کاربرد اتوماتای یادگیر سلولی در قطعه بندی تصاویر

محمد رضا مبیدی
دانشکده مهندسی کامپیوتر
آزمایشگاه محاسبات نرم
دانشگاه صنعتی امیرکبیر
تهران

چکیده: اتوماتای یادگیر سلولی مدلی برای سیستم‌های است که از اجرا ساده‌ای تشکیل شده‌اند و رفتار هر جزء بر اساس رفتار همسایگانش و ترتیبات گسترشش اش تعیین و اصلاح می‌شود. اجرا ساده‌ای تشکیل دهنده این رفتار از طریق نشان داده و رایانش با یکدیگر می‌توانند رفتار بی‌پیش‌تری از خود نشان دهند. در این مقاله کاربرد اتوماتای یادگیر سلولی برای طراحی الگوریتم‌های تغییرات منظم قسمت بندی تصویر در صورت وجود نوری، فقط تحلیل اندازه‌گیری و روش‌های غیر تغییری نشان داده و این اکنون موزیک‌سازی شده بوده تا با استفاده از الگوریتم‌های تغییرات منظم، در واقع بندی تصویری در مسایلی هر زیرک که یک‌پلاسی تعداد سایر را راه‌حل می‌سازد.

کلمات کلیدی: اتوماتای سلولی، اتوماتای یادگیر، الگوریتم یادگیر سلولی، قطعه بندی تصاویر

1- مقدمه:
قطعه بندی نواحی یکپارچه تصویر در سیستم‌های پیش‌بینی و مخصوصاً در تصاویر به صورت به‌دست از اهمیت زیادی بر خوردار است[1]. برای حل این مسئله دو روش به‌دست آمده است. اولاً، برای قطعه بندی تصویر با توجه به اینکه یک مدل تصویری مناسب را پیش‌بینی می‌کند، به‌طور مناسب به‌منظور کاهش ابعاد و به‌طور مناسب به‌منظور کاهش ابعاد دو تکرار یکی از این روش‌ها استفاده می‌شود. اکنون در روش پیشرفته‌ترین فناوری‌های تشخیص ناحیه، روش‌های متکی بر تشخیص لبه، از روش‌های متکی بر تشخیص مرز بین نواحی و روش‌های بهنچ سازی سری‌سازی بندی اساسی یک تابع آزمایش‌هایی یا یک میزان خاص رقیم کردن[12][8][3]. سه روش اول بر اساس یک یکری فرضیات مشخص های خاص و به کار بردن سطح آستانه به صورت مستقیم با غیر مستقیم عمل می‌کند. روش‌های متکی بر تشخیص لبه فقط از اطلاعات محلی استفاده کرده و به‌دست آوردن یک میزان به‌طور پیوسته

Cellular Learning Automata (CLA) - 1

10th ICEE, May 2002, Vol. 1
298
University of Tabriz, Tabriz, IRAN
روش‌های تشخیصی مرز فقط اطلاعات اطراف مرز RA در نظر می‌گیرند و به‌عده دیگر به تخمین‌دهی دقیق باز دارند. در نظر گرفتن اطلاعات آرایه درون تراکمی روش‌های تشخیصی ناحیه تأثیر می‌کند. می‌باشد استفاده از کمک‌هایی که در تراکمی اجرا می‌شود. در روش‌های ساده‌سازی هندسی می‌توان به آن‌ها مراجعه کرد.

یک مثال از آن‌ها یک مدل Simulated Annealing است که بر اساس اطلاعات قبلی از تراکم و داده‌های مشابه شده است. استحکام می‌شود.

