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Abstract 

The backpropagation learning algorithm has number of parameters such learning rate (η), 
momentum factor (α) and steepness parameter (λ).  whose values are not known in 
advance, and must be determined by trail and error. The appropriate selection of these 
parameters have large effect on the convergence of the algorithm. Many techniques that 
adaptively adjust these parameters have been developed to increase speed of convergence. 
A class of algorithms which are developed recently uses learning automata (LA) for 
adjusting the parameters η,  α, and λ based on the observation of random response of the 
neural networks. In  earlier papers the effectiveness  of LA based algorithms using 
problems such as  encoding problem, symmetry problem, parity problem, XOR problem, 
etc., were examined. In this note we test the LA based methods on more realistic problems 
including classification of sonar signals, vowel recognition, printed farsi digit recognition, 
and printed farsi character recognition. It is demonstrated through simulation that LA based 
schemes comparing to other schemes  such as  SAB ,Super SAB, and ASBP  method  have 
higher  performance. The result of simulations approves of  the claim made in other articles  
that learning automata is a good tool for designing   parameter adaptation methods for 
neural networks. 
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1. Introduction 
 
Despite the many successful applications of backpropagation (BP) learning algorithm, it has many 
drawbacks. For complex problems it may require a long time to train the networks, and it may not train at 
all. Long training time can be the result of the non-optimum values for the parameters of the training 
algorithm. It is not easy to choose appropriate values for these parameters for a particular problem. Thus 
several researches have suggested algorithms for automatically adjusting the parameters of training 
algorithm as training proceeds, such as algorithms proposed by Arabshahi et al. [2], Kandil et al. [3], 
Parlos et al. [4], Cater [5], Franzini [6], Vosl et al. [7], Tesnuro and Janssens [8], Deros and Orban [22], 
Darken and Moody [9], Solmon [9], Tolleraere [23], Fallside and Chan [9], Jacobs [20], Sperduti and 
Starita [11] and Riedmiller and Heinrich [10] to mention a few. Several learning automata (LA) based 
procedures have been recently developed [12-17][32-35]. In these methods variable structure learning 
automata (VSLA) or fixed structure learning automata (FSLA) have been used to find the appropriate 
values of parameters for the BP training algorithm. In these schemes either a  separate learning automata 
is associated to  each layer or each neuron of the network or a single automata is associated to the whole 
network to adapt the appropriate parameters. It is shown that the learning rate adapted in such a way 
increases  the rate of convergence of the network by a large amount. 
 



 

 
 

In  this report we study the performance of LA based schemes on more realistic problems: classification 
of sonar signals, vowel recognition, printed farsi digit recognition, printed farsi character recognition. It 
is demonstrated through simulation that LA based schemes comparing to the other  known schemes such 
as SAB [20], SuperSAB[20], adaptive steepness method (ASBP) [11], have higher performance and 
results in faster convergence. 
The rest of the paper is organized as follows.  Section 2 briefly presents the basic backpropagation 
algorithm and learning automata. Existing LA based adaptation schemes for BP parameters are described  
in section 3. Section 4 at first presents four new problems   and then  examine the  LA based schemes on 
these problems. Section 5 discusses the time and space complexity of LA based schemes. The last section 
is conclusion. 
 
2. Backpropagation Algorithm and Learning Automata 
 
In this section, in all brevity, we discuss the fundamentals of backpropagation learning algorithm and 
learning automata. 

Back-propagation Algorithm: Error back-propagation training algorithm (BP) which is an iterative 
gradient descent algorithm is a simple way to train multilayer feedforward neural networks [1][5]. The 
BP algorithm is based on the gradient descent rule : 
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where wjk is the weight on the connection outgoing from the unit j and entering the unit k,  α, µ , and 
n are learning rate, momentum factor, and time index, respectively. In the BP framework α and µ are 
constant and  E is defined as: 
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Where Tp,j and Op,j are desired and actual outputs for pattern p at output node j and  the index p varies 
on the  training set. In the BP algorithm framework, each computational unit computes the same 
activation function. The computation of the sensitivity for each neuron requires the derivative of 
activation function, therefore this function must be continuos. The activation function is normally a 
sigmoid function chosen between the two following functions: 
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The steepness parameter λ determines the active region (region in which the derivative of sigmoid 
function is not very small) of activation function. As the steepness parameter decreases from positive 
infinity to zero, the sigmoid function changes from a unit step function to constant value 0.5. For large 
values of the steepness parameter λ, the derivative is very large and the active region of sigmoid function 
is very small. In this region, large derivative forces the algorithm to oscillate. Small active region means 
that the weights are updated rarely. For small value of steepness parameter λ, the active region is very 
large, but the derivative is very small and speed of convergence is very low. The steepness parameter λ is 
often set to a constant value and not changed by the learning algorithm. We gain much flexibility, if we 
move the net inputs of the sigmoidal functions near to their active regions, where the associated gradient 
are not very close to zero. This enables the BP algorithm to avoid some points in the network parameters 
space where the BP algorithm would effectively stop, even though it is not close to a local minima point. 
This will cause the gradient of the error function to be small if the sigmoidal is shifted far outside the 
active region of the input to the function. Therefore, we want to center each sigmoid to be inside the 
active region of the sigmoidal function.  
 



