of DE, several improvements have been proposed to enhance the performance of DE. In the 
rest of this section, we will examine the current studies and advances in the literature in seven major categories.  
 
3.1. Changing the initialization pattern of the DE 

It has been acknowledged that the initial population of DE has a great influence on its performance [61]. Most of 
the studies in the literature have generated the initial population of DE according to a uniform random 
distribution. However, some researchers have tried to accelerate the convergence speed and solution accuracy of 
DE by applying other types of initialization methods. For example, Rahnamayan et al. [27] used opposition-
based learning for generating the initial population in DE. Ali et al. [61] proposed two initialization methods for 
DE based on quadratic interpolation and nonlinear simplex method. Both approaches reported a significant 
improvement over the basic DE. 
 
3.2. Adjusting the control parameters of DE 

Several attempts have been done in the literature to establish a balance between the exploration and exploitation 
ability of DE by adjusting its control parameters. In this subsection, we examine three types of parameter 
adjustment in DE. 
 
3.2.1. DE with constant or random parameters 
The first group of methods has tried to determine an exact value or a range of values for the parameters of DE 
(i.e. F and CR). This class of studies contain strategies in which the value of DE parameters is either constant 
during the search or is selected from a pre-defined interval in a random manner. Storn and Price [21] suggested a 
constant range of values for NP, F and CR. According to their experiments, a reasonable value for NP is in the 
range of 5×D to 10×D where D is the dimensionality of the problem. F should be chosen from [0.5, 1] and a 
good first choice for CR is either 0.9 or 1. Das et al. [32] proposed a scheme for adjusting the scaling factor F, in 
which the value of F varies during the search process in a random manner. In their approach, the value of F is 
chosen randomly within the range [0.5, 1]. Brest et al. [24] introduced an algorithm, called jDE, which adjusts 
the values of CR and F for each individual separately. They used a random mechanism to generate new values 
for F and CR according to a uniform distribution in the range of [0.1, 1.0] and [0.0, 1.0] respectively.  
 
3.2.2. DE with time-varying parameters 
Apart from DE with constant or random parameters value, another option is to change the value of the 
parameters as a function of time or iteration number. An example of such strategy is the work by Das et al. [32]. 
They introduced a linearly decreasing scaling factor. In their method, the value of F is reduced from an initial 
value (ℱNO:) to a final value (ℱN�P) according to the following scheme [32]:   
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ℱ�QRS = (ℱNO: − ℱN�P) × (�QRSTUVW�QRS)�QRSTUV   (7) 

where ℱ�QRS  is the value of F in the current iteration, ℱNO: and ℱN�P are the upper and lower value of F, 
respectively. �-0�NO: is the maximum number of iterations. Higher value of F enables the genomes of the 
population to explore wide areas of the search space during the early stages of the optimization. Moreover, the 
decreasing scheme for F allows the movements of trial solutions in a relatively small region of the search space 
around the suspected global optimum, at final stages of the search process.  
 
3.2.3. DE with adaptive parameters 
The last class of methods contains strategies which adjust the value of the DE parameters according to the state 
of the algorithm. These methods often control the search process via one or more feedbacks. For example Liu 
and Lampinen [33] proposed a fuzzy adaptive variant of DE, named FDE, for adaptive selection of value of DE 
parameters. They used a fuzzy system consisting of “9×2” rules for dynamic adjustment of F and CR. Each rule 
of the system has two inputs and one output. Parameter vector change magnitude (PC) and function value 
change (FC) are input variables of the system, and the value of F or CR is the output variable of the system. 
Each fuzzy variable has three fuzzy sets: SMALL, MIDLLE and BIG. Different combinations of input variables 
are used to determine the value of F and CR. For instance, a typical rule of their system is: IF (PC is small) and 
(FC is big) Then (CR is big). Qin et al. [25] proposed a self-adaptive DE, called SaDE, in which the control 
parameters and trial vector generation strategies are adaptively adjusted based on their previous performance in 
generating promising solutions. In [26], Zhang and Sanderson proposed JADE where the values of F and CR are 
sampled from a normal distribution and a Cauchy distribution at individual level, respectively. In JADE, 
information from the most recent successful F and CR are used to set the new F and CR. In this paper, two 
different feedbacks are used to monitor the search progress of DE, one at population level and another at genome 
level, and adjust the parameter CR, accordingly.    
 
3.3. Adapting the selection of mutation strategies in DE 

There exist various methods in the literature that have used strategy adaptation for improving the performance 
DE. For instance Gong et al. [29] employed the probability matching technique for strategy adaptation in DE. In 
their approach, at each generation, a mutation strategy is selected for each parent from a strategy pool of four 
mutation schemes, i.e. “DE/rand/1”, “DE/rand/2”, “DE/rand-to-best/2” and “DE/current-to-rand/1”, based on its 
probability. Afterwards, the relative fitness improvement, which is calculated as the difference of the fitness of 
the offspring with that of its parent, is gathered in order to update the probability of each mutation strategy. 
Mallipeddi et al. [30] introduced an ensemble of mutation strategies and control parameters of DE, called 
EPSDE. EPSDE contains two separate pools: a pool of distinct trial vector generation strategies (with 
“DE/rand/1”, “DE/best/2” and “DE/current-to-rand/1”)  and a pool of values for the control parameters F ϵ {0.4, 
0.5, 0.6, 0.7, 0.8, 0.9} and CR ϵ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. In EPSDE, successful combinations 
of mutation strategies and parameters values are used to increase the probability of generating promising 
offspring. Wang et al. [31] proposed a Composite DE (CoDE) which combines different trial vector generation 
strategies with some control parameter settings. In CoDE, they constituted a mutation strategy pool (with 
“DE/rand/1”, “DE/rand/2” and “DE/current-to-rand/1”) and a parameter candidate pool (with “F=1.0, CR=0.1”, 
“F=1.0, CR=0.9” and “F=0.8, CR=0.2”). At each generation, three offspring, with randomly chosen parameter 
settings from parameter pool, are generated for each target vector. Then, the best generated offspring is 
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transferred to the next generation, if it is fitter than its parent. In this work we also use strategy adaptation to 
improve the performance of DE for function optimization.   
  
3.4. Hybridizing DE with other operators 

A group of studies have combined DE with other optimization methods. For example, Sun et al. [62] proposed a 
hybrid algorithm of differential evolution and Estimation of Distribution Algorithm (EDA), which they have 
called DE/EDA. In DE/EDA, local information provided by DE is combined with global information extracted 
by the EDA. Kazemi Kordestani, Rezvanian, and Meybodi [63] proposed a bi-population hybrid collaborative 
model of crowding-based differential evolution (CDE) and PSO, namely CDEPSO, for dynamic optimization 
problems. In CDEPSO, a population of genomes is responsible for locating several promising areas of the search 
space and keeping diversity throughout the run using CDE. Another population is used to exploit the area around 
the best found position using the PSO.  
 
3.5. Utilizing multi-population scheme 

Several studies have confirmed that utilizing multi-population scheme, instead of single-population, can improve 
the performance of basic DE. For example, Halder et al. [64] presented a cluster-based differential evolution 
with external archive, called CDDE_Ar, for dynamic optimization problems. In CDDE_Ar, the entire population 
is partitioned into several sub-populations according to the spatial locations of the trial solutions. Each sub-
population then exploits its respective region using “DE/best/1/bin”.  
 
