Deep Learning

Mohammad Ali Keyvanrad

Lecture 17: Neural Text Generation
• Introduction

• Machine Translation
 – Bidirectional LSTM
 – Attention Mechanism
 – Google’s Multilingual NMT
• **Introduction**

• Machine Translation
 – Bidirectional LSTM
 – Attention Mechanism
 – Google’s Multilingual NMT
Introduction

• Predominant techniques for text generation
 – Template or rule-based systems
 – Require infeasible amounts of hand-engineering

• Deep learning recently achieved great empirical success on some text generation tasks.

• Using end-to-end neural network models
 – An encoder model to produce a hidden representation of the source text
 – Followed by a decoder model to generate the target
Introduction

• Modeling discrete sequences of text tokens
 – Given a sequence $U = (u_1, u_2, \ldots, u_S)$

 $$p(U) = \prod_{t=1}^{S} p(u_t|u_{<t})$$

 $u_1, u_2, \ldots, u_{t-1}$

• General Form of model
 – Input sequence X
 – Output sequence Y

 $$p(Y|X) = \prod_{t=1}^{T} p(y_t|X, y_{<t})$$
Introduction

- For example: machine translation tasks
 - X might be a sentence in English
 - Y the translated sentence in Chinese

$$p(Y|X) = \prod_{t=1}^{T} p(y_t|X, y_{<t})$$
Introduction

• Other examples

\[p(Y|X) = \prod_{t=1}^{T} p(y_t|X, y_{<t}) \]

<table>
<thead>
<tr>
<th>Task</th>
<th>(X) (example)</th>
<th>(Y) (example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>language modeling</td>
<td>none (empty sequence)</td>
<td>tokens from news corpus</td>
</tr>
<tr>
<td>machine translation</td>
<td>source sequence in English</td>
<td>target sequence in French</td>
</tr>
<tr>
<td>grammar correction</td>
<td>noisy, ungrammatical sentence</td>
<td>corrected sentence</td>
</tr>
<tr>
<td>summarization</td>
<td>body of news article</td>
<td>headline of article</td>
</tr>
<tr>
<td>dialogue</td>
<td>conversation history</td>
<td>next response in turn</td>
</tr>
<tr>
<td>speech transcription</td>
<td>audio / speech features</td>
<td>text transcript</td>
</tr>
<tr>
<td>image captioning</td>
<td>image</td>
<td>caption describing image</td>
</tr>
<tr>
<td>question answering</td>
<td>supporting text + knowledge base + question</td>
<td>answer</td>
</tr>
</tbody>
</table>
• Introduction

• **Machine Translation**
 – Bidirectional LSTM
 – Attention Mechanism
 – Google’s Multilingual NMT
Machine Translation

• The classic test of language understanding
 – Both language analysis & generation

• Translation is a US$40 billion a year industry

• Huge commercial use
 – Google
 – translates over 100 billion words a day
 – Facebook
 – eBay
Machine Translation

• Machine Translation
 – A naive word-based system would completely fail
 – location of subject, verb, ...
 – Historical Approaches were based on probabilistic models
 – **Translation model**: telling us what a sentence/phrase in a source language most likely translates into
 – **Language model**: telling us how likely a given sentence/phrase is overall.
 – LSTMs can generate arbitrary output sequences after seeing the entire input
 – They can even focus in on specific parts of the input automatically
Progress in Machine Translation

- Phrase-based SMT
- Syntax-based SMT
- Neural MT

Progress trends over the years.
Neural Machine Translation

- Neural Machine Translation
 - The approach of modeling the entire MT process via one big artificial neural network
 - Sometimes we compromise this goal a little
Neural MT: The Bronze Age

- En-Es translator
 - Constructed on 31 En, 40 Es words
 - Max 10 word sentence
 - Binary encoding of words
 - 50 inputs, 66 outputs
 - 1 or 3 hidden 150-unit layers
 - Ave WER: 1.3 words