اثربخش‌های اجرایی تصویری که یک مدل از تراکم و داده‌های مشابه شده است، این روش‌های برای یک کلاس از تصویر یک چندین می‌کند که به معنای برآور نیست. در نظر گرفته شود، در مرحله از تکرار الگوریتم تعلق یک پیکسل به کلاس خاص به صورت نتیجه‌پذیری پذیرش‌ها یکتایی انجام می‌شود. سپس مقدار ارزی آن محاسبه می‌شود. اگر این مقدار از مقدار قبلی مشابه شده در همان پیکسل کمتر باشد پیکسل به کلاس جدید تعلق خواهد یافت. در غیر اینصورت کلاس خود را حفظ خواهد کرد و رابطه احتمالی کلاس جدید تعلق خواهد یافت.

توجه‌ها و تقسیمات اجرایی تصویری به سمت الگوریتم‌های مشابه لقبی از تصویر و میزان تشریفات داخلی از جمله تصویری می‌کند است. این روش‌های برای یک کلاس از تصویر یک چندین محاسبه نشده که به معنای آن‌ها کمتری می‌کند. در نظر گرفته شود، در مرحله از تکرار الگوریتم تعلق یک پیکسل به کلاس خاص به صورت نتیجه‌پذیری پذیرش‌ها یکتایی انجام می‌شود. سپس مقدار ارزی آن محاسبه می‌شود. اگر این مقدار از مقدار قبلی مشابه شده در همان پیکسل کمتر باشد پیکسل به کلاس جدید تعلق خواهد یافت.

در این مقاله تاکید بر اورمای‌هایی داده‌سازی سلولی برای تکرار الگوریتم‌های تکراری متعارض به‌نام دیده، و میزان تشریفات داخلی که می‌تواند از جمله تصویری می‌کند است. این روش‌های برای یک کلاس از تصویر یک چندین محاسبه نشده که به معنای آن‌ها کمتری می‌کند. در نظر گرفته شود، در مرحله از تکرار الگوریتم تعلق یک پیکسل به کلاس خاص به صورت نتیجه‌پذیری پذیرش‌ها یکتایی انجام می‌شود. سپس مقدار ارزی آن محاسبه می‌شود. اگر این مقدار از مقدار قبلی مشابه شده در همان پیکسل کمتر باشد پیکسل به کلاس جدید تعلق خواهد یافت. در غیر اینصورت کلاس خود را حفظ خواهد کرد و رابطه احتمالی کلاس جدید تعلق خواهد یافت.

واضح به عنوان سلولی در این مقاله تاکید بر اورمای‌هایی داده‌سازی سلولی برای تکرار الگوریتم‌های تکراری متعارض به‌نام دیده، و میزان تشریفات داخلی که می‌تواند از جمله تصویری می‌کند است. این روش‌های برای یک کلاس از تصویر یک چندین محاسبه نشده که به معنای آن‌ها کمتری می‌کند. در نظر گرفته شود، در مرحله از تکرار الگوریتم تعلق یک پیکسل به کلاس خاص به صورت نتیجه‌پذیری پذیرش‌ها یکتایی انجام می‌شود. سپس مقدار ارزی آن محاسبه می‌شود. اگر این مقدار از مقدار قبلی مشابه شده در همان پیکسل کمتر باشد پیکسل به کلاس جدید تعلق خواهد یافت. در غیر اینصورت کلاس خود را حفظ خواهد کرد و رابطه احتمالی کلاس جدید تعلق خواهد یافت.

2- اورمای‌های داده‌سازی

اونونمای‌های داده‌سازی یک مدل انزاعی است که دارای تعادل محدود عمل می‌باشد. هر عمل انزاعی شده نیاز به محیط انتخاب و داده‌های وابسته به انتخاب‌های پیش‌بینی استفاده نموده و عمل خود را برای مرحله بعد انتخاب می‌کند.[7]. نکته 1 ارتباط بین اونونمای‌های داده‌سازی و محیط‌ها را تبادل می‌کند.
شکل 1: ارتباط بین الگوریتم یادگیری و محیط

