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Abstract. The computational grid provides a platform for exploiting various 
computational resources over wide area networks. One of the concerns in 
implementing computational grid environment is how to effectively map tasks 
onto resources in order to gain high utilization in the highly heterogeneous 
environment of the grid. In this paper, three algorithms for task mapping based 
on learning automata are introduced.  To show the effectiveness of the proposed 
algorithms, computer simulations have been conducted.  The results of 
experiments show that the proposed algorithms outperform two best existing 
mapping algorithms when the heterogeneity of the environment is very high. 

1. Introduction 

Owing to advances in computational infrastructure and networking technology, 
construction of large-scale high performance distributed computing environment, 
known as computational grid, is now possible. Computational Grid enables the 
sharing, selection, and aggregation of geographically distributed heterogeneous 
resources for solving large scale problems in science, engineering and commerce. 
Numerous efforts have been exerted focusing on various aspects of grid computing 
including resource specifications, information services, allocation, and security issues. 
A critical issue to meeting the computational requirements on the grid is the 
scheduling. 

Ensuring a favorable efficiency over computational grid is not a straightforward 
task, where a number of issues make scheduling challenging even for highly parallel 
applications. Resources on the grid are typically shared and undedicated so that the 
contention made by various applications results in dynamically fluctuating delays, 
capricious quality of services, and unpredictable behavior, which further complicate 
the scheduling. Regarding to these hurdles, the scheduling of applications on 
computational grids have become a major concern of multitude efforts in recent years 
[9]. 



2      S. Ghanbari and M. R. Meybodi 

In mixed-machine heterogeneous computing (HC) environments like 
computational grids, based on application model characterization, platform model 
characterization and mapping strategy characterization, there are various definitions 
for scheduling[6]. Ideal sorts of applications for computational grid are those 
composed of independent subtasks (called metatask), which subtasks can be executed 
in any order and there is no inter-task communication (i.e. totally parallel) [1][13]. 
There are many applications of such feature including data mining, massive searches 
(such as key breaking), parameter sweeps, Monte Carlo simulations[2], fractals 
calculations (such as Mandelbrot), and image manipulation applications (such as 
tomographic reconstruction[3]). Computational grid platform model consists of 
different high-performance machines, interconnected with high-speed links. Each 
machine executes a single task at a time (i.e. no multitasking) in the order to which 
the tasks are assigned. The size of the metatask and the number of machines in the HC 
suite are static and known beforehand. The matching of tasks to machines and 
scheduling the execution order of these tasks is referred to as mapping. The general 
problem of optimally mapping tasks to machines in an HC suite has been shown to be 
NP-complete[11].  

 In this paper, we present three algorithms based on learning automata for mapping 
metatask over HC. Through computer simulations we show that the proposed 
algorithms outperform the best existing mapping algorithms when the heterogeneity 
of the environment is very high. 

This paper is organized as follows: Section 2 discusses the related works. Section 3 
introduces the learning automata. Section 4 explains the model of the Grid and the 
definitions used in later sections. Section 5 introduces the proposed learning automata 
based algorithms. In Section 6, experimental results are discussed and section 7 is the 
conclusion. 

2. Related works 

Existing mapping algorithms can be categorized into two classes[4]: on-line mode 
(immediate) and batch mode. In on-line mode, a task is mapped onto a host as soon as 
it arrives at the scheduler. In the batch mode, tasks are collected into a set of tasks that 
is examined for mapping at certain intervals called mapping events. The independent 
set of tasks that is considered for mapping at the mapping events is called a metatask.  
The on-line mode is suitable for low arrival rate, while batch-mode algorithms can 
yield higher performance when the arrival rate of tasks is high because there will be a 
sufficient number of tasks to keep hosts busy between the mapping events, and 
scheduling is done according to the resource requirement information of all tasks in 
the set[4]. The objective of most mapping algorithms is to minimize makespan, where 
makespan is the time needed for completing the execution of a metatask Minimizing 
makespan yields to higher throughput. 