3.6. Designing new types of mutation, crossover and selection 

Another group of studies has been focused on designing new mutation, crossover and selection operators. Zhang 
and Sanderson [26] proposed a new mutation operator named ‘‘DE/current-to-pbest’’, which is a generalization 
of “DE/current-to-best”, to establish a balance between the greediness of the mutation and the diversity of the 
population. Wang et al. [23] embedded quantization orthogonal crossover (QOX) with DE/rand/1/bin to enhance 
the search ability of DE. Das et al. [65] introduced a modified selection mechanism to the classical DE. In this 
work, the probability of accepting the inferior solutions is dynamically altered with iterations via the simulated 
annealing concepts. 
 
3.7. Using local neighborhood topologies in DE 

Apart from the attempts for designing new mutation operators, a number of studies have investigated the effect 
of local communication topologies on the performance of DE. Das et al. [66] proposed DE with global and local 
neighborhoods, called DEGL, to improve the DE/target-to-best/1/bin mutation scheme. In DEGL, genomes of 
the population are arranged in a ring topology. Each parameter vector then shares information about good 
regions of the search space with two of its immediate neighbors. This way, the information about the best 
position of each neighborhood is spread through the population, which decreases the chance of entrapment in 
local optima. 
The present study focuses on parameter adjustment (i.e. CR) as well as strategy adaptation to improve the 
performance of DE.  
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4.   Learning Automata 

LA is an adaptive decision-making device that learns the optimal action out of a set of finite actions through 
repeated interactions with a random environment [34-35]. At each stage, LA choose an action, among a set of 
finite actions, based on a probability distribution over the action-set and apply that to the environment. Then, a 
feedback is received from the environment by the automaton which is used to update the probabilities of actions. 
After a certain number of stages, LA is able to select the optimal policy. Interaction between LA and its 
environment is depicted in Fig. 3. 
 

 
Fig. 3. The interaction between learning automata and environment. 

 
In this paper, we use Variable Structure Learning Automata (VSLA) to improve the efficiency of DE. VSLA is a 
type of LA in which probabilities of the actions are updated at each iteration. VSLA can be defined as a 
quadruple {α, β , p, T}, which α={α1, …, αr} is set of automata actions, β={β1, …, βm} is the set of automata 
inputs, p={p1, …, pr} is the probability vector corresponds to each action and p(n+1)=T[α(n), β(n), p(n)] is the 
learning algorithm where n is the current iteration of the automata. Various environments can be modeled by β. 
In an S-model environment, the output of the environment is a continuous random variable that assumes values 
in the interval [0, 1]. The automaton in this model updates its action probabilities according to the following 
equations [36]: 

i i i ip (n 1) p (n) (n)bp (n) [1 (n)]a(1 p (n)) i j+ = − β + − β − =  (8) 

j j j j
b

p (n 1) p (n) (n)[ bp (n)] [1 (n)]ap (n) i j
(r 1)

+ = − β − + − β ≠
−

 (9) 

Where parameters a and b determine reward and penalty in the range of [0, 1].  

In a P-model environment, the output of the environment is a binary number with 0 for ‘desirable’ and 1 for 
‘undesirable’ response. In this model, LA updates its action probabilities according to following equations [12]: 

j j
j

j

p (k) a(1 p (k)) if i j
p (k 1)

p (k)(1 a) if i j

+ − =
+ = 

− ≠
 (10) 

j

j
j

p (k) a(1 b) if i j

p (k 1) b
(1 b)p (k) if i j

r 1

+ − =


+ = 
+ − ≠

−

 (11) 

It is also here that parameters a and b determine reward and penalty in the range of [0, 1].  

Learning 

Automata 

 

Action 

Feedback 

Random 

Environmen
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Three linear reinforcement schemes can be obtained by selecting different values for the reward and penalty 
parameters. Table 1 indicates different linear reinforcement schemes. 

Table 1. Different linear reinforcement schemes in learning automata 

Scheme Parameters value 

LRI   (linear reward inaction) b=0 

LRP   (linear reward penalty) a=b 

LRεP  (linear reward ε-penalty) a>>b 

 
LA have been successfully applied to a number of applications including image processing [37-38], path 
planning [39], pattern recognition [40], wireless sensor networks [41-42], parameter adaption [12], [43], function 
optimization [15,44], multi objective optimization [3], dynamic optimization [45], Sampling from Complex 
Networks [46], graph problems [47] [49], and information retrieval [48]. 

5.   Proposed Algorithms 

In this section, two classes of LA based approaches for adaptive selection of parameter CR and mutation strategy 
in DE are introduced. The proposed DE algorithms extend the general principles of the standard DE with an 
extra section for the process of learning the optimal mutation strategy and value for CR using LA. In the first 
class of algorithms, a Group Learning Automata Based Differential Evolution (GLADE) is introduced in which 
the selected mutation strategy and CR are applied to all genomes of the population. Conversely, in the second 
class, an Individually Learning Automata Based Differential Evolution (ILADE) is proposed in which the 
mutation strategy and CR are chosen for each genome, separately. In both classes we define two types of LA: a 
LAscheme, which is responsible for selecting an appropriate mutation strategy and a LACR, which is used to adjust 
CR. The LAscheme and LACR contain n admissible actions corresponding to mutation strategy and CR value, 
respectively. The LAs in both classes of algorithms have the same characteristics. In the rest of this section, 
GLADE and ILADE are further explained in detail.  

5.1.   Group learning automata based differential evolution 

In this approach, genomes of the population share the same mutation strategy and value for their parameter CR. 
The GLADE approach contains two learning automata (LAscheme and LACR) that adapt trial vector generation 
scheme and parameter CR at population level. Algorithm 2 shows the general procedure of GLADE. 
 
Algorithm 2. Pseudo-code for GLADE 

1. Setting parameters a, b, F, population_size  

2. Define learning automata LAscheme, LACR for selecting offspring 

generation scheme and crossover probability CR, respectively.  

3. Randomly initialize the population in the D-dimensional search space 

4. repeat 
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5.    choose an action for each automata according to its probability 

   vector 

6.    Evolve population of genomes according to selected actions  

7.    Set β(n)=1-Number of improved genomes since last iteration
population_size

 and update  

   each automaton’s probability vector using Eqs. (6), (7) 

8. until a termination condition is met  

Fig. 4. Pseudo-code for GLADE. 

 
At each iteration, LAscheme and LACR select a trial vector generation strategy and a CR, according to their 
probability vectors. Then, the population of genomes is evolved by chosen actions and the fraction of improved 
genomes in the current iteration is used as a feedback to modify the probability vector of each learning automata.  

5.2.   Individually Learning Automata Based Differential Evolution 

In this class of algorithms, each genome of the population adjusts its own mutation strategy and parameter CR 
separately. In this approach, each genome i of the population uses two LA, i.e. LAscheme and LACR, to select the 
mutation strategy and CR, respectively. Hence, the total number of LA in ILADE approach is equal to NP×2. 
Pseudo-code for ILADE is presented in Algorithm 3. 
 
