
Learning Automata Based Algorithms for Mapping of a
Class of Independent Tasks over Highly Heterogeneous

Grids

S. Ghanbari and M. R. Meybodi

Soft Computing Laboratory
Computer Engineering Department and Information Technology

Amirkabir University
Tehran Iran

Email: saeed_ghanbari@yahoo.com , meybodi@ce.aut.ac.ir

Abstract. The computational grid provides a platform for exploiting various
computational resources over wide area networks. One of the concerns in
implementing computational grid environment is how to effectively map tasks
onto resources in order to gain high utilization in the highly heterogeneous
environment of the grid. In this paper, three algorithms for task mapping based
on learning automata are introduced. To show the effectiveness of the proposed
algorithms, computer simulations have been conducted. The results of
experiments show that the proposed algorithms outperform two best existing
mapping algorithms when the heterogeneity of the environment is very high.

1. Introduction

Owing to advances in computational infrastructure and networking technology,
construction of large-scale high performance distributed computing environment,
known as computational grid, is now possible. Computational Grid enables the
sharing, selection, and aggregation of geographically distributed heterogeneous
resources for solving large scale problems in science, engineering and commerce.
Numerous efforts have been exerted focusing on various aspects of grid computing
including resource specifications, information services, allocation, and security issues.
A critical issue to meeting the computational requirements on the grid is the
scheduling.

Ensuring a favorable efficiency over computational grid is not a straightforward
task, where a number of issues make scheduling challenging even for highly parallel
applications. Resources on the grid are typically shared and undedicated so that the
contention made by various applications results in dynamically fluctuating delays,
capricious quality of services, and unpredictable behavior, which further complicate
the scheduling. Regarding to these hurdles, the scheduling of applications on
computational grids have become a major concern of multitude efforts in recent years
[9].

2 S. Ghanbari and M. R. Meybodi

In mixed-machine heterogeneous computing (HC) environments like
computational grids, based on application model characterization, platform model
characterization and mapping strategy characterization, there are various definitions
for scheduling[6]. Ideal sorts of applications for computational grid are those
composed of independent subtasks (called metatask), which subtasks can be executed
in any order and there is no inter-task communication (i.e. totally parallel) [1][13].
There are many applications of such feature including data mining, massive searches
(such as key breaking), parameter sweeps, Monte Carlo simulations[2], fractals
calculations (such as Mandelbrot), and image manipulation applications (such as
tomographic reconstruction[3]). Computational grid platform model consists of
different high-performance machines, interconnected with high-speed links. Each
machine executes a single task at a time (i.e. no multitasking) in the order to which
the tasks are assigned. The size of the metatask and the number of machines in the HC
suite are static and known beforehand. The matching of tasks to machines and
scheduling the execution order of these tasks is referred to as mapping. The general
problem of optimally mapping tasks to machines in an HC suite has been shown to be
NP-complete[11].

 In this paper, we present three algorithms based on learning automata for mapping
metatask over HC. Through computer simulations we show that the proposed
algorithms outperform the best existing mapping algorithms when the heterogeneity
of the environment is very high.

This paper is organized as follows: Section 2 discusses the related works. Section 3
introduces the learning automata. Section 4 explains the model of the Grid and the
definitions used in later sections. Section 5 introduces the proposed learning automata
based algorithms. In Section 6, experimental results are discussed and section 7 is the
conclusion.

2. Related works

Existing mapping algorithms can be categorized into two classes[4]: on-line mode
(immediate) and batch mode. In on-line mode, a task is mapped onto a host as soon as
it arrives at the scheduler. In the batch mode, tasks are collected into a set of tasks that
is examined for mapping at certain intervals called mapping events. The independent
set of tasks that is considered for mapping at the mapping events is called a metatask.
The on-line mode is suitable for low arrival rate, while batch-mode algorithms can
yield higher performance when the arrival rate of tasks is high because there will be a
sufficient number of tasks to keep hosts busy between the mapping events, and
scheduling is done according to the resource requirement information of all tasks in
the set[4]. The objective of most mapping algorithms is to minimize makespan, where
makespan is the time needed for completing the execution of a metatask Minimizing
makespan yields to higher throughput.