Minimum Completion Time (MCT), Minimum Execution Time (MET), Dual, and 
k-Percent Best (KPB) are among well known existing on-line mode heuristics[5]. 
Reported batch mode heuristics are Min-Min, Max-Min, Genetic Algorithm (GA), 
Simulated Annealing (SA), Genetic Simulated Annealing (GSA), A* search, 
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Suffrage[5][4], and Relative Cost (RC) [7] . Experiments results from [5] show that 
among batch-mode heuristics, Min-Min and GA give lower makespan.[7] proposes 
Relative Cost (RC) heuristic which further outperforms both GA and Min-Min.  

RC introduces two essential criteria for a high-quality mapping algorithm for 
heterogeneous computing systems: matching which is to better match the tasks and 
machines, and load balancing which is to better utilize the machines. It is shown that 
in order to minimize the makespan, matching and system utilization should be 
maximized, and an ideal algorithm should satisfy both criteria simultaneously. 
However, these design goals are in conflict with each other because mapping tasks to 
their first choice of machines may cause load imbalance. Therefore, the mapping 
problem is essentially a tradeoff between the two criteria. Two out of three proposed 
heuristics in this paper resolve a mapping by optimizing matching proximity and 
system utilization. 

3. Learning Automata 

Learning Automata are adaptive decision-making devices operating on unknown 
random environments. A Learning Automaton has a finite set of actions and each 
action has a certain probability (unknown to the automaton) of getting rewarded by 
the environment of the automaton. The aim is to learn to choose the optimal action 
(i.e. the action with the highest probability of being rewarded) through repeated 
interaction on the system. If the learning algorithm is chosen properly, then the 
iterative process of interacting on the environment can be made to result in selection 
of the optimal action. Figure 1 illustrates how a stochastic automaton works in 
feedback connection with a random environment. Learning Automata can be 
classified into two main families: fixed structure learning automata and variable 
structure learning automata (VSLA) [8]. In the following, the variable structure 
learning automata which will be used in this paper is described. 

 
Fig. 1. The interaction between learning automata and environment 

A VSLA is a quintuple < α, β, p, T(α,β,p) >, where α, β, p are an action set with s 
actions, an environment response set and the probability set p containing s 
probabilities, each being the probability of performing every action in the current 
internal automaton state, respectively. If the response of the environment takes binary 
values learning automata model is P-model and if it takes finite output set with more 
than two elements that take values in the interval [0,1], such a model is referred to as 
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Q-model, and when the output of the environment is a continuous variable in the 
interval [0,1], it is refer to as S-model. The function of T is the reinforcement 
algorithm, which modifies the action probability vector p with respect to the 
performed action and received response. Assume ]1,0[∈β . A general linear schema 
for updating action probabilities can be represented as follows. Let action i be 
performed then: 

ijjnapnnbprbnnpnp jjjj ≠∀−−−−+=+ )()](1[)]()1/()[()()1( ββ  (1) 

)](1[)](1[)()()()1( npannbpnnpnp iiii −−+−=+ ββ  (2) 

where a and b are reward and penalty parameters. When a=b, the automaton is 
called LRP. If b=0 the automaton is called LRI and if 0<b<<a<1, the automaton is 
called LRεP. For more Information about learning automata the reader may refer to [8]. 