محیط را می‌توان توسط سه تایی \(E = \{\alpha, \beta, \gamma\} \) نشان داد که در آن \(\alpha \) مجموعه ورودی‌ها، \(\beta \) مجموعه خروجی‌ها و \(\gamma \) مجموعه احتمال‌ها جریمه می‌باشد. هر گاه \(\beta \) مجموعه دو عضوی باشد، محیط از نوع \(P \) می‌باشد. در قراردادهای جریمه \(\beta_1 \) به عنوان پاداش درنظر گرفته می‌شود. در محیط از نوع \(Q \) می‌تواند به طور گسترده یک مقدار از مقدار محدود در فاصله \([0,1]\) و در محیط از نوع \(S \) مقدار تصادفی در فاصله \([0,1]\) است. احتمال اینکه عمل \(\alpha_1 \) توسط \(c_1 \) نامعلوم داشته باشد. در محیط این مقداری باشد. در محیط این مقداری باشد. این مقدار بر طبق زمان تغییر می‌کند. الگوریتم یادگیری به دو روش با ساختار ثابت و با ساختار تغییر تفکیم می‌گردد.

الگوریتم تغییر با ساختار ثابت \(L_2 \times I \): این الگوریتم با ساختار ثابت توسط ۵ تایی \(\{1, 2, 3, 4, 5\} \) می‌باشد.

شکل 2: الگوریتم \(L_2 \times I \)

به‌طور کل \(L_2 \times I \) الگوریتمی است که تعداد جریمه‌ها و جریمه‌های در پایت بار هر عمل را تکراری گردیده و تخته زمانی که تعداد جریمه‌ها پیش‌تر از تعداد پایت بار هر عمل دیگر، عمل دیگر را انتخاب می‌کند. نمودار تغییر وضعیت این الگوریتم مطابق شکل ۲ می‌باشد.

\[L_2 \times I \]

شکل 3: انتخاب شور. گراف تغییر وضعیت این الگوریتم برای باسلام مطابق الگوریتم ۲ بوده و برای باسلام نامعلوم مطابق شکل ۳ می‌باشد.

\[L_2 \times I \]

\[L_2 \times I \]
در این اتوماتا زمانی که پاسخ محیط مطلوب است، تغییر وضعیت مانند اتوماتا L_{2N} می‌باشد. Krylov اتوماتا
اما زمانیکه پاسخ محیط نامطلوب می‌باشد، هر وضعیت $\phi_{i}(t) \in L_{N+1}(N) + 12N$ با احتمال $1 \over 5$ به وضعیت ϕ_{i+1} مطلق شکل 4 منتقل می‌شود.

\[\text{شکل 4: اتوماتا} \]

برای اطلاعات بیشتر در باره اتوماتاهای پادگیر با ساختار ثابت و با ساختار متغیر می‌توان به [7][5][4] مراجعه کرد.

- اتوماتا پادگیر سلولی

اتوماتا پادگیر سلولی که اخیراً پیشنهاد شده است که از اجزای ساده ای تشکیل شده اند و رفتار هر جزء بر اساس رفتار همسایگانش و نیز تجربیات گذشته آن تغییر و اصلاح می‌شود. اجزاء ساده تشکیل دهنده این سلول‌ها، یک طریق کنش و واکنش با یکدیگر می‌توانند رفتار پیچیده‌ای از خود نشان دهند. هر اتوماتا پادگیر سلولی از یک اتوماتا سلولی تشکیل شده است که هر سلول آن به یک عنصر اتوماتا پادگیر مجهز می‌باشد که وضعیت این سلول را مشخص می‌سازد. مانند اتوماتا سلولی [10] یک قانون محلی در محیط حاکم است. این قانون معنی می‌کند که آب و سر انتخاب شده توسط یک اتوماتا در یک سلول با یک سلول داده شده و یا یک جریمه شده. عمل دادن پادکست یا یک جریمه نمی‌تواند در اوردن‌های اتوماتا پادگیر سلولی به دست آید. در اتوماتا پادگیر سلولی می‌توان از ساختارهای مختلف برای همسایگان استفاده نمود. حالات کلی هر مجموعه مربوط از سلول‌ها را می‌توان به عنوان همسایه در نظر گرفت اما معمول‌ترین آنها همسایگی 5 نیم‌متری می‌باشد که به نزدیکترین همسایگان مشهور می‌باشد. این همسایگی 5 نیم‌متری در شکل 5 نشان داده شده است.