[Allen 1987 IEEE 1st ICNN]
Neural Machine Translation

• **Sequence-to-sequence (Seq2Seq) model**
 – An end-to-end model made up of two recurrent neural networks (or LSTM)
 – **Encoder**: takes the model’s input sequence as input and encodes it into a fixed-size "context vector"
 – **Decoder**: uses the context vector from above as a "seed“ from which to generate an output sequence.
 – Seq2Seq models are often referred to as "encoder decoder models"
Neural Machine Translation

- **Seq2Seq architecture – encoder**
 - Read the input sequence to Seq2Seq model and generate a fixed-dimensional context vector C
 - Encoder will use a recurrent neural network cell – usually an LSTM – to read the input tokens
Neural Machine Translation

- It’s so difficult to compress an arbitrary-length sequence into a single fixed-size vector
- encoder will usually consist of stacked LSTMs
- The final layer’s LSTM hidden state will be used as C.

[Sutskever et al. 2014]
Neural Machine Translation

- A deep recurrent neural network

[Sutskever et al. 2014]
Neural Machine Translation

• **Process the input sequence in reverse**
 – Last thing that the encoder sees will (roughly) corresponds to the first thing that the model outputs
 – This makes it easier for the decoder to "get started" on the output
 – Once it has the first few words translated correctly, it’s much easier to go on to construct a correct sentence
Neural Machine Translation

- **Seq2Seq architecture – decoder**
 - The decoder is also an LSTM network
 - We’ll run all layers of LSTM, one after the other, following up with a softmax on the final
 - We pass output word into the first layer

- Both the encoder and decoder are trained at the same time
Four big wins of Neural MT

• **End-to-end training**
 – All parameters are simultaneously optimized to minimize a loss function on the network’s output

• **Distributed representations share strength**
 – Better exploitation of word and phrase similarities

• **Better exploitation of context**
 – NMT can use a much bigger context – both source and partial target text – to translate more accurately

• **More fluent text generation**
 – Deep learning text generation is much higher quality
Neural Machine Translation

- NMT aggressively rolled out by industry!
 - 2016/02: Microsoft launches deep neural network MT running offline on Android/iOS.
 - 2016/08: Systran launches purely NMT model
 - One of the oldest machine translation companies that has done extensive work for the United States Department of Defense.
 - 2016/09: Google launches NMT
• Introduction
• Machine Translation
 – Bidirectional LSTM
 – Attention Mechanism
 – Google’s Multilingual NMT
Bidirectional LSTM

- A word can have a dependency on another word before or after it.
- Bidirectional LSTM fix this problem
 - Traversing a sequence in both directions
 - The hidden states are concatenated to get the final context vector
• Introduction

• Machine Translation
 – Bidirectional LSTM
 – **Attention Mechanism**
 – Google’s Multilingual NMT
Attention Mechanism

• Vanilla seq2seq & long sentences
 – Problem: fixed-dimensional representation Y
Attention Mechanism

- Solution
 - Pool of source states
Attention Mechanism

- Word alignments
 - Phrase-based SMT aligned words in a preprocessing-step, usually using EM
Attention Mechanism

- Learning both translation & alignment
Attention Mechanism

• Different parts of an input have different levels of significance.
 – Example: “the ball is on the field”
 – "ball“, "on“, and "field“ are the words that are most important

• Different parts of the output may even consider different parts of the input "important“
 – The first word of output is usually based on the first few words of the input
 – The last word is likely based on the last few words of input

• Attention mechanisms make use of this observation.
Attention Mechanism

- Attention mechanisms
 - Decoder network look at the entire input sequence at every decoding step
 - Decoder can then decide what input words are important at any point in time
Attention Mechanism

• Our input is a sequence of words x_1, \ldots, x_n that we want to translate

• Our target sentence is a sequence of words y_1, \ldots, y_m

• Encoder
 – Capture contextual representation of each word in the sentence
 – All h_1, \ldots, h_n are the hidden vectors representing the input sentence
 – These vectors are the output of a bi-LSTM for instance
Attention Mechanism

