LADE: LEARNING AUTOMATA BASED DIFFERENTIAL EVOLUTION

MAHSHID MAHDAVIANI

Soft Computing Laboratory, Computer Engineering and Information Technology Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran, Iran
mahshid.mahdaviani@gmail.com

JAVIDAN KAZEMI KORDESTANI

Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Javidan.kazemi@gmail.com

ALIREZA REZVANIAN

Soft Computing Laboratory, Computer Engineering and Information Technology Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran, Iran,
Department of Computer Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
a.rezvanian@aut.ac.ir

MOHAMMAD REZA MEYBODI

Soft Computing Laboratory, Computer Engineering and Information Technology Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran, Iran
mmeybodi@aut.ac.ir

Received (12 August 2014)
Revised (26 December 2014, 8 March 2015)
Accepted (Day Month Year)

Many engineering optimization problems have not standard mathematical techniques, and cannot be solved using exact algorithms. Evolutionary algorithms have been successfully used for solving such optimization problems. Differential evolution is a simple and efficient population-based evolutionary algorithm for global optimization, which has been applied in many real world engineering applications. However, the performance of this algorithm is sensitive to appropriate choice of its parameters as well as its mutation strategy. In this paper, we propose two different underlying classes of learning automata based differential evolution for adaptive selection of crossover probability and mutation strategy in differential evolution. In the first class, genomes of the population use the same mutation strategy and crossover probability. In the second class, each genome of the population adjusts its own mutation strategy and crossover probability parameter separately. The performance of the proposed methods is analyzed on ten benchmark functions from CEC 2005 and one real-life optimization problem. The obtained results show the efficiency of the proposed algorithm for solving real-parameter function optimization problems.

Keywords: Evolutionary Algorithms; Continuous Optimization; Differential Evolution; Learning Automata; parameter adaptation.
List of acronyms

EAs Evolutionary Algorithms
GA Genetic Algorithm
ACO Ant Colony Optimization
AIS Artificial Immune System
PSO Particle Swarm Optimization
DE Differential Evolution
LA Learning Automata
CLA Cellular Learning Automata
FA Firefly Algorithm
PC Parameter vector Change magnitude
FC Function value Change
CoDE Composite DE
EDA Estimation of Distribution Algorithm
CDE Crowding-based Differential Evolution
QOX Quantization Orthogonal crossover
VSLA Variable Structure Learning Automata
GLADE Group Learning Automata based Differential Evolution
ILADE Individually Learning Automata based Differential Evolution
NFL No Free Lunch
FEs Function Evaluations
LADE Learning Automata based DE
FMSW Frequency-Modulated Sound Waves

1. Introduction

Global optimization has been widely applied across different branches of engineering and science. Typical examples of global optimization in real-world applications include: financial planning optimization, chemical engineering design/control, mathematical function optimization and electrical circuit optimization/design. The objective of global optimization is to find the best solution of a given problem, in a set of all feasible solutions, in order to satisfy some optimality measures. Comprehensive study on global optimization can be found in [1-2].

One of the most widely used numerical methods for solving global optimization problems are Evolutionary Algorithms (EAs). EAs are global probabilistic search techniques based on natural evolution that have been used successfully in a variety of applications. Compared to the classical methods of optimization, EAs offer several practical advantages when facing complex optimization problems. Some of these advantages include the simple structure of the procedure, robustness to changing circumstances and the ability to self-adapt the optimum seeking process during the run. Hence, they seem to be a good candidate for solving global optimization problems. Several evolutionary algorithms have been proposed for function optimization. Genetic Algorithm (GA) [4], Ant Colony Optimization (ACO) [5], Artificial Immune System (AIS) [6], Particle Swarm Optimization (PSO) [7, 16], Group Search Optimizer [72] and Differential Evolution (DE) [8][73] are examples
of such methods. However, most of these methods suffer from premature convergence and have a slow convergence rate.

Recently, many researchers have incorporated Learning Automata (LA) into mentioned algorithms with the aim to enhance their performance in function optimization. For instance, Rastegar et al. [9] proposed a combination of EAs and Cellular Learning Automata (CLA) called CLA-EC. They have assigned each genome of the population to a cell of the CLA and equipped each cell with a set of LAs to determine the string genome for that cell. In each cell, they generate a reinforcement signal based on a local rule for selecting an action and updating the internal structure of the LA. Abtahi et al. [10] used LA along with co-evolutionary GA to learn whether or not the variables of a given problem are dependant. Then in each case they choose an appropriate approach to solve the problem. Rezvanian et al. [11] used LA for tuning the mutation rate of antibodies in order to establish a balance between the process of global and local search in AIS. Hashemi et al. [12] introduced two classes of LA based algorithms for adaptive selection of value for inertia weight and acceleration coefficients in PSO. In both classes, they used an LA per w, c_1 and c_2 in order to choose an optimal value for corresponding parameter at each stage of the algorithm. Vafashoar et al. [13] proposed a model based on CLA and DE, namely CLA-DE. In CLA-DE, the search dimensions of the problem are iteratively partitioned via LA in the CLA and learning process is guided toward the most admissible partition. Moreover, they used DE to facilitate the incorporation among neighboring cells. Farahani et al. [14] applied LA for adjusting the parameters of the Firefly Algorithm (FA). In comparison with standard FA, their proposed method shows a better performance on a set of standard test functions.