 

 
 

The momentum term in weight adaptation equation (1) causes large change in the weight if the changes 
are currently large, and will decrease as the changes become less.  This means that the network is less 
likely to get stuck in local minima early on, since the momentum term will push the changes over local 
downward trend. Momentum is of great assistance in speeding up convergence along shallow gradients, 
allowing the path, the network takes toward the solution to pickup speed in the downhill direction. The 
error surface may consist of long gradually sloping ravines which finish at a minima point. Convergence 
along these ravines is slow, and usually the algorithm oscillates across the ravine valley as it moves 
towards a solution. This is difficult to speed up without increasing the chance of overshooting the 
minima, but the addition of the momentum term is fairly successful. This difficulty could be removed if 
we select the momentum factor to be small at the near of minima and to be large far from minima. The 
proper choice of µ and λ have a tremendous effect in the performance of BP learning algorithm. Improper 
choices of these parameters may result slow convergence, paralysis and continuos instability.  
 
Learning Automata: Learning automata can be classified into two main families, fixed and  variable 
structure learning automata. Examples of the FSLA type which we use in this paper are the Tsetline, 
Krinsky, and Krylov automata. 
 
Fixed structure Learning Automata: A fixed structure automata is quintuple 〈α, φ, β , F, G〉 where: 
1) α = (α1, . . . , αR) is the set of actions that it must choose from. 
2) Φ = (Φ1, . . . , Φs) is the set of states. 
3) β = {0, 1} is the set of inputs where “1” represents a penalty and “0” a reward. 
4) F: Φ ×β→Φ is a map called the transition map. It defines the transition of the state of the automata on 
receiving an input, F may be stochastic. 
5) G: Φ→ α is the output map and determines the action taken by the automata if it is in state φj.  
 
The selected action serves as the input to the environment which in turn emits a stochastic response β(n) 
at the time “n”.  β(n) is an element of β={0, 1} and is the feedback response of the environment to the 
automata. The environment penalize (i.e. β(n) = 1) the automata with the penalty probability ci, which is 
the action dependent. On the basis of the response β(n), the state  of the automata is φ(n) is updated and a 
new action chosen at (n+1). Note that the {ci} are unknown initially and it is desired that as a result of the 
interaction between the automata and the environment arrives at the action which presents it with the 
minimum penalty response in an expected sense. 
 
Variable structure learning automata: Variable structure learning automata is represented by sextuple 〈β
, φ , α , P, G, T〉,  where  β  a  set  of  inputs actions, φ is a  set  of   internal  states, α  a   set  of  outputs, 
P denotes the state probability vector governing the choice of the state at each stage k, G is the output 
mapping, and T is learning algorithm. The learning algorithm is a recurrence relation and is used to 
modify the state probability vector. 

It is evident that the crucial factor affecting the performance of the variable structure learning automata, 
is learning algorithm for updating the action probabilities. Various learning algorithms have been 
reported in the literature [18]. Let αi be the action chosen at time k as a sample realization from 
distribution p(k). The linear reward-inaction algorithm (LR-I) is one of the earliest schemes. In an LR-I 
scheme the recurrence equation for updating p is defined as 
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if β is zero and P is unchanged if β is one. The parameter θ is called step length, it determines the amount 
of increases (decreases) of the action probabilities. For more information on learning automata refer to 
[18][26][27][28][33].  
Often the mean-square error surfaces for backpropagation algorithm are multi-modal. The learning 
automata is known to have well established mathematical foundation and global optimization capability. 
This latter capability of learning automata can be used fruitfully to search a multi-modal mean-square 



 

 
 

error surface. Learning automata can be used to find the appropriate value for different parameters of  BP 
learning algorithm including learning rate, steepness parameter, and momentum factor. In the next section  
LA based  BP parameter adaptation  schemes reported in the literature  are briefly described. 
 