Algorithm 3. Pseudo-code for ILADE 

1. Setting parameters a, b, F, population_size  

2. for each genome i in the population do 

3.    Define two types of learning automata LAscheme(i), LACR(i) for  

   selecting offspring generation scheme and crossover probability  

   CR, respectively. 

4. end-for  

5. Randomly initialize population in the D-dimensional search space 

6. repeat 

7.    choose an action for each automata according to its probability 

      vector 

8.    evolve population of genomes according to selected actions  

9.    for each genome i in the population do 

10.       if fitnesst(i)<fitnesst-1(i) 

11.          Reward selected action of LAscheme(i), LACR(i) using Eq.(8)  

12.       else 

13.          Penalize selected action of LAscheme(i), LACR(i) using Eq.(9) 

14.       end-if 
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15.    end-for    

16. until a termination condition is met  

Fig. 5. Pseudo-code for ILADE. 

 
In ILADE, in each iteration, a mutation strategy along with a CR is selected for each genome by the 
corresponding LA. Afterwards, all genomes are evolved using their corresponding trial vector generation 
strategy and CR value. If the selected mutation strategy and CR for each genome i of the population improve the 
quality of i, then the related LA will receive a favorable feedback from genome i and the corresponding action of 
LAscheme and LACR will be rewarded, otherwise they will be penalized.  
Different variations of GLADE and ILADE are obtained by changing the reinforcement schemes in LAscheme and 
LACR. These variations are GLADERI, GLADERP, GLADERεP, ILADERI, ILADERP and ILADERεP. In these 
variations when we refer to ILADERεP for example, we mean that both LAscheme and LACR use LRεP reinforcement 
scheme.  

6.   Experimental setup 

6.1.   Benchmark functions used 

There are various benchmark functions in the literature for validating the effectiveness of newly proposed 
algorithms. Obviously, the No Free Lunch (NFL) theorem states that it is unlikely to develop an omnipotent 
algorithm for solving all class of problems [60]. Thus, our goal is not to propose a method for solving all 
benchmark functions, but to improve the efficiency of the DE over a class of benchmark functions. Hence, to 
study the performance of the proposed automata-based DE variants, a set of experiments was carried out using 
ten benchmark functions from CEC2005 special session on real-parameter optimization [50]. Among them, five 
functions are unimodal (F1-F5), and the other five functions (F6-F10) are multimodal functions. Moreover, the 
performance of the proposed method is also evaluated on one real-life optimization problem called parameter 
estimation for Frequency-Modulated Sound Waves (FMSW) [68], which will be explained later in sub-section 
7.4.  

6.2.   Algorithms for comparison 

Several algorithms have been chosen to compare with the proposed approach. These algorithms include two 
classical DE, three state-of-the-art DE variants and three other well-known methods listed below: 

1. DE/rand/1/bin (NP=100, F=0.5, CR=0.9) 
2. DE/rand-to-best/2/bin (NP=100, F=0.5, CR=0.9) 
3. Self-adapting control parameters in DE (jDE) [24] 
4. DE with ensemble of parameters and mutation strategies (EPSDE) [30]  
5. Enhancing the search ability of DE through orthogonal crossover (OXDE) [23] 
6. Comprehensive learning PSO (CLPSO) [7] 
7. Global and local real-coded GAs based on parent-centric crossover operators (GL-25) [51]  
8. Completely derandomized self-adaptation in evolution strategies (CMA-ES) [52]. 

For algorithms (3-8), their original settings are used. 
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6.3.   Parameter settings for LADE variants 

For all variations of the proposed algorithm, the population size NP is set to 100. In addition, binomial crossover 
and parameter F=0.5 are applied. For parameter CR, three ranges of discontinues crossover rate are considered 
as actions for LACR. Table 2 shows the values of parameter CR used in GLADE and ILADE. 
 

Table 2. Different crossover rates used in GLADE and ILADE. 

Rate of crossover CR values Initial probability 

Low {0.1,0.2} 0.4 

Moderate {0.5} 0.2 

High {0.9,1.0} 0.4 

 
It is evident that the parameter CR plays a critical role on the behavior of DE. A large value of CR can maintain 
the diversity among the individuals, which is favorable for multi-modal functions. In contrast, a small value of 
CR can make trial vector little different from the target vector. This feature is desirable for optimizing separable 
problems. The choice of range of values for parameter CR is based on the above consideration. Besides, these 
values have been frequently used in many DE variants, e.g. [31]. 
As mentioned before, we use two mutation strategies for LAscheme as follows: $& ����⁄ 1⁄ :	%� = ��� + ℱ. (��	 − ��,) (12) $& ���� −⁄ -. − /01- 2⁄ : %� = ��� + ℱ. (��2345 − ���) + ℱ. (��	 − ��,) + ℱ. (��6 − ��7)  (13) 

Table 3 represents configurations of LA in different learning schemes. 

Table 3. Different configurations for LAscheme and LACR. 

LA Learning scheme a b Action set Initial probability 

LAscheme LRI 0.01 0.00 {DE/rand/1, DE/random-to-best/2} {0.5, 0.5} 

LAscheme LRP 0.01 0.01 {DE/rand/1, DE/random-to-best/2} {0.5, 0.5} 

LAscheme LRεP 0.01 0.001 {DE/rand/1, DE/random-to-best/2} {0.5, 0.5} 

LACR LRI 0.01 0.00 {0.1, 0.2, 0.5, 0.9, 1.0} {0.2, 0.2, 0.2, 0.2, 0.2} 

LACR LRP 0.01 0.01 {0.1, 0.2, 0.5, 0.9, 1.0} {0.2, 0.2, 0.2, 0.2, 0.2} 

LACR LRεP 0.01 0.001 {0.1, 0.2, 0.5, 0.9, 1.0} {0.2, 0.2, 0.2, 0.2, 0.2} 

6.4.   Simulation settings 

All ten benchmark functions (F1-F10) were tested in 30-dimensions (30D). The maximum number of Function 
Evaluations (FEs) was set to 300000. All experiments on each function were run 25 times. All the algorithms 
were implemented and tested using MATLAB R2009a on an Intel Pentium Dual-core Processor with 2.5 GHz 
CPU and 4 GB of RAM in Windows XP SP3. 
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7.   Results and discussion 

The simulations are organized in three subsections. In the first subsection, the proposed methods are compared 
to each other and the best performing Learning Automata based DE (LADE) variant is selected for further 
comparison with other methods. The second subsection compares LADE with alternative DE variants. The 
computational complexity of the LADE is also presented in the second sub-section. Finally, in the last 
subsection, the performance of the LADE is compared with other well-known algorithms. The average and 
standard deviation of the function error values @(��?RZQ) − @���[\Q� among 25 independent runs recorded for each 
benchmark function, where @(��?RZQ) the best solution is found by the algorithm in a typical run and @���[\Q� is 
the optimum value of the test function. Moreover, when comparing with other peer algorithms, the success rate 
is reported which is the percentage of successful runs among 25 runs. A run is successful if its function error 
value is smaller than the target error accuracy level ε, which is set to 10-6 for test functions F1-F5, and 10-2 for the 
other test functions [50]. In order to show the significant statistical difference among the algorithms, a non-
parametric statistical test called Wilcoxon rank sum test is conducted for independent samples [53-54] at the 
0.05 significance level.  