Recently, DE has attracted a considerable deal of attention regarding its potential as an optimization technique for numerical problems and several modifications of DE proposed and applied in various domains [22-27]. Compared to some other competitive optimization algorithms, DE exhibits much better performance [22]. That is the reason why in this paper we have chosen DE as the foundation of our work. Despite its effectiveness, the performance of DE is highly sensitive to the value of its control parameters (i.e. F and CR). In this paper we propose two classes of LA based algorithms to improve the performance of standard DE. The rest of the paper is organized as follows: The general principles of DE are given in Section 2. Section 3 reviews the related works on DE. Section 4 briefly presents LA. The proposed algorithms are introduced in Section 5. Section 6 is devoted to experimental setup. Experimental results are reported in Section 7. Finally, Section 8 concludes the paper.

2. Differential Evolution

DE [56] is among the most powerful stochastic real-parameter optimization algorithms, proposed by Storn and Price [20-21]. The main idea of DE is to use spatial difference among the population of vectors to guide the search process toward the optimum solution. The main steps of DE are illustrated in Figure 1.
Fig. 1. Schematic view of the main stages of DE algorithm

The rest of this section describes the main operational stages of DE in detail.

2.1. Initialization of vectors

DE starts with a population of \(NP \) randomly generated vectors in a \(D \)-dimensional search space. Each vector \(i \), also known as genome or chromosome, is a potential solution to an optimization problem which is represented by \(\hat{X}_i = (x_{i1}, x_{i2}, ..., x_{iD}) \). The initial population of vectors is simply randomized into the boundary of the search space according to a uniform distribution as follows:

\[
\hat{X}_i = l_j + \text{rand}_j[0,1] \times (u_j - l_j)
\]

where \(i \in [1,2,...,NP] \) is the index of \(i \)th vector of the population, \(j \in [1,2,...,D] \) represents \(j \)th dimension of the search space, \(\text{rand}_j[0,1] \) is a uniformly distributed random number corresponding to \(j \)th dimension. Finally, \(l_j \) and \(u_j \) are the lower and upper bounds of the search space corresponding to \(j \)th dimension of the search space.

2.2. Difference-vector based mutation

After initialization of the vectors in the search space, a mutation is performed on each genome \(i \) of the population to generate a mutant vector \(\hat{v}_i = (v_{1i}, v_{2i}, ..., v_{Di}) \) corresponding to target vector \(\hat{X}_i \). Several strategies have been proposed for generating donor vector \(\hat{v}_i \). In this paper, we use the following mutation strategies to create donor vector [25]:

\[
\text{DE/rand/1}:
\]

\[
\hat{v}_i = \hat{x}_i + F. (\hat{x}_2 - \hat{x}_3)
\]

\[
\text{DE/rand} - \text{to} - \text{best/2}:
\]

\[
\hat{v}_i = \hat{x}_i + F. (\hat{x}_{\text{best}} - \hat{x}_i) + F. (\hat{x}_2 - \hat{x}_3) + F. (\hat{x}_4 - \hat{x}_5)
\]

where \(\hat{v}_i \) is the donor vector corresponding to \(i \)th genome. \(\hat{x}_1 \neq \hat{x}_2 \neq \hat{x}_3 \neq \hat{x}_4 \neq \hat{x}_5 \) are five randomly selected vectors from the population. \(F \) is the scaling factor used to control the amplification of difference vector. The effect of different mutation strategies on the performance of DE has been studied in [8]. If the generated mutant vector is out of the search boundary, a repair operator is used to make \(\hat{v}_i \) back to the feasible region. Different strategies have been proposed to repair the out of bound individuals. In this article, if the \(j \)th element of the \(i \)th mutant vector, i.e. \(v_{ij} \), is out of the search region \([lb_j, ub_j]\), then it is repaired as follows:

\[
v_{ij} = \begin{cases}
\frac{x_{ij} + lb_j}{2} & \text{if } v_{ij} < lb_j \\
\frac{x_{ij} + ub_j}{2} & \text{if } v_{ij} > ub_j
\end{cases}
\]

where \(x_{ij} \) is the \(j \)th element of the \(i \)th target vector.

