Sketch Based Modeling: A survey

Luke Olsen, Faramarz F. Samavati, Mario Costa Sousa, Joaquim A.

Present by
Amir Badamchi
Multimedia Systems
Amirkabir University of Technology
Contents

• Introduction
• Pipeline
• Applications
Introduction

• SBIM

– Developing methods and techniques to enable users to interact with a computer through sketching
Introduction

• SBIM pipeline
Challenging!

- Ambiguous interpretation
Introduction

• **Reconstruction** is the task of creating a complete description of the 3D geometry of an object based on a 2D representation.

• **Recognition** identifying which class of object an image represents based on shape memory.

• If visual memory can recognize a shape, we can more easily reconstruct it.
Symmetry

- Real
- Skewed
- Generalized
Visual rules

• Some visual rules:
 – Interpret straight lines as straight lines in 3D.
 – Interpret coincident lines as coincident in 3D.
 – Interpret collinear lines as collinear in 3D.
Acquisition

Sketch Based Interface Modeling - Amir Badamchi
Acquisition

Sketch Based Interface Modeling - Amir Badamchi
Sketch Filtering

- Input
- Filter
- Interpret
Sketch Filtering

- User and Device Error
 - Poor skills
 - Digitization Noise
 - Spatial & Temporal quantization
Sketch Filtering

- Resampling can be done on-the-fly by discarding any sample within a threshold distance of earlier samples, and by interpolating between samples separated by more than a threshold.
Sketch Filtering

- Smoothing
 - Local Average Filtering
 - Gaussian Filtering
Sketch Filtering

- Fitting

Resampled input Polyline approximation Fit-to-curve Segmented
Sketch Filtering

• Beautification
Sketch Filtering

• Oversketching
Sketch interpretation

Input → Filter → Interpret
Sketch interpretation

Sketch Based Interface Modeling - Amir Badamchi
Sketch interpretation

• What has the user intended to draw?
• Is the input valid and consistent?
• How can the sketch be mapped to a modeling operation?
Sketch interpretation

• Create fully 3D models automatically from input sketches
• Using input strokes to augment existing models with details
• Deform an existing model
Sketch interpretation

• Model Creation
 – Evocative Systems
 • Sketches compared to template objects
 • Related to visual memory
 – Constructive Systems
 • Sketches used to create freeform object
 • Related to visual rules
Sketch interpretation

• **Evocative Systems**
 1. Extrapolation
 2. Template retrieval
Sketch interpretation

• Evocative Systems
 1. Extrapolation
Sketch interpretation

• Evocative Systems
 1. Extrapolation
 2. Template retrieval
Constructive Systems

Pure reconstruction is a more difficult task than recognize-then-reconstruct, because the latter uses predefined knowledge to define the 3D geometry of a sketch, thereby skirting the ambiguity problem to some extent (ambiguity still exists in the recognition stage).
Constructive Systems

• Rules rather than templates
• 3 main approaches
 1. Mechanical design
 2. Smooth contours
Constructive Systems

• Mechanical objects
 – Computer-Aided Design (CAD)
 – Design of mechanical (mostly planar) objects
 – Precise, perfect surfaces
Constructive Systems

• Engineering design systems
 – Line Labeling
 • For line drawing construction
 • Classify line segment to concave, convex, contour edges
 • Problem
 – Identifying location of vertices, corners and edges.
Contour lines

- Silhouette: separate object from background
- Contour: separate visible from invisible
Why contour lines?

- Found to be meaningful shape indicators
 - Visual rules guide us to see smooth strokes as 3D contours
- Sparse
- Easy to draw for non-artists
Augmentation

- Adding details or features to an existing object
 1. Additive
 2. Surficial
Augmentation

• Additive
 – Only affects the original model near connection point
 – Large-scale addition to existing object
 – Often called extrusion
 – Possibly topology-changing
Augmentation

• Surficial
 – Without changing the underlying surface
 – Displace surface to make features
 – Sketch directly on surface
 – Surface provides 3D reference
Deformation

- Bending
- Twisting
- Free-form deformation (FFD)
- Cutting, tunneling
- Contour oversketching
Applications

• **Computer Aided Design (CAD)**
 – Modeling 3D objects to physical appearance
 – GIDeS, CEGROSS

• **Content Creation**
 – Modeling 3D objects from existing
 – Games, Animation
Applications

• Computer Aided Design (CAD)
 – Modeling 3D objects to physical appearance
 – GIDeS, CEGROSS
Applications

- Computer Aided Design (CAD)
- Content Creation
 - Modeling 3D objects from existing
 - Games, Animation