4. Simulation Model 

This section presents a general model of the computational Grid. Figure 2 shows 
the schematic representation of the environment. The environment consists of the 
heterogeneous suite of machines which will be used to execute the application. The 
scheduling system consists of the automata, and the model of the application and the 
HC suite of machines. The application and HC suite of machines are modeled as the 
estimate of the expected execution time for each task on each machine, which is 
known prior to the execution and contained within a µτ ×  ETC (Expected Time to 
Compute) matrix, where τ  is the number of tasks and µ is the number of machines. 
One row of the ETC matrix contains the estimated execution times for a given task on 
each machine. Similarly, one column of the ETC matrix consists of the estimated 
execution times of a given machine for each task in the metatask. Thus, for an 
arbitrary task ti and an arbitrary machine mj, ETC(ti,mj) is the estimated execution 
time of t on mj. The ETC(ti,mj) entry could be assumed to include the time to move the 
executables and data associated with task ti from their known source to machine mj . 
For cases when it is impossible to execute task ti on machine mj (e.g., if specialized 
hardware is needed), the value of ETC(ti,mj) is set to infinity. 
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Fig. 2. Model of the Grid 

We define jin =)()(ψ  as a general mapping from the task domain τ,...,1=i  to the 
machine domain µ,...,1=j  at iteration n. The load of each machine, which is denoted 

by )()( jnθ ,  is defined as the time taken to execute all the assigned tasks: 

∑ ≤≤== τψθ kkjjkETCj nn 1)(),,()( )()(  (3) 

The maximum )()( jnθ value, over µ≤≤ j1 , is the metatask execution time, which 

is referred to as makespan denoted by )(nTµ . 

5. Proposed Learning Automata Model 

The learning automata model is constructed by associating every task si in the 
metatask with a variable structure learning automaton, which is represented by a 3-
tuple ))(),(),(( iAii βα . Each action of an automaton is associated with a machine, 
and since the tasks can be assigned to any of the µ  machines (µ : number of 
machines), the action set of all learning automata are identical. Therefore, for any task 
si, τ≤≤ i1  (τ number of tasks), µα mmmi ,...,,)( 21=   and ]1,0[)( ∈iβ , where  

)(iβ  closer to 0 indicates that the action taken by the automaton of task si is favorable 
to the system, and closer to 1 indicates an unfavorable response. Reinforcement 
scheme used to update action probabilities of learning automata is LRI. 
To determine the goodness of an action taken by an automaton, we propose three 
different algorithms. The first algorithm calculates )(iβ  for each automaton A(i) 
according to the reduction made in makespan and the load of the selected machine. 
The second and third algorithms calculate the goodness of an action based on 
improvement made in matching and load balancing. 

5.1. Algorithm No.1 

The algorithm No.1 (A1) determines the )()( inβ  at iteration n for each automaton 
A(i) by considering makespan and load of the chosen machine. Algorithm A1 

interprets the environment as P-model and therefore }1,0{)()( ∈inβ . Makespan at 
iteration n may be greater, less than, or equal to makespan at iteration n-1. Similarly, 
load of the machine chosen by automaton A(i) at iteration n may be greater, less than, 
or equal to load of the machine chosen by the automaton at iteration n-1. Therefore, 
regarding to makespan and the load of the chosen machine in two consecutive 

iterations, nine states are possible. To determine the )()( inβ , we associate a probability 
value to each nine possible state, which determines the probability of rewarding the 



6      S. Ghanbari and M. R. Meybodi 

chosen action. Probability zero means that the chosen action will be rewarded. Table 
1 shows the values, where D, U and I stand for decrease, remaining unchanged, and 
increase, respectively. 

Makespan  Load of chosen machine Rewarding probability 
D D 1 
D U 0.875 
D I 0.75 
U D 0.625 
U U 0.5 
U I 0.375 
I D 0.25 
I U 0.125 
I I 0 

Table 1. Reward probability associated with each state 

At iteration n, an automaton receives reward when the makespan and the load of 
chosen machine reduce, and, it receives penalty for other cases with probabilities as 
given in the table. Algorithm Al is suitable for situations that the information used to 
evaluate the environment response is the load of machines. 