2.3. Crossover

To introduce diversity to the population of genomes, DE utilizes a crossover operation to combine the components of target vector \(\hat{X}_i \) and donor vector \(\hat{v}_i \), to form the trial vector \(\bar{U}_i \). Two types of crossover are
commonly used in the DE community, which are called binomial crossover and exponential crossover. In this article we focus our work on binomial crossover which is defined as follows [22]:

\[u_{ij} = \begin{cases} v_{ij} & \text{if } \text{rand}_{ij}[0,1] \leq CR \text{ or } j = j\text{rand} \\ x_{ij} & \text{otherwise} \end{cases} \quad (5) \]

where \(\text{rand}_{ij}[0,1] \) is a random number drawn from a uniform distribution between 0 and 1, \(CR \) is the crossover rate used to control the approximate number of components transferred to trial vector from donor vector. \(j\text{rand} \) is a random index in the range \([1, D]\), which ensures the transmission of at least one component of donor vector into the trial vector. The reason why we have chosen the binomial crossover over the other crossover types is that its behavior is less sensitive to the problem size [67].

2.4. Selection

Finally, a selection approach is performed on vectors to determine which vector \((\tilde{x}_i, \tilde{u}_i)\) should be survived in the next generation. The most fitted vector is chosen to be the member of the next generation as follows:

\[\tilde{x}_{i,G+1} = \begin{cases} \tilde{u}_{i,G} & \text{if } f(\tilde{x}_{i,G}) \leq f(\tilde{u}_{i,G}) \\ \tilde{x}_{i,G} & \text{otherwise} \end{cases} \quad (6) \]

Different variations of DE are specified with a general convention \(\text{DE/x/y/z} \), where \(\text{DE} \) stands for “Differential Evolution”, \(x \) represents a string denoting the base vector to be perturbed, \(y \) is the number of difference vectors considered for perturbation of \(x \), and \(z \) stands for the type of crossover being used (exponential or binomial) [22]. Algorithm 1 shows a sample pseudo-code for DE.

Algorithm 1. Pseudo-code for DE with binomial crossover

1. Setting parameters
2. Randomly initialize population in the \(D \)-dimensional search space
3. repeat
4. for each genome \(i \) in the population do
5. select three mutually exclusive random genomes \(\tilde{x}_1 \neq \tilde{x}_2 \neq \tilde{x}_3 \)
6. generate a donor vector according to Eq. (2)
7. \(\tilde{u}_i = \tilde{x}_1 + \mathcal{F}(\tilde{x}_2 - \tilde{x}_3) \)
8. repair \(\tilde{u}_i \) if it violates the boundary conditions
9. \(j\text{Rand} \) as a random integer in the range of \([1,D]\)
10. generate a trial vector \(\tilde{u}_i \) using binomial crossover by Eq. (4)
\[u_{ij} = \begin{cases} v_{ij} & \text{if } \text{rand}_{ij}[0,1] \leq CR \text{ or } j = j\text{rand} \\ x_{ij} & \text{otherwise} \end{cases} \]
11. evaluate the candidate \(\tilde{u}_i \)
12. replace \(\tilde{x}_i \) with \(\tilde{u}_i \), if fitness of \(\tilde{u}_i \) is better than fitness of \(\tilde{x}_i \)
13. until a termination condition is met
DE has several advantages that make it a powerful tool for optimization tasks [22]: Specifically, (1) DE has a simple structure and is easy to implement; (2) despite its simplicity, DE exhibits a high accuracy; (3) the number of control parameters in DE are very few (i.e. NP, F and CR); (4) due to its low space complexity, DE is suitable for handling large scale problems.

3. Related works
Since the inception of DE, several improvements have been proposed to enhance the performance of DE. In the rest of this section, we will examine the current studies and advances in the literature in seven major categories.

3.1. Changing the initialization pattern of the DE
It has been acknowledged that the initial population of DE has a great influence on its performance [61]. Most of the studies in the literature have generated the initial population of DE according to a uniform random distribution. However, some researchers have tried to accelerate the convergence speed and solution accuracy of DE by applying other types of initialization methods. For example, Rahnamayan et al. [27] used opposition-based learning for generating the initial population in DE. Ali et al. [61] proposed two initialization methods for DE based on quadratic interpolation and nonlinear simplex method. Both approaches reported a significant improvement over the basic DE.

3.2. Adjusting the control parameters of DE
Several attempts have been done in the literature to establish a balance between the exploration and exploitation ability of DE by adjusting its control parameters. In this subsection, we examine three types of parameter adjustment in DE.