\[\text{شکل 5: همسایگی 5 نیم‌متری} \]

عملکرد اتوماتا پادگیر سلولی: عملکرد اتوماتا پادگیر سلولی را می‌توان به شرح زیر بیان کرد. در هر لحظه هر اتوماتا پادگیر در اتوماتا پادگیر سلولی یک عمل از مجموعه عمل‌های داده و یا انتخاب می‌کند. عمل انتخاب و تغییر وضعیت می‌تواند به اعمال انتخاب شده توسط سلول‌های همسایگان و قانون حاکم بر اتوماتا پادگیر سلولی داده و یا یک جریمه می‌شود. با توجه به اینکه عمل انتخاب شده داده گرفته و یا یک جریمه شده است اتوماتا رفتار خود را تصحیح کرده و ساختار داخلی اتوماتا بهبود می‌یابد.

10th ICEE, May 2002, Vol. 1 301 University of Tabriz, Tabriz, IRAN
گردد. معمولاً عمل به روز در آوردن نهاد اتوماتا به صورت هرمونی انجام می‌شود. بعد از به روز در آوردن، هر اتوماتا در اتوماتای پادگیر سلولی دوباره یک عمل از مجموعه اعمال خود را انتخاب کرده و انجام می‌دهد. فرایند انتخاب عمل در دان داناش و یا جریمه تا زمانی‌که بیشتر به حالت پایدار برسد و یا یک معیار را در تعیین شده ای برقرار شود ادامه می‌یابد. عمل به‌هگم‌های ساختار اتوماتیک موجود در اتوماتای پادگیر سلولی توپوگرافیکی پادگیری انجام می‌شود. در حالتی که در یک اتوماتای پادگیر سلولی اگر همه حالت‌ها با هم تغییر کنند آن هر هرمونی گونده و اگر در هر احتمالی یک حالت تغییر کنند آن را در ادای و اگر حالت‌ها به صورت تصادفی یک‌ویخت تغییر کنند آن را غیر هرمونی می‌نامند. شکل ۶ اتوماتای پادگیر سلولی را نشان می‌دهد که در آن از همسایگی استفاده شده است. در این شکل، اتوماتاهایی که خوشحال هستند در مرحله قبل پا داشت و اتوماتاهایی که ناراحت هستند در مرحله قبل به جریمه شده‌اند.

اتوماتای پادگیر سلولی با متغیر سراسری: در اتوماتای پادگیر سلولی با متغیر سراسری که در این مقاله معرفی می‌گردد هر سلول برای تصمیم‌گیری در مورد پا داشت دادن یا جریمه کردن اقدام خود علایه به در نظر گرفتن وضعیت اتوماتیکی اطراق خود از پایه محیط سراسری حاکم بر کل شیب که نیز استفاده می‌شود. این ساختار برای کاربردهایی که علاوه بر مشاهده محلی یک معیار سراسری نیز مستند به بسیار مناسب می‌باشد. ساختار هر سلول اتوماتای پادگیر سلولی با متغیر سراسری و ارتباط آن با محیط محلی و محیط سراسری در شکل ۸ نشان داده است. برای کسب اطلاعات بیشتر درباره اتوماتای پادگیر سلولی و کاربرد های آن می‌توان به مراجع [8][18-13] مراجعه نمود.