Minimum Completion Time (MCT), Minimum Execution Time (MET), Dual, and
k-Percent Best (KPB) are among well known existing on-line mode heuristics[5].
Reported batch mode heuristics are Min-Min, Max-Min, Genetic Algorithm (GA),
Simulated Annealing (SA), Genetic Simulated Annealing (GSA), A* search,

Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over
Highly Heterogeneous Grids 3

Suffrage[5][4], and Relative Cost (RC) [7] . Experiments results from [5] show that
among batch-mode heuristics, Min-Min and GA give lower makespan.[7] proposes
Relative Cost (RC) heuristic which further outperforms both GA and Min-Min.

RC introduces two essential criteria for a high-quality mapping algorithm for
heterogeneous computing systems: matching which is to better match the tasks and
machines, and load balancing which is to better utilize the machines. It is shown that
in order to minimize the makespan, matching and system utilization should be
maximized, and an ideal algorithm should satisfy both criteria simultaneously.
However, these design goals are in conflict with each other because mapping tasks to
their first choice of machines may cause load imbalance. Therefore, the mapping
problem is essentially a tradeoff between the two criteria. Two out of three proposed
heuristics in this paper resolve a mapping by optimizing matching proximity and
system utilization.

3. Learning Automata

Learning Automata are adaptive decision-making devices operating on unknown
random environments. A Learning Automaton has a finite set of actions and each
action has a certain probability (unknown to the automaton) of getting rewarded by
the environment of the automaton. The aim is to learn to choose the optimal action
(i.e. the action with the highest probability of being rewarded) through repeated
interaction on the system. If the learning algorithm is chosen properly, then the
iterative process of interacting on the environment can be made to result in selection
of the optimal action. Figure 1 illustrates how a stochastic automaton works in
feedback connection with a random environment. Learning Automata can be
classified into two main families: fixed structure learning automata and variable
structure learning automata (VSLA) [8]. In the following, the variable structure
learning automata which will be used in this paper is described.

Fig. 1. The interaction between learning automata and environment

A VSLA is a quintuple < α, β, p, T(α,β,p) >, where α, β, p are an action set with s
actions, an environment response set and the probability set p containing s
probabilities, each being the probability of performing every action in the current
internal automaton state, respectively. If the response of the environment takes binary
values learning automata model is P-model and if it takes finite output set with more
than two elements that take values in the interval [0,1], such a model is referred to as

4 S. Ghanbari and M. R. Meybodi

Q-model, and when the output of the environment is a continuous variable in the
interval [0,1], it is refer to as S-model. The function of T is the reinforcement
algorithm, which modifies the action probability vector p with respect to the
performed action and received response. Assume]1,0[∈β . A general linear schema
for updating action probabilities can be represented as follows. Let action i be
performed then:

ijjnapnnbprbnnpnp jjjj ≠∀−−−−+=+)()](1[)]()1/()[()()1(ββ (1)

)](1[)](1[)()()()1(npannbpnnpnp iiii −−+−=+ ββ (2)

where a and b are reward and penalty parameters. When a=b, the automaton is
called LRP. If b=0 the automaton is called LRI and if 0<b<<a<1, the automaton is
called LRεP. For more Information about learning automata the reader may refer to [8].

4. Simulation Model

This section presents a general model of the computational Grid. Figure 2 shows
the schematic representation of the environment. The environment consists of the
heterogeneous suite of machines which will be used to execute the application. The
scheduling system consists of the automata, and the model of the application and the
HC suite of machines. The application and HC suite of machines are modeled as the
estimate of the expected execution time for each task on each machine, which is
known prior to the execution and contained within a µτ × ETC (Expected Time to
Compute) matrix, where τ is the number of tasks and µ is the number of machines.
One row of the ETC matrix contains the estimated execution times for a given task on
each machine. Similarly, one column of the ETC matrix consists of the estimated
execution times of a given machine for each task in the metatask. Thus, for an
arbitrary task ti and an arbitrary machine mj, ETC(ti,mj) is the estimated execution
time of t on mj. The ETC(ti,mj) entry could be assumed to include the time to move the
executables and data associated with task ti from their known source to machine mj .
For cases when it is impossible to execute task ti on machine mj (e.g., if specialized
hardware is needed), the value of ETC(ti,mj) is set to infinity.

Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over
Highly Heterogeneous Grids 5

Fig. 2. Model of the Grid

We define jin =)()(ψ as a general mapping from the task domain τ,...,1=i to the
machine domain µ,...,1=j at iteration n. The load of each machine, which is denoted

by)()(jnθ , is defined as the time taken to execute all the assigned tasks:

∑ ≤≤== τψθ kkjjkETCj nn 1)(),,()()()((3)

The maximum)()(jnθ value, over µ≤≤ j1 , is the metatask execution time, which

is referred to as makespan denoted by)(nTµ .