3.2.1. DE with constant or random parameters
The first group of methods has tried to determine an exact value or a range of values for the parameters of DE (i.e. F and CR). This class of studies contain strategies in which the value of DE parameters is either constant during the search or is selected from a pre-defined interval in a random manner. Storn and Price [21] suggested a constant range of values for NP, F and CR. According to their experiments, a reasonable value for NP is in the range of 5×D to 10×D where D is the dimensionality of the problem. F should be chosen from [0.5, 1] and a good first choice for CR is either 0.9 or 1. Das et al. [32] proposed a scheme for adjusting the scaling factor F, in which the value of F varies during the search process in a random manner. In their approach, the value of F is chosen randomly within the range [0.5, 1]. Brest et al. [24] introduced an algorithm, called jDE, which adjusts the values of CR and F for each individual separately. They used a random mechanism to generate new values for F and CR according to a uniform distribution in the range of [0.1, 1.0] and [0.0, 1.0] respectively.

3.2.2. DE with time-varying parameters
Apart from DE with constant or random parameters value, another option is to change the value of the parameters as a function of time or iteration number. An example of such strategy is the work by Das et al. [32]. They introduced a linearly decreasing scaling factor. In their method, the value of F is reduced from an initial value (F_max) to a final value (F_min) according to the following scheme [32]:

```latex
F(t) = \frac{F_{max} - F_{min}}{t_{max} - t_{min}} t + F_{min}
```
where F_{iter} is the value of F in the current iteration, F_{max} and F_{min} are the upper and lower value of F, respectively. iter_{max} is the maximum number of iterations. Higher value of F enables the genomes of the population to explore wide areas of the search space during the early stages of the optimization. Moreover, the decreasing scheme for F allows the movements of trial solutions in a relatively small region of the search space around the suspected global optimum, at final stages of the search process.

3.2.3. DE with adaptive parameters

The last class of methods contains strategies which adjust the value of the DE parameters according to the state of the algorithm. These methods often control the search process via one or more feedbacks. For example Liu and Lampinen [33] proposed a fuzzy adaptive variant of DE, named FDE, for adaptive selection of value of DE parameters. They used a fuzzy system consisting of “9×2” rules for dynamic adjustment of F and CR. Each rule of the system has two inputs and one output. Parameter vector change magnitude (PC) and function value change (FC) are input variables of the system, and the value of F or CR is the output variable of the system. Each fuzzy variable has three fuzzy sets: SMALL, MIDDLE and BIG. Different combinations of input variables are used to determine the value of F and CR. For instance, a typical rule of their system is: IF (PC is small) and (FC is big) Then (CR is big). Qin et al. [25] proposed a self-adaptive DE, called SaDE, in which the control parameters and trial vector generation strategies are adaptively adjusted based on their previous performance in generating promising solutions. In [26], Zhang and Sanderson proposed JADE where the values of F and CR are sampled from a normal distribution and a Cauchy distribution at individual level, respectively. In JADE, information from the most recent successful F and CR are used to set the new F and CR. In this paper, two different feedbacks are used to monitor the search progress of DE, one at population level and another at genome level, and adjust the parameter CR, accordingly.

3.3. Adapting the selection of mutation strategies in DE

There exist various methods in the literature that have used strategy adaptation for improving the performance DE. For instance Gong et al. [29] employed the probability matching technique for strategy adaptation in DE. In their approach, at each generation, a mutation strategy is selected for each parent from a strategy pool of four mutation schemes, i.e. “DE/rand/1”, “DE/rand/2”, “DE/rand-to-best/2” and “DE/current-to-rand/1”, based on its probability. Afterwards, the relative fitness improvement, which is calculated as the difference of the fitness of the offspring with that of its parent, is gathered in order to update the probability of each mutation strategy. Mallipeddi et al. [30] introduced an ensemble of mutation strategies and control parameters of DE, called EPSDE. EPSDE contains two separate pools: a pool of distinct trial vector generation strategies (with “DE/rand/1”, “DE/best/2” and “DE/current-to-rand/1”) and a pool of values for the control parameters $F \in \{0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$ and $CR \in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$. In EPSDE, successful combinations of mutation strategies and parameters values are used to increase the probability of generating promising offspring. Wang et al. [31] proposed a Composite DE (CoDE) which combines different trial vector generation strategies with some control parameter settings. In CoDE, they constituted a mutation strategy pool (with “DE/rand/1”, “DE/rand/2” and “DE/current-to-rand/1”) and a parameter candidate pool (with “$F=1.0$, $CR=0.1$”, “$F=1.0$, $CR=0.9$” and “$F=0.8$, $CR=0.2$”). At each generation, three offspring, with randomly chosen parameter settings from parameter pool, are generated for each target vector. Then, the best generated offspring is
transferred to the next generation, if it is fitter than its parent. In this work we also use strategy adaptation to improve the performance of DE for function optimization.