5.2. Algorithm No.2 

Algorithm No.2 (A2) evaluates the response to the learning automata by 
considering two criteria: matching and system utilization. It is shown that to minimize 
the makespan, matching and system utilization must be maximized 0. Matching of 
tasks and machines can be measured by a parameter, matching proximity, which is 
defined as follows: 

∑
∑

≤≤

≤≤=
τ

τ

ψ
ψ

η
i

i

i
iiETC

1

1 min

)(
))(,(  (4) 

where 1≤η  and ),(min iψ  is the ideal matching. Ideal matching is defined as 
executing every task on the machine with the shortest execution time. It is defined as 
follows:  

ji =)(minψ  such that ),(min),(
1

qiETCjiETC
q µ≤≤

=  (5) 

when 1=η , we have the ideal matching. 
System utilization is defined as follows: 

µ

µ

µ
δ

T

iiETC
i

×

Ψ
=
∑
<≤1

))(,(
 (6) 

which µT  is the makespan. When the system is completely balanced, 1=δ ; 

otherwise 1<δ .  
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Algorithm A2 reduces the mapping problem to an optimization problem with 
matching proximity and system utilization as objective functions. Algorithm A2 
interprets the environment as S-model; that is ]1,0[)()( ∈inβ . 

To evaluate the contribution of each automaton to improving matching and system 
utilization, we define two parameters, partial contribution to matching(PCM)  and 
partial contribution to load balancing(PCL). Input to each automaton is a linear 
combination of PCM (denoted by )()( inη ), and PCL (denoted by )()( inδ ): 

δη λδληβ )()()( )()()( iii nnn +=  where 1=+ δη λλ  (7) 

ηλ  and δλ  are weights associated with PCM and PCL, respectively.  
PCM for each automaton A(i) at iteration n is evaluated as: 

))(,())(,(
))(,())(,()(

minmax

min
)(

)(

iiETCiiETC
iiETCiiETCi

n
n

ψψ
ψψη

−
−

=  (8) 

where )(max iψ   is the worst matching which is defined as mapping each task to a 
machine with the longest execution time; it is defined below 

jin =)(maxψ  such that ),(max),(
1

qiETCjiETC
q µ≤≤

=  (9) 

The closer )()( inη  to 0, the more favorable the response from the environment as 
far as the matching is concerned. In the case that the automaton selects the machine 
with the worst matching, )()( inη  is evaluated to 1.  

PCL for each automaton A(i) at iteration n is evaluated as: 

)1())(()(
)

1.0
1(

)(

)()(
)(

)(

2
1 −

−
−=∂

n

e
T

ii n

nn
n

δ

µ

ψθ  (10) 

The former part of the above expression is close to 0 when the chosen machine has 
a load less than the maximum load. Thus, the learning automata are encouraged to 
choose machines with low loads, thus, they are guided in a way to decrease the 
distance between the maximum load and the minimum load. The latter part of the 
expression is a Gaussian function. It gets closer to 0 as the system utilization 
increases; therefore, when the load is relatively balanced, PCL of each automaton is 
close to 0. Unlike algorithm A1, algorithm A2 requires information about the 
estimation of execution time of each task on each machine. Therefore, algorithm A2 
can be used if such information can be obtained. 

5.3. Algorithm No.3 

Algorithm No.3 (A3) interprets the environment as a Q-Model environment. Like 
algorithm A2, algorithm A3 uses matching proximity and system utilization as 
objective functions. PCL and PCM are evaluated in the same way as algorithm A2, 
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and used to produce the environment response. But, in algorithm A3, PCL and PCM 
are interpreted as probabilities, where PCL determines the probability that the 
learning automaton receives unfavorable response as far as system utilization is 
concerned, and PCM determines the probability that the learning automaton receives 
unfavorable response as far as matching is concerned. The environment response is 
evaluated as below: 

δδηη
λλβ )()(

)(
)()()( ii

n
nn IIi += where 1=+ δη λλ  (11) 

 
ηλ  and 

δλ  are the weights associated with PCM and PCL, respectively. 
)()( inI

η
is 

an indicator function which returns 1 with the probability of )()( inη  and 0 with the 
probability of )(1 )( inη− . 