5. Proposed Learning Automata Model

The learning automata model is constructed by associating every task si in the
metatask with a variable structure learning automaton, which is represented by a 3-
tuple))(),(),((iAii βα . Each action of an automaton is associated with a machine,
and since the tasks can be assigned to any of the µ machines (µ : number of
machines), the action set of all learning automata are identical. Therefore, for any task
si, τ≤≤ i1 (τ number of tasks), µα mmmi ,...,,)(21= and]1,0[)(∈iβ , where

)(iβ closer to 0 indicates that the action taken by the automaton of task si is favorable
to the system, and closer to 1 indicates an unfavorable response. Reinforcement
scheme used to update action probabilities of learning automata is LRI.
To determine the goodness of an action taken by an automaton, we propose three
different algorithms. The first algorithm calculates)(iβ for each automaton A(i)
according to the reduction made in makespan and the load of the selected machine.
The second and third algorithms calculate the goodness of an action based on
improvement made in matching and load balancing.

5.1. Algorithm No.1

The algorithm No.1 (A1) determines the)()(inβ at iteration n for each automaton
A(i) by considering makespan and load of the chosen machine. Algorithm A1

interprets the environment as P-model and therefore }1,0{)()(∈inβ . Makespan at
iteration n may be greater, less than, or equal to makespan at iteration n-1. Similarly,
load of the machine chosen by automaton A(i) at iteration n may be greater, less than,
or equal to load of the machine chosen by the automaton at iteration n-1. Therefore,
regarding to makespan and the load of the chosen machine in two consecutive

iterations, nine states are possible. To determine the)()(inβ , we associate a probability
value to each nine possible state, which determines the probability of rewarding the

6 S. Ghanbari and M. R. Meybodi

chosen action. Probability zero means that the chosen action will be rewarded. Table
1 shows the values, where D, U and I stand for decrease, remaining unchanged, and
increase, respectively.

Makespan Load of chosen machine Rewarding probability
D D 1
D U 0.875
D I 0.75
U D 0.625
U U 0.5
U I 0.375
I D 0.25
I U 0.125
I I 0

Table 1. Reward probability associated with each state

At iteration n, an automaton receives reward when the makespan and the load of
chosen machine reduce, and, it receives penalty for other cases with probabilities as
given in the table. Algorithm Al is suitable for situations that the information used to
evaluate the environment response is the load of machines.

5.2. Algorithm No.2

Algorithm No.2 (A2) evaluates the response to the learning automata by
considering two criteria: matching and system utilization. It is shown that to minimize
the makespan, matching and system utilization must be maximized 0. Matching of
tasks and machines can be measured by a parameter, matching proximity, which is
defined as follows:

∑
∑

≤≤

≤≤=
τ

τ

ψ
ψ

η
i

i

i
iiETC

1

1 min

)(
))(,((4)

where 1≤η and),(min iψ is the ideal matching. Ideal matching is defined as
executing every task on the machine with the shortest execution time. It is defined as
follows:

ji =)(minψ such that),(min),(
1

qiETCjiETC
q µ≤≤

= (5)

when 1=η , we have the ideal matching.
System utilization is defined as follows:

µ

µ

µ
δ

T

iiETC
i

×

Ψ
=
∑
<≤1

))(,(
 (6)

which µT is the makespan. When the system is completely balanced, 1=δ ;

otherwise 1<δ .

Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over
Highly Heterogeneous Grids 7

Algorithm A2 reduces the mapping problem to an optimization problem with
matching proximity and system utilization as objective functions. Algorithm A2
interprets the environment as S-model; that is]1,0[)()(∈inβ .

To evaluate the contribution of each automaton to improving matching and system
utilization, we define two parameters, partial contribution to matching(PCM) and
partial contribution to load balancing(PCL). Input to each automaton is a linear
combination of PCM (denoted by)()(inη), and PCL (denoted by)()(inδ):

δη λδληβ)()()()()()(iii nnn += where 1=+ δη λλ (7)

ηλ and δλ are weights associated with PCM and PCL, respectively.
PCM for each automaton A(i) at iteration n is evaluated as:

))(,())(,(
))(,())(,()(

minmax

min
)(

)(

iiETCiiETC
iiETCiiETCi

n
n

ψψ
ψψη

−
−

= (8)

where)(max iψ is the worst matching which is defined as mapping each task to a
machine with the longest execution time; it is defined below

jin =)(maxψ such that),(max),(
1

qiETCjiETC
q µ≤≤

= (9)

The closer)()(inη to 0, the more favorable the response from the environment as
far as the matching is concerned. In the case that the automaton selects the machine
with the worst matching,)()(inη is evaluated to 1.