3.4. Hybridizing DE with other operators
A group of studies have combined DE with other optimization methods. For example, Sun et al. [62] proposed a hybrid algorithm of differential evolution and Estimation of Distribution Algorithm (EDA), which they have called DE/EDA. In DE/EDA, local information provided by DE is combined with global information extracted by the EDA. Kazemi Kordestani, Rezvanian, and Meybodi [63] proposed a bi-population hybrid collaborative model of crowding-based differential evolution (CDE) and PSO, namely CDEPSO, for dynamic optimization problems. In CDEPSO, a population of genomes is responsible for locating several promising areas of the search space and keeping diversity throughout the run using CDE. Another population is used to exploit the area around the best found position using the PSO.

3.5. Utilizing multi-population scheme
Several studies have confirmed that utilizing multi-population scheme, instead of single-population, can improve the performance of basic DE. For example, Halder et al. [64] presented a cluster-based differential evolution with external archive, called CDDE_Ar, for dynamic optimization problems. In CDDE_Ar, the entire population is partitioned into several sub-populations according to the spatial locations of the trial solutions. Each sub-population then exploits its respective region using “DE/best/1/bin”.

3.6. Designing new types of mutation, crossover and selection
Another group of studies has been focused on designing new mutation, crossover and selection operators. Zhang and Sanderson [26] proposed a new mutation operator named “DE/current-to-pbest”, which is a generalization of “DE/current-to-best”, to establish a balance between the greediness of the mutation and the diversity of the population. Wang et al. [23] embedded quantization orthogonal crossover (QOX) with DE/rand/1/bin to enhance the search ability of DE. Das et al. [65] introduced a modified selection mechanism to the classical DE. In this work, the probability of accepting the inferior solutions is dynamically altered with iterations via the simulated annealing concepts.

3.7. Using local neighborhood topologies in DE
Apart from the attempts for designing new mutation operators, a number of studies have investigated the effect of local communication topologies on the performance of DE. Das et al. [66] proposed DE with global and local neighborhoods, called DEGL, to improve the DE/target-to-best/1/bin mutation scheme. In DEGL, genomes of the population are arranged in a ring topology. Each parameter vector then shares information about good regions of the search space with two of its immediate neighbors. This way, the information about the best position of each neighborhood is spread through the population, which decreases the chance of entrapment in local optima.

The present study focuses on parameter adjustment (i.e. CR) as well as strategy adaptation to improve the performance of DE.
4. Learning Automata

LA is an adaptive decision-making device that learns the optimal action out of a set of finite actions through repeated interactions with a random environment [34-35]. At each stage, LA choose an action, among a set of finite actions, based on a probability distribution over the action-set and apply that to the environment. Then, a feedback is received from the environment by the automaton which is used to update the probabilities of actions. After a certain number of stages, LA is able to select the optimal policy. Interaction between LA and its environment is depicted in Fig. 3.

In this paper, we use Variable Structure Learning Automata (VSLA) to improve the efficiency of DE. VSLA is a type of LA in which probabilities of the actions are updated at each iteration. VSLA can be defined as a quadruple \(\{ \alpha, \beta, p, T \} \), which \(\alpha = \{ \alpha_1, \ldots, \alpha_r \} \) is set of automata actions, \(\beta = \{ \beta_1, \ldots, \beta_m \} \) is the set of automata inputs, \(p = \{ p_1, \ldots, p_r \} \) is the probability vector corresponds to each action and \(p(n+1) = T(\alpha(n), \beta(n), p(n)) \) is the learning algorithm where \(n \) is the current iteration of the automata. Various environments can be modeled by \(\beta \).

In an S-model environment, the output of the environment is a continuous random variable that assumes values in the interval \([0, 1]\). The automaton in this model updates its action probabilities according to the following equations [36]:

\[
p_j(n+1) = p_j(n) - \beta(n)b [p_j(n)] + [1 - \beta(n)]a(l - p_j(n)) \quad i = j
\]

\[
p_j(n+1) = p_j(n) - \beta(n)[b/p_j(n)] + [1 - \beta(n)]a(l - p_j(n)) \quad i \neq j
\]

Where parameters \(a \) and \(b \) determine reward and penalty in the range of \([0, 1]\). In a P-model environment, the output of the environment is a binary number with 0 for ‘desirable’ and 1 for ‘undesirable’ response. In this model, LA updates its action probabilities according to following equations [12]:

\[
p_j(k+1) = \begin{cases} p_j(k) + a(l - p_j(k)) & \text{if } i = j \\ p_j(k)(1 - a) & \text{if } i \neq j \end{cases}
\]

\[
p_j(k+1) = \begin{cases} p_j(k) + a(l - b) & \text{if } i = j \\ b/r - 1 + (1 - b)p_j(k) & \text{if } i \neq j \end{cases}
\]