3. LA Based Schemes For Adaptation of BP Parameters 
 
In this section, we briefly describe  LA based schemes [12-17] for adaptation of BP parameters. In all of 
the existing schemes, one or more automaton have been associated  to the network. The learning 
automata based on the observation of the random response of the neural network, adapt one or more of 
BP parameters. The interconnection of learning automata and neural network is shown in figure 1. Note 
that the neural network is the environment for the learning automata. The learning automata according to 
the amount of the error received from neural network adjusts the parameters of the BP algorithm. The 
actions of the automata correspond to the values of  the parameters being calculated and input to the 
automata is some function of the error in the output of neural network. 
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α(n) 
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Value of Parameter 
being Adjusted 

Response of 
Neural 

Network

 
 

Figure 1:  The interconnection of learning automata and neural network 
 

A function of error between the desired and actual outputs of network is considered as the response of 
environment. A window on the past values of the errors are swiped and the average value of the error in 
this window computed. If the difference of the average value in the two last steps is less than the 
predefined threshold value, the response of  the environment is favorable and if this difference of average 
value is greater than the threshold value. 
Existing LA based procedures for adaptation of BP parameters can be classified into four groups which 
we call them group A, B, C, and D.   In group A schemes, one automaton is used for the whole  network 
[12,14] whereas. in group B schemes, separate automata one for each layer (hidden and output) are used 
[13, 15, 16, 17]. Each group A and B  depending on the type of automata used (fixed or variable 
structure) can be classified into two subgroups. The parameter adapted by group A schemes will be used 
by all the links or neurons of the networks and therefore these schemes fall in the category of global 
parameter adaptation method, whereas group B  schemes by adapting the parameter for each layer 
independently may be referred to as quasi-global parameter adaptation methods. 
In  a class C scheme one automata is associated to each link of the network to adjust the parameter for 
that link and in a class D scheme one automata is associated to each neuron of the network to adjust the 
parameter for that neuron. Group C and D schemes may be referred to as the local parameter adaptation 
methods. In [34] class C schemes are used for adaptation of learning rate and class D schemes are used 
for adaptation of steepness parameter. In class C and D schemes, the automata receives favorable 
response from the environment if the algebraic sign of derivative in two consecutive iterations is the  
same and receives unfavorable response if the algebraic sign of the derivative in two consecutive 
iterations alternates.  For the sake of  convenience in presentation, we use the following naming 
conventions to refer to different LA based schemes in classes  A,  B, C, and D. Without loss of generality,  
we assume that in class A and class B, the neural network has one hidden layer. 
Automata-AX(γ): A scheme in class A for adjusting parameter γ which uses X structure learning 
automata. 
Automata.Automata1-Automata2-BX(γ): A scheme in class B which uses X structure learning 
automata for hidden layer and X structure learning automata Automata2 for output layer. 
Automata-CX(γ): A scheme in class C for adjusting parameter γ which uses X structure learning 
automata Automata . 
Automata-DX(γ): A scheme in class D for adjusting parameter γ which uses X structure learning 
automata Automata . 
The rate of convergence can be improved if both learning rate and steepness parameter are adapted 
simultaneously. Simultaneous use of class C and class D schemes for adaptation of learning rate and 



 

 
 