7.1.   Comparison between different LADE variants  

Table 4 presents the function error values obtained by different LADE variants in ten test functions. 

Table 4. Average and standard deviation of the function error values of LADE variants over 25 independent runs on ten benchmark functions 
at 30D, after 300000 FEs. 

Fun. GLADERI GLADERP GLADERεP ILADERI ILADERP ILADERεP 

F1 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00  

F2 3.98E-08 ± 7.24E-08 1.10E-10 ± 2.06E-10 3.45E-18 ± 7.30E-18 6.16E-10 ± 1.03E-09 6.18E-12 ± 8.75E-12 5.34E-19 ± 1.78E-18  

F3 2.00E+05 ± 1.19E+05 1.16E+05 ± 9.39E+04 1.14E+05 ± 6.61E+04 1.44E+05 ± 1.09E+05 9.19E+04 ± 6.71E+04 6.14E+04 ± 4.28E+04 

F4 1.27E-06 ± 2.20E-06 1.34E-05 ± 2.15E-05 1.57E-02 ± 1.85E-02 2.75E-06 ± 3.26E-06 4.85E-06 ± 5.56E-06 3.00E-08 ± 7.54E-08  

F5 3.78E-02 ± 4.72E-02 5.58E-01 ± 3.59E-01 5.52E-01 ± 6.12E-01 2.38E-02 ± 2.81E-02 4.52E-01 ± 3.84E-01 1.67E-01 ± 1.30E-01 

F6 2.01E-06 ± 7.56E-06 3.36E-05 ± 1.08E-04 3.04E+00 ± 1.39E+00 1.01E-10 ± 2.40E-10 7.39E-07 ± 8.99E-07 3.12E-09 ± 7.75E-09  

F7 2.95E-04 ± 1.47E-03 4.71E-15 ± 6.90E-15 3.94E-04 ± 1.97E-03 6.90E-04 ± 2.41E-03 3.94E-04 ± 1.97E-03 6.90E-04 ± 2.41E-03  

F8 2.09E+01 ± 3.47E-02 2.09E+01 ± 3.70E-02 2.09E+01 ± 5.01E-02 2.09E+01 ± 5.26E-02 2.09E+01 ± 4.89E-02 2.09E+01± 3.63E-02 

F9 3.60E-09 ± 1.21E-08 1.26E+01 ± 2.11E+00 1.13E+02 ± 2.14E+01 2.27E-10 ± 3.51E-10 1.17E+01 ± 2.49E+00 1.86E-04 ± 9.31E-04  

F10 1.48E+02 ± 1.26E+01 1.51E+02 ± 1.23E+01 1.81E+02 ± 8.62E+00 1.51E+02 ± 9.52E+00 1.50E+02 ± 1.23E+01 1.50E+02 ± 1.24E+01 

 
In order to find the best performing algorithm among all LADE variants, Tukey-Kramer multiple comparison 
[55] has been applied over all test functions. Table 5 shows the result of multiple comparisons in the form of (b,-
w). For each cell (row,col) of the table, b and –w represent the number of problems for which LADErow is 
significantly better than and worse than LADEcol, respectively. If the subtraction of b and w (boldface values) is 
a positive number, it means that LADErow is better than the LADEcol and vice versa. In case that this value is 
equal to zero, none of the algorithms are superior to the other one. The last column of the Table 5 indicates the 
overall superiority of each method over the other methods, which is obtained by summing the boldface values of 
each row. 
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Table 5. Multiple comparison of mean best fitness, based on Tukey-Kramer method. 

Methods GLADERI GLADERP GLADERεP ILADERI ILADERP ILADERεP Score 

GLADERI 0 (+2,-2) 0 (+5,-2) +3 (0,-1) -1 (+2,-2) 0 (0,-2) -2 0 

GLADERP (+2,-2) 0 0 (+4,0) +4 (0,-2) -2 (0,0) 0 (0,-2) -2 0 

GLADERεP  (+2,-5) -3 (0,-4) -4 0 (0,-5) -5 (0,-4) -4 (0,-5) -5 -21 

ILADERI (+1,0) +1 (+2,0) +2 (+5,0) +5 0 (+2,0) +2 (0,-1) 0 +10 

ILADERP (+2,-2) 0 (0,0) 0 (+4,0) +4 (0,-2) -2 0 (0,-2) -2 0 

ILADERεP (+2,0) +2 (+2,0) +2 (+5,0) +5 (+1,0) +1 (+2,0) +2 0 +12 

 
A number of conclusions can be drawn from Table 5: 

1) GLADERεP is the worst performing algorithm that is outperformed by all the other LADE variants. 
2) ILADERεP is the best performing algorithm on the set of benchmark functions that is not outperformed 

by any other LADE variants. 
3) Overall performance of ILADE versions is better than GLADEs. This is mainly because in ILADE 

variants each genome of the population adjusts its parameters according to its own progress. 
The reason for the superiority of ILADERεP over other variants of ILADE lies in the fact that ILADERεP uses a 
linear reward ε-penalty reinforcement scheme. As can be seen in Table 5, ILADERεP and ILADERI are highly 
competitive. However, ILADERεP can perform slightly better than ILADERI. The only difference between these 
two algorithms is in their reinforcement scheme. It can be concluded that the penalty scheme used in ILADERεP 

is a key feature that can contribute to its better performance. 
In the rest of this paper, we compare the performance of ILADERεP with other alternative algorithms.  

7.2.   Comparison with other DE variants 

This subsection compares the proposed ILADERεP with other types of DE. Since LADEs use DE/rand/1/bin and 
DE/rand-to-best/2/bin as their actions for LAscheme, DE/rand/1/bin and DE/rand-to-best/2/bin are the first 
candidates for comparison. jDE [24], EPSDE [30] and OXDE [23] are also chosen as three state-of-the-art DE to 
compare with the proposed method. Finally, the computational complexity of the proposed method is reported. 

7.2.1.   Comparison with DE/rand/1/bin and DE/rand-to-best/2/bin 

Tables 6, 7 and 8 present the statistical results obtained by DE/rand/1/bin, DE/rand-to-best/2/bin and ILADERεP 
on a suite of ten benchmark functions. As can be seen from the reported results in Tables 6 and 8, for all tested 
functions, ILADERεP outperforms DE/rand/1/bin in terms of both rate of convergence and quality of final 
solution. 
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Table 6. Error values of DE/rand/1/bin over 25 independent runs on ten benchmark functions at 30D. 