)()( inI
δ

is also an indicator function which returns 1 with the 

probability of )()( inδ  and 0 with the probability of )(1 )( inδ− . Therefore, the input to 
each automaton )(iβ is in }1,,,0{ ση λλ . In contrast to algorithm A2, algorithm A3 
evaluates environment response stochastically, which allows the learning automata to 
jump local minimums in their search space. 

6. Experiments 

In this section the proposed algorithms are tested and compared with Min-Min and 
RC because these two algorithms are the best existing algorithms. For the simulation 
studies, characteristics of the ETC matrices were varied in an attempt to represent a 
range of possible HC environments. The ETC matrices used were generated using the 

following method[4]. Initially, a 1×τ  baseline column vector, B, of floating point 
values is created. Let bω  be the upper bound of the range of possible values within the 
baseline vector. The baseline column vector is generated by repeatedly selecting a 

uniform random number, ),1[ b
i
bx ω∈ , and letting 

i
bxiB =)(  for τ≤≤ i1 . Next, the rows 

of the ETC matrix are constructed. Each element ETC(ti , mj) in row i of the ETC 
matrix is created by taking the baseline value, B(i), and multiplying it by a uniform 

random number, 
ji

rx ,
, which has an upper bound of rω . This new random number, 

),1[,
r

ji
rx ω∈ , is called a row multiplier. One row requires µ   different row multipliers, 

µ≤≤ j1 . Each row i of the ETC matrix can then be described as ETC(ti , mj) = 
ji

rxiB ,)( × , for µ≤≤ j1 . (The baseline column itself does not appear in the final ETC 
matrix.) This process is repeated for each row until the µτ ×  ETC matrix is full. 
Therefore, any given value in the ETC matrix is within the range ),1[ rb ωω × . 

To generate different mapping scenarios, the characteristics of the ETC matrix 
were varied based on several different methods. The amount of variance among the 
execution times of tasks in the metatask for a given machine is defined as task 
heterogeneity. Task heterogeneity is varied by changing the upper bound of the 
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random numbers within the baseline column vector. High task heterogeneity was 

represented by bω =3000 and low task heterogeneity used bω =100. Machine 
heterogeneity represents the variation that is possible among the execution times for a 
given task across all the machines. Machine heterogeneity was varied by changing the 
upper bound of the random numbers used to multiply the baseline values. High 

machine heterogeneity values were generated using rω =1000, while low machine 

heterogeneity values used rω =10. The ranges were chosen to reflect the fact that in 
real situations there is more variability across execution times for different tasks on a 
given machine than the execution time for a single task across different machines. 

Different ETC matrix consistencies were used to capture more aspects of realistic 
mapping situations. An ETC matrix is said to be inconsistent if the ETC matrices are 
kept in the unordered, random state in which they were created. The ETC matrix 
indicates consistent characteristics if a machine j executes any task i faster than 
machine k, then machine j executes all tasks faster than machine k. The consistent 
matrix can be obtained by sorting every row of the matrix independently. Between 
two special situations, a semi-consistent matrix represents a partial ordering among 
the machine/task execution times. For the semi-consistent matrix used here, the row 
elements in even columns of row i are extracted, sorted and replaced in order, while 
the row elements in odd columns remain unordered. 

Twelve combinations of ETC matrix characteristics are possible: high or low task 
heterogeneity, high or low machine heterogeneity, and one type of consistencies 
(consistent, inconsistent, or semi-consistent). Among the twelve combinations the 
most heterogeneous environment is modeled with inconsistent, high task and machine 
heterogeneous ETC, and correspondingly the least heterogeneous environment is 
modeled with consistent, low task and machine heterogeneous ETC. Other 
combinations are between these two extremes, where inconsistent ETC represents 
more heterogeneity than semi-consistent and consistent ETC represents less 
heterogeneity than semi-consistent. In charts presented in this section, Low and High 
task/machine heterogeneity are abbreviated to LoLo and HiHi, respectively. 