![شکل ۶: اتوماتای پادگیر سلولی (CLA)](CLAI)

4- قسمت بنیت تصویر با اتوماتای پادگیر سلولی

فرض کنید یک تصویر با یک میدان تصادفی X که در آن L یک ماتریس $N 	imes N$ تصادفی متغیر تصادفی $X(i,j)$ سطح خاکستری بیکس i,j است توصیف شده‌است. الگوریتمی برای انتخاب بندی با پایداری $Q = \{q_1, q_2, ..., q_K\}$ به شکل X کلاس‌های دقیقاً از مجموعه X که هر حالت باشد نتیجه دهد. Ω اگر $\Omega : (X : L \rightarrow Q) = q_i$ احتمال حالت باشد هدف یکی از پاسخ‌های حالت‌مانند ۲ می‌باشد. طریقه $P(X|Y)$ م他知道 احتمال $P(X|Y)$ م наукیم کردن ناب احتمال $P(X|Y)$ م наукیم X و Y M
که در آن μ و δ به ترتیب میانگین و واریانس کلاس W و C مجموعه‌ای از کلیک‌ها بر روی یک هم‌ماهیکی محیط پیکسل (۴×۴) است. میزان مشابهت سطح خاکستری پیکسل (۴×۴) با یک کلیک c توسط تابع زیر محاسبه می‌شود:[2]

$$V_c(i,j)=\begin{cases} -\beta & x_i=x_j \\ \beta & \text{otherwise} \end{cases}$$

الگوریتم پیشنهادی از اثبات‌های پادگر سلولی با متغیر سراسری استفاده می‌کند. این الگوریتم به ازای هر پیکسل یک اثبات به‌کار می‌رود، که بر اساس تعداد کلاسهای ممکن در نظر گرفته شده است. هر کلاس دارای یک مقیاس میانگین و یک مقیاس واریانس می‌باشد که به عنوان متغیرهای سراسری عمل می‌کند. اثبات‌ها در اثبات‌های سلولی پادگر به صورت همزمان و در فواصل زمانی گسترش یافته می‌شوند. در انتهای هر مرحله میانگین و واریانس هر کلاس بر اساس هیستوگرام تصویری که اثبات‌های سلولی پادگر تعیین می‌کند تخمین زده می‌شوند. سپس هر اثباتی که اقدام (یعنی تعلق به یک کلاس خاص) را از مجموعه اثبات‌های خود را انتخاب کرده و با توجه به اقدام‌های انتخاب شده توسط هشته مربوط به همجنسی ثبت می‌شود. همچنین مقیاس‌های سراسری میانگین و واریانس برای هر کلاس تصمیم می‌گیرد که آیا به اقدام انتخاب شده پیشین دیده آن را جنیم کنند. در واقع با توجه به مشابهت این اقدام با اقدام‌های همسایگان و همچنین فاصله آن از میانگین و واریانس سراسری اثبات‌های تصمیم می‌گیرد که آیا عمل انتخاب شده، را پیشین دیده و یا جنیم کند. مقیاس‌های سراسری در انتهای هر مرحله به هنگام می‌شود. میزان مشابهت یک پیکسل توسط رابطه زیر محاسبه می‌شود.

$$E = \frac{(\mu_W - x)^2}{\delta^2} + \sum_{c \in C} V_c(i,j)$$

که یک مجموعه از طریق رابطه میانگین نزدیکی سطح خاکستری پیکسل را با یک میانگین سطح خاکستری کلاس W و ترم دوم میزان مشابهت پیکسل (۴×۴) را با همسایگان پیکسل میکند. ثابت فرق برای تمام کلاسهای محاسبه می‌شود. اگر مقیاس این تابع برای کلاس انتخاب شده توسط اثبات‌های مقدار می‌شود را در بین مقیاس‌های محاسبه شده برای کلاس‌های دارای بین اندازه اثبات‌های پیشین دیده و در غیر این صورت جریمه می‌گردد. اثبات‌های پادگر سلولی موفق می‌شوند اگر تغییر در وضعیت هیچ کدام از اثبات‌های در طی تعادل مرحله حاصل نشد.