FEs  Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

3×103 best 1.45E+04 3.38E+04 1.69E+08 4.68E+04 1.56E+04 1.59E+09 2.37E+03 2.09E+01 2.52E+02 3.26E+02 

 7 1.77E+04 4.28E+04 2.54E+08 5.50E+04 2.03E+04 2.99E+09 3.06E+03 2.11E+01 2.89E+02 3.79E+02 

 13 1.94E+04 4.84E+04 3.07E+08 6.20E+04 2.09E+04 3.92E+09 3.55E+03 2.12E+01 2.96E+02 3.92E+02 

 19 2.16E+04 5.21E+04 3.63E+08 6.69E+04 2.20E+04 4.70E+09 3.89E+03 2.12E+01 3.12E+02 4.03E+02 

 worst 2.64E+04 5.99E+04 4.52E+08 7.76E+04 2.43E+04 6.51E+09 4.40E+03 2.12E+01 3.26E+02 4.37E+02 

 mean 1.96E+04 4.78E+04 3.08E+08 6.13E+04 2.08E+04 3.95E+09 3.49E+03 2.12E+01 2.98E+02 3.88E+02 

 std 2.67E+03 7.39E+03 7.62E+07 7.47E+03 2.25E+03 1.32E+09 5.63E+02 7.18E-02 1.82E+01 2.86E+01 

3×104 best 2.64E+00 2.42E+03 1.30E+07 5.82E+03 3.24E+03 3.11E+03 4.56E+00 2.09E+01 1.75E+02 1.97E+02 

 7 5.40E+00 4.44E+03 2.56E+07 8.79E+03 3.85E+03 6.93E+03 8.21E+00 2.10E+01 1.90E+02 2.14E+02 

 13 6.42E+00 5.43E+03 2.88E+07 1.07E+04 4.14E+03 1.36E+04 9.51E+00 2.10E+01 2.00E+02 2.19E+02 

 19 7.99E+00 7.08E+03 3.78E+07 1.18E+04 4.49E+03 2.09E+04 1.08E+01 2.11E+01 2.07E+02 2.25E+02 

 worst 1.23E+01 9.05E+03 4.09E+07 1.58E+04 5.29E+03 3.97E+04 1.29E+01 2.12E+01 2.19E+02 2.35E+02 

 mean 6.65E+00 5.62E+03 3.04E+07 1.05E+04 4.13E+03 1.60E+04 9.45E+00 2.10E+01 2.00E+02 2.19E+02 

 std 2.02E+00 1.67E+03 7.48E+06 2.25E+03 4.85E+02 1.03E+04 2.13E+00 6.38E-02 1.08E+01 1.02E+01 

3×105 best 0.00E+00 6.44E-06 7.79E+04 9.01E-04 2.02E-01 2.44E-04 0.00E+00 2.08E+01 8.16E+01 1.42E+02 
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 7 0.00E+00 1.54E-05 2.83E+05 6.69E-03 3.14E-01 1.64E+00 0.00E+00 2.09E+01 1.08E+02 1.73E+02 

 13 0.00E+00 2.84E-05 4.17E+05 1.17E-02 6.52E-01 2.50E+00 0.00E+00 2.09E+01 1.28E+02 1.78E+02 

 19 0.00E+00 5.19E-05 6.68E+05 1.86E-02 1.27E+00 2.94E+00 0.00E+00 2.10E+01 1.47E+02 1.84E+02 

 worst 0.00E+00 4.01E-04 9.62E+05 1.16E-01 5.73E+00 7.21E+00 1.23E-02 2.10E+01 1.70E+02 1.94E+02 

 mean 0.00E+00 5.78E-05 4.83E+05 2.27E-02 9.76E-01 2.48E+00 1.08E-03 2.09E+01 1.29E+02 1.76E+02 

 std 0.00E+00 8.49E-05 2.58E+05 3.15E-02 1.13E+00 1.61E+00 3.11E-03 5.94E-02 2.52E+01 1.22E+01 
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Table 7. Error values of DE/rand-to-best/2/bin over 25 independent runs on ten benchmark functions at 30D. 

FEs  Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

3×103 best 3.67E+03 2.11E+04 8.74E+07 2.21E+04 1.06E+04 1.86E+08 7.58E+02 2.11E+01 2.19E+02 2.64E+02 

 7 5.06E+03 2.67E+04 1.07E+08 3.57E+04 1.21E+04 2.69E+08 1.04E+03 2.12E+01 2.71E+02 2.93E+02 

 13 6.15E+03 3.11E+04 1.36E+08 4.17E+04 1.32E+04 3.45E+08 1.14E+03 2.12E+01 2.79E+02 3.15E+02 

 19 7.53E+03 3.59E+04 1.54E+08 4.70E+04 1.50E+04 4.32E+08 1.28E+03 2.12E+01 2.89E+02 3.29E+02 

 worst 8.69E+03 4.44E+04 2.18E+08 6.11E+04 1.85E+04 1.23E+09 1.68E+03 2.13E+01 3.04E+02 3.62E+02 

 mean 6.24E+03 3.13E+04 1.39E+08 4.17E+04 1.35E+04 3.88E+08 1.17E+03 2.12E+01 2.77E+02 3.12E+02 

 std 1.48E+03 5.69E+03 3.53E+07 8.73E+03 2.02E+03 2.06E+08 2.33E+02 4.65E-02 1.94E+01 2.57E+01 

3×104 best 1.28E-02 3.67E+02 4.52E+06 1.23E+03 1.22E+03 4.82E+01 1.05E+00 2.09E+01 1.71E+02 2.02E+02 

 7 1.79E-02 6.91E+02 6.80E+06 2.06E+03 1.51E+03 6.41E+01 1.08E+00 2.10E+01 1.92E+02 2.13E+02 

 13 2.60E-02 8.33E+02 8.53E+06 2.95E+03 1.80E+03 7.97E+01 1.10E+00 2.11E+01 2.01E+02 2.24E+02 

 19 2.85E-02 9.94E+02 9.32E+06 3.53E+03 2.35E+03 1.84E+02 1.11E+00 2.11E+01 2.10E+02 2.27E+02 

 worst 3.93E-02 1.48E+03 1.17E+07 5.05E+03 3.38E+03 8.32E+02 1.23E+00 2.11E+01 2.22E+02 2.50E+02 

 mean 2.45E-02 8.59E+02 8.15E+06 2.86E+03 1.92E+03 1.72E+02 1.10E+00 2.11E+01 2.00E+02 2.22E+02 

 std 7.70E-03 2.83E+02 1.80E+06 1.00E+03 5.35E+02 2.09E+02 4.00E-02 5.11E-02 1.29E+01 1.21E+01 

3×105 best 1.14E-28 2.01E-11 8.14E+03 3.30E-07 7.47E-06 3.21E-22 0.00E+00 2.09E+01 1.36E+02 1.66E+02 
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 7 3.53E-28 6.07E-11 5.58E+04 1.99E-06 8.24E-05 1.97E-20 0.00E+00 2.09E+01 1.51E+02 1.74E+02 

 13 4.54E-28 1.06E-10 8.37E+04 5.98E-06 1.53E-04 8.05E-20 0.00E+00 2.10E+01 1.57E+02 1.84E+02 

 19 5.05E-28 2.03E-10 1.28E+05 9.98E-06 2.64E-04 2.58E-19 0.00E+00 2.10E+01 1.67E+02 1.87E+02 

 worst 6.06E-28 2.97E-10 3.20E+05 1.91E-05 2.63E-03 3.99E+00 2.22E-02 2.10E+01 1.78E+02 2.06E+02 

 mean 4.21E-28 1.35E-10 1.05E+05 6.69E-06 3.05E-04 3.19E-01 2.86E-03 2.10E+01 1.59E+02 1.82E+02 

 std 1.20E-28 8.87E-11 7.67E+04 5.54E-06 5.29E-04 1.10E+00 6.42E-03 3.87E-02 9.62E+00 9.63E+00 
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Table 8. Error values of ILADERεP over 25 independent runs on ten benchmark functions at 30D. 