The results reported here are averaged over 50 trials. All experiment results are for 
200 tasks and 20 machines. The makespan for each experiment is normalized with 
respect to the benchmark heuristic, which is RC. Unless stated, the learning automata 
model used in the experiments is LRI with a=0.01 for algorithm A1 and a=0.001 for 
algorithms A2 and A3. For algorithms A2 and A3, the weights ηλ and δλ are set to 0.4 
and 0.6, respectively, for inconsistent environment, and set to 0.05 and 0.95 for semi-
consistent and consistent environments. Matching weightage is set to a very smaller 
value than system utilization weightage in semi-consistent and consistent 
environments, because in consistent environments all tasks have the same first choice 
for matching, the fastest machine. There is the same situation in a semi-consistent 
environment because of its consistent sub-matrix. Therefore, the decisive factor in 
gaining a better makespan is to maximize system utilization rather than matching 
proximity. Termination condition is met when, no change in makespan is made for 
1500 consecutive iterations, or number of iterations exceeds 500000.  
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Fig. 3. Makespan for inconsistent environment 

In Figure 3, three proposed algorithms are compared with Min-Min and RC in term 
of  normalized makespan for inconsistent heterogeneity. It can be noted that all three 
proposed algorithms outperform both RC and Min-Min. For high machine and task 
heterogeneity, makespan resulted by algorithm A3 is 21 percent less than the 
makespans resulted from RC. Algorithm A2 performs slightly better than algorithm 
A1, and algorithm A3 performs better than algorithms A1 and A2. Figure 4 compares 
the normalized makespans of the proposed algorithms with the Min-Min and RC. All 
three proposed algorithms outperform Min-Min. Algorithms A1 and A3 perform 
better than RC for high task and machine heterogeneity; however, algorithm A2 fails 
to outperform RC. Except algorithm A3, the other two algorithms perform worse than 
RC for low task and machine heterogeneity. 

From Figure 5, it can be stated for consistent environments, RC and Min-Min 
performs better than the algorithms proposed in this paper. Results shown in Figure 6 
indicate the fact that the proposed algorithms perform significantly better than both 
RC and Min-Min for inconsistent environments, while they fails to perform better 
than RC and Min-Min for consistent environment. For semi-consistent environment 
whose heterogeneity is between consistent and inconsistent, learning automata 
outperforms Min-Min, but performs very closely to RC. Therefore, proposed 
algorithms perform better in environments with higher level of heterogeneity.  

As expected, algorithm A3 performs better than algorithm A2 because it can avoid 
trapping in local minimums. Observing the results of the experiments, it is evident 
that algorithm A1 performs very close to and even better than algorithm A2 although 
it has a completely different reward criterion. It is worth mentioning that in contrast to 
algorithms A2 and A3 which use detailed information of expected run time of each 
task on each machine to guide learning automata, algorithm A1 ignores such 
information and guide learning automata blindly. 
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Fig. 4. Makespan for semi-consistent environment 

The other important issue to consider is the computational cost of finding a 
mapping using each algorithm. Figure 7 shows a comparison in terms number of 
iterations. On average, algorithm A2 finds a mapping in about 39000 iterations, while 
algorithm A3 needs 12 times more iterations. It should be noted that the reward 
parameter (a) which is set to 0.01 for algorithm A2, but 0.001 for algorithms A1 and 
A3 may account for faster convergence of algorithm A2 in contrast to algorithms A1 
and A3. However, each algorithm is compared with others by setting learning 
parameter to a value that yields best result. For further experiments and analysis, 
interested reader may refer to [12]. 
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Fig. 5. Makespan for consistent environment 
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Fig. 6. Difference of makespan with RC for different consistency and heterogeneity 
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