PCL for each automaton A(i) at iteration n is evaluated as:

)1())(()(
)

1.0
1(

)(

)()(
)(

)(

2
1 −

−
−=∂

n

e
T

ii n

nn
n

δ

µ

ψθ (10)

The former part of the above expression is close to 0 when the chosen machine has
a load less than the maximum load. Thus, the learning automata are encouraged to
choose machines with low loads, thus, they are guided in a way to decrease the
distance between the maximum load and the minimum load. The latter part of the
expression is a Gaussian function. It gets closer to 0 as the system utilization
increases; therefore, when the load is relatively balanced, PCL of each automaton is
close to 0. Unlike algorithm A1, algorithm A2 requires information about the
estimation of execution time of each task on each machine. Therefore, algorithm A2
can be used if such information can be obtained.

5.3. Algorithm No.3

Algorithm No.3 (A3) interprets the environment as a Q-Model environment. Like
algorithm A2, algorithm A3 uses matching proximity and system utilization as
objective functions. PCL and PCM are evaluated in the same way as algorithm A2,

8 S. Ghanbari and M. R. Meybodi

and used to produce the environment response. But, in algorithm A3, PCL and PCM
are interpreted as probabilities, where PCL determines the probability that the
learning automaton receives unfavorable response as far as system utilization is
concerned, and PCM determines the probability that the learning automaton receives
unfavorable response as far as matching is concerned. The environment response is
evaluated as below:

δδηη
λλβ)()(

)(
)()()(ii

n
nn IIi += where 1=+ δη λλ (11)

ηλ and

δλ are the weights associated with PCM and PCL, respectively.
)()(inI

η
is

an indicator function which returns 1 with the probability of)()(inη and 0 with the
probability of)(1)(inη− .

)()(inI
δ

is also an indicator function which returns 1 with the

probability of)()(inδ and 0 with the probability of)(1)(inδ− . Therefore, the input to
each automaton)(iβ is in }1,,,0{ ση λλ . In contrast to algorithm A2, algorithm A3
evaluates environment response stochastically, which allows the learning automata to
jump local minimums in their search space.

6. Experiments

In this section the proposed algorithms are tested and compared with Min-Min and
RC because these two algorithms are the best existing algorithms. For the simulation
studies, characteristics of the ETC matrices were varied in an attempt to represent a
range of possible HC environments. The ETC matrices used were generated using the

following method[4]. Initially, a 1×τ baseline column vector, B, of floating point
values is created. Let bω be the upper bound of the range of possible values within the
baseline vector. The baseline column vector is generated by repeatedly selecting a

uniform random number,),1[b
i
bx ω∈ , and letting

i
bxiB =)(for τ≤≤ i1 . Next, the rows

of the ETC matrix are constructed. Each element ETC(ti , mj) in row i of the ETC
matrix is created by taking the baseline value, B(i), and multiplying it by a uniform

random number,
ji

rx ,
, which has an upper bound of rω . This new random number,

),1[,
r

ji
rx ω∈ , is called a row multiplier. One row requires µ different row multipliers,

µ≤≤ j1 . Each row i of the ETC matrix can then be described as ETC(ti , mj) =
ji

rxiB ,)(× , for µ≤≤ j1 . (The baseline column itself does not appear in the final ETC
matrix.) This process is repeated for each row until the µτ × ETC matrix is full.
Therefore, any given value in the ETC matrix is within the range),1[rb ωω × .

To generate different mapping scenarios, the characteristics of the ETC matrix
were varied based on several different methods. The amount of variance among the
execution times of tasks in the metatask for a given machine is defined as task
heterogeneity. Task heterogeneity is varied by changing the upper bound of the

Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over
Highly Heterogeneous Grids 9

random numbers within the baseline column vector. High task heterogeneity was

represented by bω =3000 and low task heterogeneity used bω =100. Machine
heterogeneity represents the variation that is possible among the execution times for a
given task across all the machines. Machine heterogeneity was varied by changing the
upper bound of the random numbers used to multiply the baseline values. High

machine heterogeneity values were generated using rω =1000, while low machine

heterogeneity values used rω =10. The ranges were chosen to reflect the fact that in
real situations there is more variability across execution times for different tasks on a
given machine than the execution time for a single task across different machines.