It is also here that parameters \(a \) and \(b \) determine reward and penalty in the range of \([0, 1]\).
Three linear reinforcement schemes can be obtained by selecting different values for the reward and penalty parameters. Table 1 indicates different linear reinforcement schemes.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Parameters value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{RI} (linear reward inaction)</td>
<td>$b=0$</td>
</tr>
<tr>
<td>L_{RP} (linear reward penalty)</td>
<td>$a=b$</td>
</tr>
<tr>
<td>L_{rP} (linear reward r-penalty)</td>
<td>$a>r$</td>
</tr>
</tbody>
</table>

LA have been successfully applied to a number of applications including image processing [37-38], path planning [39], pattern recognition [40], wireless sensor networks [41-42], parameter adaption [12, 43], function optimization [15,44], multi objective optimization [3], dynamic optimization [45], Sampling from Complex Networks [46], graph problems [47-49], and information retrieval [48].

5. Proposed Algorithms

In this section, two classes of LA based approaches for adaptive selection of parameter CR and mutation strategy in DE are introduced. The proposed DE algorithms extend the general principles of the standard DE with an extra section for the process of learning the optimal mutation strategy and value for CR using LA. In the first class of algorithms, a Group Learning Automata Based Differential Evolution (GLADE) is introduced in which the selected mutation strategy and CR are applied to all genomes of the population. Conversely, in the second class, an Individually Learning Automata Based Differential Evolution (ILADE) is proposed in which the mutation strategy and CR are chosen for each genome, separately. In both classes we define two types of LA: a LA$_{scheme}$, which is responsible for selecting an appropriate mutation strategy and a LA$_{CR}$, which is used to adjust CR. The LA$_{scheme}$ and LA$_{CR}$ contain n admissible actions corresponding to mutation strategy and CR value, respectively. The LAs in both classes of algorithms have the same characteristics. In the rest of this section, GLADE and ILADE are further explained in detail.

5.1. Group learning automata based differential evolution

In this approach, genomes of the population share the same mutation strategy and value for their parameter CR. The GLADE approach contains two learning automata (LA$_{scheme}$ and LA$_{CR}$) that adapt trial vector generation scheme and parameter CR at population level. Algorithm 2 shows the general procedure of GLADE.

Algorithm 2. Pseudo-code for GLADE

1. Setting parameters a, b, F, population_size
2. Define learning automata LA$_{scheme}$, LA$_{CR}$ for selecting offspring generation scheme and crossover probability CR, respectively.
3. Randomly initialize the population in the D-dimensional search space
4. repeat

...
5. choose an action for each automata according to its probability vector
6. Evolve population of genomes according to selected actions
7. Set \(\beta(n) = 1 - \frac{\text{Number of improved genomes since last iteration}}{\text{population size}} \) and update each automaton’s probability vector using Eqs. (6), (7)
8. until a termination condition is met

Fig. 4. Pseudo-code for GLADE.

At each iteration, LA\(_{\text{scheme}}\) and LA\(_{\text{CR}}\) select a trial vector generation strategy and a \(CR \), according to their probability vectors. Then, the population of genomes is evolved by chosen actions and the fraction of improved genomes in the current iteration is used as a feedback to modify the probability vector of each learning automata.

5.2. Individually Learning Automata Based Differential Evolution

In this class of algorithms, each genome of the population adjusts its own mutation strategy and parameter \(CR \) separately. In this approach, each genome \(i \) of the population uses two LA, i.e. LA\(_{\text{scheme}}\) and LA\(_{\text{CR}}\), to select the mutation strategy and \(CR \), respectively. Hence, the total number of LA in ILADE approach is equal to \(NP \times 2 \).

Pseudo-code for ILADE is presented in Algorithm 3.

Algorithm 3. Pseudo-code for ILADE

1. Setting parameters \(a, b, F, \) population\(_{\text{size}}\)
2. for each genome \(i \) in the population do
3. Define two types of learning automata LA\(_{\text{scheme}}\)(i), LA\(_{\text{CR}}\)(i) for selecting offspring generation scheme and crossover probability \(CR \), respectively.
4. end-for
5. Randomly initialize population in the D-dimensional search space
6. repeat
7. choose an action for each automata according to its probability vector
8. evolve population of genomes according to selected actions
9. for each genome \(i \) in the population do
10. if \(\text{fitness}_t(i) < \text{fitness}_{t-1}(i) \)
11. Reward selected action of LA\(_{\text{scheme}}\)(i), LA\(_{\text{CR}}\)(i) using Eq.(8)
12. else
13. Penalize selected action of LA\(_{\text{scheme}}\)(i), LA\(_{\text{CR}}\)(i) using Eq.(9)
14. end-if
15. until a termination condition is met
15. **end-for**
16. **until** a termination condition is met

![Fig. 5. Pseudo-code for ILADE.](image)

In ILADE, in each iteration, a mutation strategy along with a \(CR\) is selected for each genome by the corresponding LA. Afterwards, all genomes are evolved using their corresponding trial vector generation strategy and \(CR\) value. If the selected mutation strategy and \(CR\) for each genome \(i\) of the population improve the quality of \(i\), then the related LA will receive a favorable feedback from genome \(i\) and the corresponding action of \(LA_{\text{scheme}}\) and \(LA_{CR}\) will be rewarded, otherwise they will be penalized.