steepness parameters is also reported in [34]. In [34] a class C scheme is used for adaptation of learning 
rate and a class D scheme is used for adaptation of steepness parameter. A learning automata based 
scheme that simultaneously adapts learning rate and steepness parameter is denoted by Automata1-
Automata2-CDF(µ,λ), if FSLA is used and Automata1-Automata2-CDV(µ, λ),  if VSLA is used. 
A simple method of increasing the learning rate and stability of training algorithm is to modify the 
standard BP by including the momentum factor [1] as given in equation (1). A learning automata based 
scheme which simultaneously adapt the learning rate and momentum factor is denoted by Automata1-
Automata2-CF(η, α). 
The letters F and V in above names denote FSLA and VSLA, respectively. X denotes either fixed or 
variable. For all the LA based schemes reported in the literature, it is shown through simulation that the 
use of LA for adaptation of BP learning algorithm parameters increases the rate of convergence by a 
large amount. 
Figures 2 through 5 borrowed from[34][35][17], compare the effectiveness of different LA based 
schemes in different classes for adaptation of  BP parameters. Shown in these figures are typical error 
curves for different LA based methods. As it is shown LA based schemes results in dramatically faster 
convergence, and has significantly smaller tail than standard BP and  some other non-LA based schemes. 
In figure 2 the effectiveness of different schemes from class A are compared [17]. Figure 3 compares 
different schemes in class B and one scheme from class A. For this simulation Tsetline automata is 
associated to the hidden layer and the effect of association of different learning automata to the output 
layer are shown for digit problem.  Figure 4  compares the performance of different schemes from class A 
with J-CF (η) scheme from class C for digit problem[34]. Figure 5 compares the performance of ASBP 
method with J-DF(λ) scheme from class D and standard BP for parity problem[35]. To the authors 
knowledge, ASBP method is the only method for adaptation of steepness parameter. For more  
simulations and an extensive discussion about different learning automata based schemes refer to [12-
17][34-36]. 
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 a: Standard BP  b: Tsetline-AF (η)  

c:Krinsky-AF(η) d:Krylov-AF (η) e:LR-P-AV(η) 

Figure 3 
a) Standard BP           b) Tsetline-AF 

c) Tsetline-Krinsky-BF  d) Tsetline-Tsetline-BF 
e)  Tsetline-TsetlineG-BF 

Figure 4 
a: standard BP     b: Tsetline-AF (η) 

c: Krinsky-AF (η)   d: Krylov-AF (η) 
e: LR-P-AV (η)       f: VLR    g: J-CF (η) 

Figure 5 
a: Standard BP      b: ASBP    c: J-DF(λ) 

 

 
 
4. Experimentation  



 

 
 

 
In this section we first introduce several new  test problems and  then present the results of simulations on 
these problems. 
Classification of Sonar Signals: The task is to train a neural network to discriminate between sonar 
signal bounced off a metal cylinder and those bounced off a roughly cylindrical rock [29]. The training 
set consists of 104-member 60-dimensional patterns. The network that must learn to distinguish mine 
from rock, has 60 input units, 24 hidden units, and 2 outputs, one indicating a cylinder and the other a 
rock.  
Vowel Recognition: In this problem, we have eleven steady state vowels of British English. These 
vowels are from fifteen different speakers. Each vowel is represented by a set of LPC derived log area 
ratios. The training set consists of 110 patterns. The network architecture used for recognition of vowels, 
have 10 input units, 22 hidden units, and 11 output units [32].  
Printed Farsi Character Recognition: The Farsi alphabet consists of 32 basic characters shown in 
figure 6. These characters differ from other systems of characters in their structure and in the way they 
connect to form words. The same character may take different shapes according to its position in the 
word. For example, the character “GHEYN” has four different shapes according to its appearance at the 
head, the middle,  the tail, or the isolated. This feature increases the number of Farsi characters more than 
90 different shapes, including all forms of 32 basic characters, numeric characters, and punctuation 
characters[37]. A page of 32 isolated Farsi characters are scanned with resolution of 300dpi. Each 
character has 5 samples. The momentum constants M1 through M7 are used as inputs to the neural 
network. The network architecture used for this problem consists of 7 inputs which are connected to 31 
hidden units, which are connected to 32 output units. 
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Figure 6 

 
Printed Farsi Digit Recognition: The ten printed Farsi digits are shown in figure 7. There is a page of  
170 printed farsi digits, 17 samples for every digit[37].  160 samples are used to train the network and the 
remaining samples are used for testing purpose. This page is digitized with resolution of 300dpi. The 
momentum constants M1 through M7 are extracted from digitized images and submitted as inputs to the 
neural network. The network that must learn to classify these digits has 7 input nodes, 30 hidden units, 
and 10 output units, one for each digit. Typical simulations for these four problems for different LA 
based  parameter adaptation schemes are shown in figures 8 through 16. Figures 8 through 10 show  the 
results of  simulation for sonar signal recognition  when different LA based schemes are used.  As it is 
seen the best performance is exhibited by  J-J-CDF(η,λ) scheme which outperforms some of known 
method such as ASBP method[11], SAB and Super SAB.  The  next set of figures (11 through 16) 



 

 
 

belongs to Vowel recognition problem, farsi digit problem, and farsi character recognition problem. For 
these problems the best result is obtained for  J-J-CDF(η,λ)  scheme which again outperforms the above 
mentioned known problems.  Note that simulation results indicate that  simultaneous adaptation of  η and 
λ  produces higher rate of convergence. 
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Figure 7 
 
For all the simulations, we have taken the momentum factor (α) to be zero. For all simulations, 
parameters of different schemes are chosen in such away that best performances will be obtained. The 
plot for each simulation is averaged over 200 runs. 