Different ETC matrix consistencies were used to capture more aspects of realistic
mapping situations. An ETC matrix is said to be inconsistent if the ETC matrices are
kept in the unordered, random state in which they were created. The ETC matrix
indicates consistent characteristics if a machine j executes any task i faster than
machine k, then machine j executes all tasks faster than machine k. The consistent
matrix can be obtained by sorting every row of the matrix independently. Between
two special situations, a semi-consistent matrix represents a partial ordering among
the machine/task execution times. For the semi-consistent matrix used here, the row
elements in even columns of row i are extracted, sorted and replaced in order, while
the row elements in odd columns remain unordered.

Twelve combinations of ETC matrix characteristics are possible: high or low task
heterogeneity, high or low machine heterogeneity, and one type of consistencies
(consistent, inconsistent, or semi-consistent). Among the twelve combinations the
most heterogeneous environment is modeled with inconsistent, high task and machine
heterogeneous ETC, and correspondingly the least heterogeneous environment is
modeled with consistent, low task and machine heterogeneous ETC. Other
combinations are between these two extremes, where inconsistent ETC represents
more heterogeneity than semi-consistent and consistent ETC represents less
heterogeneity than semi-consistent. In charts presented in this section, Low and High
task/machine heterogeneity are abbreviated to LoLo and HiHi, respectively.

The results reported here are averaged over 50 trials. All experiment results are for
200 tasks and 20 machines. The makespan for each experiment is normalized with
respect to the benchmark heuristic, which is RC. Unless stated, the learning automata
model used in the experiments is LRI with a=0.01 for algorithm A1 and a=0.001 for
algorithms A2 and A3. For algorithms A2 and A3, the weights ηλ and δλ are set to 0.4
and 0.6, respectively, for inconsistent environment, and set to 0.05 and 0.95 for semi-
consistent and consistent environments. Matching weightage is set to a very smaller
value than system utilization weightage in semi-consistent and consistent
environments, because in consistent environments all tasks have the same first choice
for matching, the fastest machine. There is the same situation in a semi-consistent
environment because of its consistent sub-matrix. Therefore, the decisive factor in
gaining a better makespan is to maximize system utilization rather than matching
proximity. Termination condition is met when, no change in makespan is made for
1500 consecutive iterations, or number of iterations exceeds 500000.

10 S. Ghanbari and M. R. Meybodi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

HiHi LoLo

Inconsistent

N
or

m
al

iz
ed

 M
ak

es
pa

n
H1 H2 H3 Min-Min RC

Fig. 3. Makespan for inconsistent environment

In Figure 3, three proposed algorithms are compared with Min-Min and RC in term
of normalized makespan for inconsistent heterogeneity. It can be noted that all three
proposed algorithms outperform both RC and Min-Min. For high machine and task
heterogeneity, makespan resulted by algorithm A3 is 21 percent less than the
makespans resulted from RC. Algorithm A2 performs slightly better than algorithm
A1, and algorithm A3 performs better than algorithms A1 and A2. Figure 4 compares
the normalized makespans of the proposed algorithms with the Min-Min and RC. All
three proposed algorithms outperform Min-Min. Algorithms A1 and A3 perform
better than RC for high task and machine heterogeneity; however, algorithm A2 fails
to outperform RC. Except algorithm A3, the other two algorithms perform worse than
RC for low task and machine heterogeneity.

From Figure 5, it can be stated for consistent environments, RC and Min-Min
performs better than the algorithms proposed in this paper. Results shown in Figure 6
indicate the fact that the proposed algorithms perform significantly better than both
RC and Min-Min for inconsistent environments, while they fails to perform better
than RC and Min-Min for consistent environment. For semi-consistent environment
whose heterogeneity is between consistent and inconsistent, learning automata
outperforms Min-Min, but performs very closely to RC. Therefore, proposed
algorithms perform better in environments with higher level of heterogeneity.

As expected, algorithm A3 performs better than algorithm A2 because it can avoid
trapping in local minimums. Observing the results of the experiments, it is evident
that algorithm A1 performs very close to and even better than algorithm A2 although
it has a completely different reward criterion. It is worth mentioning that in contrast to
algorithms A2 and A3 which use detailed information of expected run time of each
task on each machine to guide learning automata, algorithm A1 ignores such
information and guide learning automata blindly.

Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over
Highly Heterogeneous Grids 11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

HiHi LoLo

Semi-consistent

N
or

m
al

iz
ed

 M
ak

es
pa

n
H1 H2 H3 Min-Min RC

Fig. 4. Makespan for semi-consistent environment

The other important issue to consider is the computational cost of finding a
mapping using each algorithm. Figure 7 shows a comparison in terms number of
iterations. On average, algorithm A2 finds a mapping in about 39000 iterations, while
algorithm A3 needs 12 times more iterations. It should be noted that the reward
parameter (a) which is set to 0.01 for algorithm A2, but 0.001 for algorithms A1 and
A3 may account for faster convergence of algorithm A2 in contrast to algorithms A1
and A3. However, each algorithm is compared with others by setting learning
parameter to a value that yields best result. For further experiments and analysis,
interested reader may refer to [12].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

HiHi LoLo

Consistent

N
or

m
al

iz
ed

 M
ak

es
pa

n

H1 H2 H3 Min-Min RC

Fig. 5. Makespan for consistent environment

12 S. Ghanbari and M. R. Meybodi

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

HiHi LoLo HiHi LoLo HiHi LoLo

Inconsistent Semi-consistent Consistent

M
ak

es
pa

n
pe

rc
en

t o
f d

iff
er

en
ce

 w
ith

 R
C

H1 H2 H3 RC

Fig. 6. Difference of makespan with RC for different consistency and heterogeneity

H2

H1

H3

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Number of Iterations
Fig. 7. Comparison of proposed algorithms with respect to number of iterations

7. References

[1].A. L. Rosenberg, Optimal scheduling for cycle-stealing in a network of workstations with a
bag-of-tasks workload, IEEE Trans. Parallel Distributed Systems, 13(2), 2002, 179-191.

[2].H. Casanova, T.M. Bartol, J. Stiles, F. Berman, Distributing MCell simulations on the grid,
Int. J. High Perform. Comput. Appl.,15 (3), 2001, 243–257.

[3].S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M. Su, C. Kesselman, S. Young, M.
Ellisman, Combining workstations and supercomputers to support grid applications: the

Learning Automata Based Algorithms for Mapping of a Class of Independent Tasks over
Highly Heterogeneous Grids 13

parallel tomography experience, IEEE Proceedings of the Ninth Heterogeneous Computing
Workshop, May 2000, 241–252.

[4].M. Macheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, Dynamic mapping of a
class of independent tasks onto heterogeneous computing systems, J. Parallel Distribut.
Comput., 59 (2), 1999, 107–131.

[5].T. D. Braun, H. J. Siegel ,and N. Beck, A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed computing systems, J.
Parallel and Distributed Computing, 61, 2001, 810-837.

[6].T. D. Braun, H. J. Siegel, et al., Taxonomy for describing matching and scheduling
heuristics for mixed-machine heterogeneous computing systems, Proceedings of the 17th
IEEE Symposium on Reliable Distributed Systems, October 1998, 330-335.

[7].Min-You Wu and Wei Shu, A high-performance mapping algorithm for heterogeneous
computing systems, Proceedings of 15th International Parallel and Distributed Processing
Symposium (IPDPS'01), April 2001.

[8].K. Narendra and M. A. L. Thathachar. "Learning Automata: An Introduction," Prentice
Hall, Englewood Cliffs, New Jersey, 1989.

[9].F. Berman, "High-performance schedulers," in The Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C Kesselman, eds., Morgan Kaufmann, San Francisco, CA,
1999, 279-310.

[10].H. Chen and M. Maheswaran, Distributed dynamic scheduling of composite tasks on grid
computing systems, Proceedings of Int'l parallel and distributed Processing Symposium
(IPDPS'02), 2002.

[11].O. H. Ibarra and C. E. Kim, Heuristic Algorithms for scheduling independent tasks on
non-identical processors, J. ACM, 24(2), April 1977, 280-289.

[12].S. Ghanbari and M. R. Meybodi, Various mapping algorithms for heterogeneous
computational grid: learning automata approach, Technical Report, Computer Engineering
Department and Information Technology, Tehran, Iran, 2004.

[13]. C. Weng and X. Lu, Heuristic scheduling for bag-of-tasks applications in combination
with QoS in the computational grid, J. Future Generation Computer Systems, 2003