FEs  Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

3×103 best 8.53E+03 2.83E+04 1.46E+08 3.09E+04 1.23E+04 5.47E+08 1.59E+03 2.10E+01 1.95E+02 2.74E+02 

 7 1.09E+04 4.17E+04 1.86E+08 5.04E+04 1.53E+04 1.22E+09 1.71E+03 2.11E+01 2.49E+02 3.24E+02 

 13 1.20E+04 4.44E+04 2.39E+08 5.77E+04 1.63E+04 1.45E+09 1.89E+03 2.12E+01 2.61E+02 3.41E+02 

 19 1.25E+04 4.87E+04 2.55E+08 6.26E+04 1.80E+04 1.69E+09 2.07E+03 2.12E+01 2.57E+02 3.49E+02 

 worst 1.41E+04 5.75E+04 3.87E+08 7.77E+04 2.14E+04 2.36E+09 2.40E+03 2.13E+01 2.85E+02 3.92E+02 

 mean 1.16E+04 4.44E+04 2.33E+08 5.67E+04 1.66E+04 1.42E+09 1.90E+03 2.12E+01 2.52E+02 3.38E+02 

 std 1.29E+03 6.89E+03 5.41E+07 1.10E+04 2.05E+03 4.17E+08 2.42E+02 7.87E-02 2.11E+01 2.24E+01 

3×104 best 4.08E-01 8.55E+02 2.42E+06 1.95E+03 2.85E+03 7.68E+02 3.52E+00 2.09E+01 7.22E+01 1.89E+02 

 7 4.75E-01 1.28E+03 4.28E+06 4.44E+03 3.43E+03 1.19E+03 4.85E+00 2.10E+01 8.40E+01 2.08E+02 

 13 5.49E-01 1.66E+03 5.93E+06 5.46E+03 3.61E+03 2.18E+03 6.15E+00 2.10E+01 9.01E+01 2.14E+02 

 19 6.66E-01 1.97E+03 6.73E+06 6.19E+03 3.94E+03 2.90E+03 6.88E+00 2.11E+01 9.28E+01 2.23E+02 

 worst 8.97E-01 2.60E+03 1.04E+07 1.05E+04 4.62E+03 5.14E+03 8.72E+00 2.11E+01 1.06E+02 2.37E+02 

 mean 5.81E-01 1.63E+03 5.65E+06 5.38E+03 3.69E+03 2.30E+03 6.00E+00 2.10E+01 8.90E+01 2.14E+02 

 std 1.23E-01 4.74E+02 1.91E+06 1.67E+03 4.85E+02 1.21E+03 1.31E+00 5.70E-02 7.27E+00 1.15E+01 

3×105 best 0.00E+00 1.02E-22 6.39E+03 4.08E-11 2.56E-02 3.19E-11 0.00E+00 2.09E+01 8.88E-14 1.19E+02 
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 7 0.00E+00 4.58E-21 3.20E+04 3.48E-09 8.94E-02 3.19E-10 0.00E+00 2.09E+01 1.24E-10 1.47E+02 

 13 0.00E+00 2.03E-20 5.21E+04 1.03E-08 1.30E-01 5.98E-10 0.00E+00 2.10E+01 8.72E-10 1.51E+02 

 19 0.00E+00 1.19E-19 7.23E+04 2.01E-08 1.91E-01 1.87E-09 0.00E+00 2.10E+01 9.36E-09 1.58E+02 

 worst 0.00E+00 8.27E-18 2.24E+05 3.77E-07 4.98E-01 3.83E-08 9.86E-03 2.10E+01 4.65E-03 1.67E+02 

 mean 0.00E+00 5.34E-19 6.14E+04 3.00E-08 1.67E-01 3.12E-09 6.90E-04 2.09E+01 1.86E-04 1.50E+02 

 std 0.00E+00 1.78E-18 4.28E+04 7.54E-08 1.30E-01 7.75E-09 2.41E-03 3.63E-02 9.31E-04 1.24E+01 
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DE/rand-to-best/2/bin surpasses ILADERεP only in F4 (see Table 7 and 8). In some cases, 
ILADERεP shows a slower convergence rate than DE/rand-to-best/2/bin, but the difference 
between the final solutions of ILADERεP and DE/rand-to-best/2/bin is considerable. The 
obtained results suggest that the proposed automata based approach is a significant 
improvement over DE/rand/1/bin and DE/rand-to-best/2/bin.   

7.2.2.   Comparison with three state-of-the-art DE variants 

The results of ILADERεP and three other state-of-the-art DE variants are given in Table 9. 
The last three rows of Table 9 summarize the simulation results. 

Table 9. Average and standard deviation of the function error values of jDE, EPSDE, OXDE and ILADERεP 
over 25 independent runs on ten benchmark functions at 30D, after 300000 FEs. For successful runs, success 

rates are shown in parentheses. 

Fun. jDE (2006) EPSDE (2011) OXDE (2012) ILADERεP 

F1 
0.00E+00 ± 0.00E+00≈ 
(100%) 

0.00E+00 ± 0.00E+00≈ 
(100%) 

6.27E-29 ± 1.14E-28§ 
(100%) 

0.00E+00 ± 0.00E+00 
(100%)  

F2 3.59E-07 ± 3.25E-07§ (92%) 
9.77E-26 ± 3.16E-25† 
(100%) 

7.33E-05 ± 8.20E-05§ 
5.34E-19 ± 1.78E-18 
(100%) 

F3 1.55E+05 ± 1.06E+05§ 6.93E+05 ± 2.94E+06§ 5.39E+05 ± 2.53E+05§ 6.14E+04 ± 4.28E+04 

F4 6.70E-02 ± 2.32E-01§ 3.88E+01 ± 1.18E+02§ (4%) 4.04E+00 ± 7.94E+00§ 
3.00E-08 ± 7.54E-08 
(100%) 

F5 4.65E+02 ± 3.65E+02§ 1.42E+03 ± 7.12E+02§  2.71E+01 ± 4.44E+01§ 1.67E-01 ± 1.30E-01 

F6 2.13E+01 ± 2.46E+01§  
3.18E-01 ± 1.10E+00§ 
(92%) 

1.11E+00 ± 1.82E+00§ 
(72%) 

3.12E-09 ± 7.75E-09 
(100%) 

F7 1.27E-02 ± 7.00E-03§ (80%) 1.62E-02 ± 1.47E-02§ (52%) 
1.11E-02 ± 8.72E-03§ 
(56%) 

6.90E-04 ± 2.41E-03 
(100%) 

F8 2.09E+01 ± 4.78E-02≈ 2.09E+01 ± 4.79E-02≈ 2.09E+01 ± 5.95E-02≈ 2.09E+01± 3.63E-02 

F9 
0.00E+00 ± 0.00E+00† 
(100%) 

3.97E-02 ± 1.98E-01§ (96%) 1.54E+01 ± 4.16E+00§ 
1.86E-04 ± 9.31E-04 
(100%) 

F10 5.71E+01 ± 1.03E+01† 4.79E+01 ± 1.35E+01† 6.69E+01 ± 6.42E+01† 1.50E+02 ± 1.24E+01 

† 2 2 1  

§ 6 6 8  

≈ 2 2 1  

‘‘†’’ and ‘‘§’’ indicate a 0.05 level of significance by Wilcoxon rank sum test. ‘‘†’’, ‘‘§’’ and ‘‘≈’’ denote that 

the performance of the corresponding algorithm is better than, worse than, and similar to that of LADE, 

respectively. 