Different variations of GLADE and ILADE are obtained by changing the reinforcement schemes in \(LA_{\text{scheme}}\) and \(LA_{CR}\). These variations are GLADE\(_{RI}\), GLADE\(_{RP}\), GLADE\(_{RP}\), ILADE\(_{RI}\), ILADE\(_{RP}\) and ILADE\(_{RP}\). In these variations when we refer to ILADE\(_{RP}\) for example, we mean that both \(LA_{\text{scheme}}\) and \(LA_{CR}\) use \(L_{\text{RP}}\) reinforcement scheme.

6. **Experimental setup**

6.1. **Benchmark functions used**

There are various benchmark functions in the literature for validating the effectiveness of newly proposed algorithms. Obviously, the No Free Lunch (NFL) theorem states that it is unlikely to develop an omnipotent algorithm for solving all class of problems [60]. Thus, our goal is not to propose a method for solving all benchmark functions, but to improve the efficiency of the DE over a class of benchmark functions. Hence, to study the performance of the proposed automata-based DE variants, a set of experiments was carried out using ten benchmark functions from CEC2005 special session on real-parameter optimization [50]. Among them, five functions are unimodal (F\(_1\)-F\(_5\)), and the other five functions (F\(_6\)-F\(_{10}\)) are multimodal functions. Moreover, the performance of the proposed method is also evaluated on one real-life optimization problem called parameter estimation for Frequency-Modulated Sound Waves (FMSW) [68], which will be explained later in sub-section 7.4.

6.2. **Algorithms for comparison**

Several algorithms have been chosen to compare with the proposed approach. These algorithms include two classical DE, three state-of-the-art DE variants and three other well-known methods listed below:

1. DE/rand/1/bin (\(NP=100, F=0.5, CR=0.9\))
2. DE/rand-to-best/2/bin (\(NP=100, F=0.5, CR=0.9\))
3. Self-adapting control parameters in DE (jDE) [24]
4. DE with ensemble of parameters and mutation strategies (EPSDE) [30]
5. Enhancing the search ability of DE through orthogonal crossover (OXDE) [23]
6. Comprehensive learning PSO (CLPSO) [7]
7. Global and local real-coded GAs based on parent-centric crossover operators (GL-25) [51]
8. Completely derandomized self-adaptation in evolution strategies (CMA-ES) [52].

For algorithms (3-8), their original settings are used.
6.3. Parameter settings for LADE variants

For all variations of the proposed algorithm, the population size \(NP \) is set to 100. In addition, binomial crossover and parameter \(F=0.5 \) are applied. For parameter \(CR \), three ranges of discontinues crossover rate are considered as actions for \(LA_{CR} \). Table 2 shows the values of parameter \(CR \) used in GLADE and ILADE.

Table 2. Different crossover rates used in GLADE and ILADE.

<table>
<thead>
<tr>
<th>Rate of crossover</th>
<th>(CR) values</th>
<th>Initial probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>(0.1, 0.2)</td>
<td>0.4</td>
</tr>
<tr>
<td>Moderate</td>
<td>(0.5)</td>
<td>0.2</td>
</tr>
<tr>
<td>High</td>
<td>(0.9, 1.0)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

It is evident that the parameter \(CR \) plays a critical role on the behavior of DE. A large value of \(CR \) can maintain the diversity among the individuals, which is favorable for multi-modal functions. In contrast, a small value of \(CR \) can make trial vector little different from the target vector. This feature is desirable for optimizing separable problems. The choice of range of values for parameter \(CR \) is based on the above consideration. Besides, these values have been frequently used in many DE variants, e.g. [31].

As mentioned before, we use two mutation strategies for \(LA_{scheme} \) as follows:

\[
DE/\text{rand/1}: \tilde{v} = \tilde{x}_1 + \mathcal{F}. (\tilde{x}_2 - \tilde{x}_3) \tag{12}
\]

\[
DE/\text{rand-to-best/2}: \tilde{v} = \tilde{x}_1 + \mathcal{F}. (\tilde{x}_{\text{best}} - \tilde{x}_1) + \mathcal{F}. (\tilde{x}_2 - \tilde{x}_3) + \mathcal{F}. (\tilde{x}_4 - \tilde{x}_5) \tag{13}
\]

Table 3 represents configurations of LA in different learning schemes.