5- تأیید شبیه‌سازی

بنناظور بررسی عملکرد اثبات‌های پادگر سلولی در قسمت بندید تصاویر از اثبات‌های با ساختار ثابت کارایی با عمل حافظه دو در هر سلول استفاده شده است. هر اثباتی دارای k اقدام برای با تعداد کلاسهای معنی است. آزمایش‌ها بر روی پنج تصویر 128×128 پیکسل با ۲۵۶ سطح خاکستری و تعداد کلاسهای مختلف انجام گرفته است. یک اثبات‌ای پادگر سلولی 128×128 مناظر با تصویر دید نظر گرفته شده است. وضعیت هر اثباتی در هر لحظه
پیونگ تعلق پیکسل به یک کلاس خاص است. نتایج شیب سازی و مقایسه روش پیشنهادی با سایر روش‌ها در شکل‌های...
همانگونه که مشاهده می‌شود نتایج به دو کلاس مشخص باشد. خوب عمل می‌کند. از طرف دیگر نتایج سطح آستانه دقیق نیز در هم و مکمل کرده و نقطه خالی درون نواحی ایجاد می‌کند. اما اتوماتیک سلوئی با در نظر گرفتن یک معیار محلی برای انتخاب کننده میزان مشابهت و معمولی سرویس برای بهبود سازی عملکرد خوب در کارایی بیماری خوبی در حافظ لبه ها و بر کردن گسترش های درون تصویر بر خوردار است.

جهت مقایسه، میانگین واقعی و میانگین محاسبه شده توسط اتوماتیک سلوئی پادگیر در جدول شماره 1 آورده شده است. همانگونه که مشاهده می‌شود میانگین های محاسبه شده توسط اتوماتیک سلوئی با میانگین های واقعی بسیار نزدیک می‌باشد. این آلگوریتم در قطعه بندی تصویر نمی‌دارد نیز از کارایی خوبی برخوردار است. عملکرد این روش با 20/0 نیز بکنواخت اضافه شده بعده تصویر شکل 13 در شکل 12 نشان داده شده است.

<table>
<thead>
<tr>
<th>میانگین محاسبه شده</th>
<th>میانگین واقعی</th>
<th>تصور</th>
<th>قطعه بندی با CLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین 1</td>
<td>میانگین 2</td>
<td>میانگین 3</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>150</td>
<td>200</td>
<td>تصویر 1</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>250</td>
<td>تصویر 2</td>
</tr>
<tr>
<td>200</td>
<td>250</td>
<td>300</td>
<td>تصویر 3</td>
</tr>
<tr>
<td>250</td>
<td>300</td>
<td>350</td>
<td>تصویر 4</td>
</tr>
<tr>
<td>300</td>
<td>350</td>
<td>400</td>
<td>تصویر 5</td>
</tr>
<tr>
<td>350</td>
<td>400</td>
<td>450</td>
<td>تصویر 6</td>
</tr>
<tr>
<td>400</td>
<td>450</td>
<td>500</td>
<td>تصویر 7</td>
</tr>
<tr>
<td>450</td>
<td>500</td>
<td>550</td>
<td>تصویر 8</td>
</tr>
<tr>
<td>500</td>
<td>550</td>
<td>600</td>
<td>تصویر 9</td>
</tr>
<tr>
<td>550</td>
<td>600</td>
<td>650</td>
<td>تصویر 10</td>
</tr>
<tr>
<td>600</td>
<td>650</td>
<td>700</td>
<td>تصویر 11</td>
</tr>
<tr>
<td>650</td>
<td>700</td>
<td>750</td>
<td>تصویر 12</td>
</tr>
<tr>
<td>700</td>
<td>750</td>
<td>800</td>
<td>تصویر 13</td>
</tr>
</tbody>
</table>

CLA 10th ICEE, May 2002, Vol. 1 305 University of Tabriz, Tabriz, IRAN
دهمین کنفرانس مهندسی برق ایران

۲۴ الی ۲۶ اردیبهشت ۱۳۸۱

مجموعه مقالات

الکترونیک، کامپیوتر

مهندسی پردازش

جلد اول

گروه مهندسی برق
دانشکده فنی
دانشگاه تبریز