 
Moreover, the average function error value curves of jDE, EPSDE, OXDE and ILADERεP 
over 25 independent runs for test functions F1-F10 are depicted in Fig. 6 and Fig. 7. 
 



 LADE: Learning Automata Based Differential Evolution 

 

23 

23

 

105

10-5

10-15

10-25

10-35

0 0.5 1.0 1.5 2.0 2.5 3.0

A
ve

ra
ge

 F
un

ct
io

n 
 E

rr
or

 V
al

ue

Function Evaluations

(a)

OXDE

ILADE

EPSDE

jDE

OXDE

EPSDE

jDE

ILADE

1010

100

10-10

10-20

10-30

0 0.5 1.0 1.5 2.0 2.5 3.0

A
ve

ra
ge

 F
un

ct
io

n 
 E

rr
or

 V
al

ue

Function Evaluations

(b)

OXDE

ILADE

EPSDE

jDE

OXDE

EPSDE

jDE

ILADE



Mahshid Mahdaviani, Javidan Kazemi Kordestani, Alireza Rezvanian, Mohammad Reza Meybodi 

 

24 

24

 

1010

109

108

106

107

104

105

0 0.5 1.0 1.5 2.0 2.5 3.0

A
ve

ra
ge

 F
un

ct
io

n 
 E

rr
or

 V
al

ue

Function Evaluations

(c)

EPSDE

OXDE

ILADE

jDE

OXDE

EPSDE

jDE

ILADE

1010

105

100

10-10

10-5

0 0.5 1.0 1.5 2.0 2.5 3.0

A
ve

ra
ge

 F
un

ct
io

n 
 E

rr
or

 V
al

ue

Function Evaluations

(d)

EPSDE

OXDE

ILADE

jDE

OXDE

EPSDE

jDE

ILADE



 LADE: Learning Automata Based Differential Evolution 

 

25 

25

 
Fig. 6. Evolution of the mean error values versus the number of function evaluations for OXDE, EPSDE, jDE 

and ILADE on test functions (a) F1, (b) F2, (c) F3, (d) F4 and (e) F5. 

 
On unimodal test functions (i.e. F1-F5), it is observed that ILADERεP is very efficient. It 
outperforms other methods on three test functions (i.e. F3-F5) (see Table 9). Moreover, 
ILADERεP has the fastest convergence rate on F3-F5 (see Fig. 6). jDE and OXDE cannot 
outperform ILADERεP on any unimodal functions and EPSDE surpasses ILADERεP only 
in F2. On the other hand, on multimodal functions (i.e. F6-F10), ILADERεP is significantly 
better on F6 and F7. On F8, ILADERεP is the second best method.  F10 is the only test 
function that ILADERεP fails to reach to global minimum with a competitive accuracy. A 
closer look at Table 9 shows that EPSDE can perform better than ILADERεP on functions 
F2 and F10. The possible reason is that EPSDE uses a mutation pool with three strategies 
DE/best/2/bin, DE/rand/1/bin and DE/current-to-rand/1/bin. On the one hand, the first 
two strategies are robust. On the other hand, the third strategy is rotation-invariant. In 
addition, the value of parameter F is also adapted for each vector during the search 
process. These characteristics can contribute toward better performance of EPSDE on 
functions F2 and F10. Finally, simulation results reveal that the ILADERεP is a viable 
approach for the optimization of real-parameter functions.  
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Fig. 7. Evolution of the mean error values versus the number of function evaluations for OXDE, EPSDE, jDE 

and ILADE on test functions (a) F6, (b) F7, (c) F8, (d) F9 and (e) F10. 

7.2.3.   Computational complexity of ILADERεP 

In order to evaluate the runtime complexity of our proposed algorithm, we use the 
method based on [50]. Table 10 reports the computational complexity of ILADERεP and 
compares it with EPSDE. It should be noted that the reason why EPSDE was selected as 
a peer algorithm for comparison is that EPSDE uses both parameter adjustment and 
strategy adaptation simultaneously, similar to ILADERεP. In Table 10, T0 is the computing 
time needed for a test program depicted in Fig. 8, T1 is the computing time of the function 
F3 for 200000 evaluations of a certain dimension D and T]2 is the average computing time 
for the 5 runs of the algorithm with 200000 evaluations of the same D dimensional 
function F3.  
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Table 10. Computational complexity of ILADERεP in comparison with EPSDE 

Dim  T0  T1  T̂2  (T̂2- T1) / T0 

Method  -  -  EPSDE ILADERεP  EPSDE ILADERεP 

10  0.17  12.09  26.70 25.28  81.17 72.82 

30  0.17  15.00  41.14 27.51  153.76 73.58 

50  0.17  17.61  66.23 31.55  286 82 

 
From Table 10, it is clear that our proposed ILADERεP is more computationally efficient 
than EPSDE. 
 

 
Fig. 8. The test program for computing T0 

 
In order to study the relationship between the dimensionality of the problems to be solved 
and the computation time consumed by the algorithms, ILADERεP and EPSDE are further 
used to solve benchmark functions F1, whose dimensionality D is set to 5, 10, 15, 20, 25, 
30, 40, and 50. For different dimensionality of the functions, the maximum number of 
FEs was set to D×104. Fig. 9 illustrates the average computation time over 25 runs 
consumed by the two algorithms when the dimensionality increases from 5 to 50. 
 

 

 
Fig. 9. The effect of dimensionality on the computation time consumed by ILADERεP and EPSDE on 

benchmark function F1 
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for i=1:1000000 
      x=(double) 5.55; 
      x=x+x; x=x./2; x=x*x; x=sqrt(x); x=ln(x); x=exp(x); y=x/x; 
end 
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It can be seen in Fig. 9 that ILADERεP has a smaller increasing rate than the EPSDE. 
Moreover, ILADERεP is able to save computation time by 43.52% on average, in 
comparison with EPSDE. 

7.3.   Comparison with other optimization algorithms 

In this subsection, ILADERεP is compared to three well-known EAs, namely, CMA-ES 
[52], CLPSO [7] and GL-25 [51]. Table 11 summarizes the simulation results. 
 

Table 11. Average and standard deviation of the function error values of CMA-ES, CLPSO, GL-25 and 
ILADERεP over 25 independent runs on ten benchmark functions at 30D, after 300000 FEs. For successful runs, 

success rates are shown in parentheses. 