 
Figure 8: Sonar Signal Recognition 

a: Standard BP   b: SAB  
  c: Super SAB   d: J-CF (η) 

 
Figure 9: Sonar Signal Recognition 

a: J-CF (η)   b: Krinsky-CF (η)  
 c: Tsetline-CF (η)    d: Krylov-CF (η) 

 
Figure 10: Sonar Signal Recognition  

a: ASBP    b: J-DF(λ)    c: J-J-CDF(η,λ) 

 
Figure 11: Vowel Recognition 

a: Standard BP   b: SAB    
c: Super SAB    d: J-CF (η) 

 
Figure 12: Vowel Recognition 
a: J-CF (η)   b: Krinsky-CF (η) 

c: Tsetline -CF (η)    d: Krylov-CF (η) 

 
Figure 13: Vowel Recognition  

a: ASBP    b: J-DF(λ)  c: J-J-DF(η,λ) 
 



 

 
 

 
Figure 14: Farsi Digit Recognition  

a: ASBP    b: J-DF(λ)    c: J-J-CDF(η,λ) 

 
Figure 15: Farsi Digit Recognition 

a: Standard BP   b: SAB     
 c: Super SAB   d: J-CF (η)  

 
Figure 16: Farsi Character Recognition  

a: ASBP    b: J-DF(λ)    c: J-J-CDF(η,λ) 
 
5. Time and space complexity of LA-based adaptation schemes 
 
In this section we discuss the time and storage overhead imposed on BP algorithm when  LA based 
adaptation schemes are used. For implementation of FSLA three memory locations are needed in order to 
keep track  of the state, number of actions, and memory depth of the automata. Changing state and also 
realizing the action associated with the state of the automata at each epoch requires few comparison, 
integer subtraction and addition. Therefore the storage and time overhead imposed by each FSLA is θ(1).  
This leads to θ(M) storage and θ(M) time overhead for CF type schemes and θ(N) storage and θ(N) time 
overhead for DF type schemes, where M and N are number of weights and number of neurons in the 
network, respectively.  For  these schemes in addition to storage needed to implement FSLA, storage for 
previous sign of gradient, adapted parameter, and reinforcement signal β for each neuron are needed.  
When VSLA with K actions used, the storage needed by CV and DV type schemes are θ(KM) and 
θ(KN), respectively.  This is because of storage required by each automata to store its action probability 
vector P.  Due to updating the action probability vector P by the automata at every epoch, the time 
overhead for CV and DV type  schemes are θ(KM) and θ(KN), respectively. Class A and B schemes have 
overhead of θ(1) for both time and storage if FSLA is used and overhead of θ(K) for both time and space  
if VSLA is used.  Table 3 summarizes the storage and time overhead imposed by different schemes.  
 

Table 3 : The time and space overhead of  proposed schemes 
Algorithm Storage Overhead Time Overhead 

AV θ(1) θ(1) 
AF θ(1) θ(1) 
BV θ(1) θ(1) 
BF θ(1) θ(1) 
CV θ(KM) θ(KM) 
CF θ(M) θ(M) 
DV θ(KN) θ(KN) 
DF θ(N) θ(N) 

SAB θ(M) θ(M) 
SuperSAB θ(M) θ(M) 

 



 

 
 

In order to justify the overheads imposed by proposed schemes the ratio of execution time of SAB, 
SuperSAB, and J-CF schemes to the execution time of standard BP algorithm for Farsi digit recognition 
problem are measured and given in table 4.  
 

Table 4 : Ratio of execution time of SAB, SuperSAB, and J-CF to standard BP 
 

Algorithm SAB SuperSAB J-CF 
Ratio of Execution Time 1.080 1.112 1.153 

 
6. Conclusion 
 
In this report we have studied the performance of LA based schemes on four different problems: 
classification of sonar signals, vowel recognition, printed Farsi digit recognition, and printed farsi 
character recognition. The result  of studies in this note and previous works on LA based schemes 
indicates the fact  that learning automata is a  good tool  for designing procedures for adaptation of  
neural networks  parameters.   
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