• Decoder
 – We want to compute the hidden states s_i of the decoder
 – s_{i-1} is the previous hidden vector
 – y_{i-1} is the generated word at the previous step
 – c_i is a context vector that capture the context from the original sentence
 – context vector captures relevant information for the i-th decoding time step
 – unlike the standard Seq2Seq in which there’s only one context vector

\[s_i = f(s_{i-1}, y_{i-1}, c_i) \]
Attention Mechanism

- For each hidden vector from the original sentence, compute a score
 \[e_{i,j} = a(s_{i-1}, h_j) \]
 - **Alignment model**: \(a \) is any function with values in \(\mathbb{R} \)
 - for instance a single layer fully-connected neural network

- Computing the context vector \(c_i \)
 - weighted average of the hidden vectors from the original sentence
 - The vector \(\alpha_i \) is called the attention vector
 \[
 \alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{k=1}^{n} \exp(e_{i,k})} \quad \alpha_i = (\alpha_{i,1}, \ldots, \alpha_{i,n}). \quad c_i = \sum_{j=1}^{n} \alpha_{i,j} h_j
 \]
Attention Mechanism

- The graphical illustration of the proposed model
 - generate the t-th target word y_t given a source sentence $(x_1; x_2; \ldots; x_T)$
Attention Mechanism

- **Attention vector** for machine translation
 - English to French
 - Each pixel shows the weight α_{ij} of the annotation of the j-th source word for the i-th target word
Attention Mechanism

- **Alignment model**
 - Needs to be evaluated $T_x \times T_y$ times for each sentence
 - In order to reduce computation, we use a single layer multilayer perceptron

$$a(s_{i-1}, h_j) = v^\top_a \tanh (W_a s_{i-1} + U_a h_j)$$

$$e_{i,j} = a(s_{i-1}, h_j)$$

$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{k=1}^{n} \exp(e_{i,k})}$$

$$c_i = \sum_{j=1}^{n} \alpha_{i,j} h_j$$

$$W_a \in \mathbb{R}^{n \times n} \ldots$$

$$U_a \in \mathbb{R}^{n \times 2n}$$

$$y_{t-1} \quad y_t$$

$s_{t-1} \quad s_t \quad \ldots$

$\cdot \quad \cdot \quad \cdot$

$\cdot \quad \cdot \quad \cdot$
Attention Mechanism

• **Global vs. Local**
 – Avoid focusing on everything at each time

Global: all source states.

Local: subset of source states.
Attention Mechanism

- The major advantage of attention-based models is their ability to efficiently translate long sentences.

[Minh-Thang Luong, 2015]
• Introduction

• Machine Translation
 – Bidirectional LSTM
 – Attention Mechanism
 – Google’s Multilingual NMT
Google’s Multilingual NMT

- State-of-the-art in Neural Machine Translation (NMT)
 - Bilingual
Google’s Multilingual NMT

- State-of-the-art in Neural Machine Translation (NMT) - Multilingual
Google’s Multilingual NMT

• Google’s Multilingual NMT System
 – Simplicity: single model
 – Low-resource language improvements
 – Zero-shot translation
 – Translate between language pairs it has never seen in this combination
 – Train: Portuguese → English + English → Spanish
 – Test: Portuguese → Spanish
Google’s Multilingual NMT

- Architecture
Google’s Multilingual NMT

- A token at the beginning of the input sentence to indicate the target language

Hello, how are you? -> ¿Hola como estás?

Add <2es> to indicate that Spanish is the target language

<2es> Hello, how are you? -> ¿Hola como estás?
Dealing with the large output vocabulary

• NMT systems have a hard time dealing with large vocabulary size
 – softmax can be quite expensive to compute
 – Scaling softmax
 – Hierarchical Softmax
 – Reducing vocabulary
 – simply limit the vocabulary size to a small number and replace words outside the vocabulary with a tag <UNK>
 – Handling unknown words

French: Guillaume et Cesar ont une voiture bleue a Lausanne.

English: Guillaume and Cesar have a blue car in Lausanne.
References

• Thang Luong, Hieu Pham, and Chris Manning. “Effective Approaches to Attention-based Neural Machine Translation.” EMNLP’15.

Would you like to be aware of what is better than fasting, prayer and almsgiving?” All replied: “yes.” He said: “It is reconciling between people, for making relations between people strained will eradicate anything.”