Fun. CMA-ES (2001) CLPSO (2006) GL-25 (2008) ILADERεP 

F1 
1.69E-25 ± 3.63E-26§ 
(100%) 

0.00E+00 ± 0.00E+00≈ 
(100%) 

1.13E-27 ± 2.33E-27§ 
(100%) 

0.00E+00 ± 0.00E+00 
(100%)  

F2 
6.14E-25 ± 1.89E-25† 

(100%) 
8.15E+02 ± 1.68E+02§ 6.30E+01 ± 1.32E+02§ 

5.34E-19 ± 1.78E-18 
(100%) 

F3 
5.28E-21 ± 1.86E-21† 

(100%) 
1.54E+07 ± 3.20E+06§ 1.94E+06 ± 8.17E+05§ 6.14E+04 ± 4.28E+04 

F4 6.94E+05 ± 1.54E+06§ 6.66E+03 ± 1.37E+03§ 9.01E+02 ± 4.06E+02§ 
3.00E-08 ± 7.54E-08 
(100%) 

F5 
3.17E-10 ± 5.88E-11† 

(100%) 
3.91E+03 ± 3.63E+02§ 2.48E+03 ± 2.17E+02§ 1.67E-01 ± 1.30E-01 

F6 
7.97E-01 ± 1.62E+00§ 

(80%) 
7.23E+00 ± 9.71E+00§ 2.14E+01 ± 1.34E+00§ 

3.12E-09 ± 7.75E-09 
(100%) 

F7 
3.45E-03 ± 7.07E-03§ 
(88%) 

4.66E-01 ± 6.07E-02§ 
1.89E-02 ± 1.85E-02§ 

(40%) 
6.90E-04 ± 2.41E-03 
(100%) 

F8 2.03E+01 ± 5.81E-01† 2.09E+01 ± 5.31E-02≈ 2.09E+01 ± 6.05E-02≈ 2.09E+01± 3.63E-02 

F9 4.31E+02 ± 9.04E+01§ 
0.00E+00 ± 0.00E+00† 
(100%) 

2.40E+01 ± 5.10E+00§ 
1.86E-04 ± 9.31E-04 
(100%) 

F10 4.60E+01 ± 1.26E+01† 9.90E+01 ± 1.12E+01§ 1.52E+02 ± 5.63E+01§ 1.50E+02 ± 1.24E+01 

† 5 1 0  

§ 5 7 9  

≈ 0 2 1  

‘‘†’’ and ‘‘§’’ indicate a 0.05 level of significance by Wilcoxon rank sum test. ‘‘†’’, ‘‘§’’ and ‘‘≈’’ denote that 

the performance of the corresponding algorithm is better than, worse than, and similar to that of LADE, 

respectively. 

 
From Table 11, it can be concluded that ILADERεP is clearly better than CLPSO and GL-
25, and is very competitive with CMA-ES. 
 

7.4.   Real-life optimization problem 

The parameter estimation for FMSW is an important real-life engineering problem which 
plays a key role in several modern music systems [68]. The parameter estimation for 
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FMSW is a six-dimensional optimization problem in which the goal of optimization is to 
estimate the �� = _��, `�, �	, `	, �,, `,a to minimize the following fitness function: 
 @ = ∑ (c(-) − cd(-))	�ddQed   (14) 

In above equation, c(-) is the generated sound wave and cd(-) is the target sound wave 
which are calculated as follows: 
 c(-) = �� × sin(`�. -. i + �	 × sin(`	. -. i + �, × sin(`,. -. i)))  (15) 

cd(-) = (1.0) × sin j(5.0). -. i + (−1.5)× sin�(4.8). -. i + (2.0) ×sin((4.9). -. i)�o  
(16) 

 

Where i = 	p�dd and the parameters are bounded in [-6.4 6.35]. 

This problem is a highly complex multimodal instance with minimum value fmin = 0. The 
results of ILADERεP, EA-DE-Mimetic [69], SAMODE [70], and DE-ΛCr [71] on the 
FMSW have been reported in Table 12. For ILADERεP, the results were reported based 
on 25 independent runs. Results of the other methods were directly taken from their 
respective papers. 
 
Table 12. Results of different methods for the parameter estimation of FMSW  

FEs Function value EA-DE-Mimetic (2011) SAMODE (2011) DE-ΛΛΛΛCr (2011) ILADERεP 

5×104 best 1.1674E-11 2.5397E-11 1.6147E-10 2.5354E-18 

 median 1.0167E+01 8.9616E-06 3.8779E-09 1.8904E-03 

 worst 1.5440E+01 1.2547E+01 1.4813E+01 1.3210E+01 

 mean 7.6022E+00 3.0769E+00 2.1870E+00 3.0669E+00 

 std 6.0205E+00 5.0495E+00 4.6326E+00 4.1835E+00 

1×105 best 1.1674E-11 1.6373E-30 3.5443E-12 0.0000E+00 

 median 1.2912E-09 6.9955E-24 5.0886E-11 0.0000E+00 

 worst 1.1490E+01 1.0942E+01 1.1757E+01 1.3111E+01 

 mean 3.8056E+00 1.2120E+00 1.0978E+00 8.3291E-01 

 std 5.2091E+00 3.3762E+00 3.1751E+00 2.7172E+00 

1.5×105 best 1.1674E-11 0.0000E+00 7.2093E-15 0.0000E+00 

 median 6.0846E-10 0.0000E+00 1.2362E-11 0.0000E+00 

 worst 1.1374E+01 1.0942E+01 1.1757E+01 1.8688 E+00 

 mean 2.0948E+00 1.2120E+00 8.7697E-01 7.4754 E-02 

 std 4.3063E+00 3.3762E+00 3.0439E+00 3.7377E-01 

 
As can be seen in Table 12, ILADERεP has a good performance on the estimation of 
FMSW. 
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8.   Conclusion 

In this paper, learning automata have been applied for adaptive parameter adjustment and 
strategy selection in DE. Two classes of possible approach have been used for choosing 
new values for crossover rate as well as mutation strategy. In the first class, i.e. GLADE, 
all individuals share the same value for CR, and use the same mutation strategy. In the 
second class, i.e. ILADE, each individual acts in a separate manner and chooses its own 
CR and mutation strategy based on its success and failure. 
In order to justify the proposed approach, experiments were carried out to compare the 
performance of the proposed method with several state-of-the-art algorithms (i.e., jDE 
[24], EPSDE [30], OXDE [23], CMA-ES [52], CLPSO [7] and GL-25 [51]) on ten 
benchmark functions of CEC2005 special session of real-parameter optimization. The 
proposed approach was also used to solve the parameter estimation for FMSW [68].  
From the experimental results, following conclusions can be drawn on the real-parameter 
function optimization problems. The proposed LADE greatly improves the performance 
of DE in terms of both accuracy and convergence speed. In comparison with other peer 
algorithms, LADE shows a good performance, and it is computationally efficient. 
Finally, it is also worth noticing that the results of the paper suggest that adjustment of 
the parameters and mutation strategy at the individual level can lead to a better 
performance.  
Future research may focus on providing a general framework for improving the 
performance of EAs using the concept of LA. It is also interesting to study other types of 
learning for the LA. 
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