Table 3. Different configurations for \(LA_{scheme} \) and \(LA_{CR} \).

<table>
<thead>
<tr>
<th>LA</th>
<th>Learning scheme</th>
<th>(a)</th>
<th>(b)</th>
<th>Action set</th>
<th>Initial probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LA_{scheme})</td>
<td>(LA_1)</td>
<td>0.01</td>
<td>0.00</td>
<td>{DE/\text{rand/1, DE/random-to-best/2} }</td>
<td>(0.5, 0.5)</td>
</tr>
<tr>
<td>(LA_{scheme})</td>
<td>(LA_2)</td>
<td>0.01</td>
<td>0.01</td>
<td>{DE/\text{rand/1, DE/random-to-best/2} }</td>
<td>(0.5, 0.5)</td>
</tr>
<tr>
<td>(LA_{scheme})</td>
<td>(LA_{0,p})</td>
<td>0.01</td>
<td>0.001</td>
<td>{DE/\text{rand/1, DE/random-to-best/2} }</td>
<td>(0.5, 0.5)</td>
</tr>
<tr>
<td>(LA_{CR})</td>
<td>(LA_1)</td>
<td>0.01</td>
<td>0.00</td>
<td>{0.1, 0.2, 0.5, 0.9, 1.0}</td>
<td>(0.2, 0.2, 0.2, 0.2, 0.2)</td>
</tr>
<tr>
<td>(LA_{CR})</td>
<td>(LA_2)</td>
<td>0.01</td>
<td>0.01</td>
<td>{0.1, 0.2, 0.5, 0.9, 1.0}</td>
<td>(0.2, 0.2, 0.2, 0.2, 0.2)</td>
</tr>
<tr>
<td>(LA_{CR})</td>
<td>(LA_{0,p})</td>
<td>0.01</td>
<td>0.001</td>
<td>{0.1, 0.2, 0.5, 0.9, 1.0}</td>
<td>(0.2, 0.2, 0.2, 0.2, 0.2)</td>
</tr>
</tbody>
</table>

6.4. Simulation settings

All ten benchmark functions (\(F_1-F_{10} \)) were tested in 30-dimensions (30D). The maximum number of Function Evaluations (FEs) was set to 300000. All experiments on each function were run 25 times. All the algorithms were implemented and tested using MATLAB R2009a on an Intel Pentium Dual-core Processor with 2.5 GHz CPU and 4 GB of RAM in Windows XP SP3.
7. Results and discussion

The simulations are organized in three subsections. In the first subsection, the proposed methods are compared to each other and the best performing Learning Automata based DE (LADE) variant is selected for further comparison with other methods. The second subsection compares LADE with alternative DE variants. The computational complexity of the LADE is also presented in the second sub-section. Finally, in the last subsection, the performance of the LADE is compared with other well-known algorithms. The average and standard deviation of the function error values among 25 independent runs recorded for each benchmark function, where \(f(\hat{x}_{best}) \) the best solution is found by the algorithm in a typical run and \(f(\hat{x}_{opt}) \) is the optimum value of the test function. Moreover, when comparing with other peer algorithms, the success rate is reported which is the percentage of successful runs among 25 runs. A run is successful if its function error value is smaller than the target error accuracy level \(\varepsilon \), which is set to \(10^{-6} \) for test functions \(F_1 \)-\(F_5 \), and \(10^{-2} \) for the other test functions [50]. In order to show the significant statistical difference among the algorithms, a non-parametric statistical test called Wilcoxon rank sum test is conducted for independent samples [53-54] at the 0.05 significance level.

7.1. Comparison between different LADE variants

Table 4 presents the function error values obtained by different LADE variants in ten test functions.

<table>
<thead>
<tr>
<th>Fun.</th>
<th>GLADE_{at}</th>
<th>GLADE_{esp}</th>
<th>GLADE_{opt}</th>
<th>ILADE_{at}</th>
<th>ILADE_{esp}</th>
<th>ILADE_{opt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>0.00E+00 ± 0.00E+00</td>
</tr>
<tr>
<td>(F_1)</td>
<td>3.98E-08 ± 7.24E-08</td>
<td>1.10E-10 ± 2.06E-10</td>
<td>3.45E-18 ± 7.30E-18</td>
<td>6.16E-10 ± 1.03E-09</td>
<td>6.18E-12 ± 8.75E-12</td>
<td>5.34E-19 ± 1.78E-18</td>
</tr>
<tr>
<td>(F_1)</td>
<td>2.00E+05 ± 1.19E+05</td>
<td>1.16E+05 ± 9.39E+04</td>
<td>1.14E+05 ± 6.61E+04</td>
<td>1.44E+05 ± 1.09E+05</td>
<td>9.19E+04 ± 6.71E+04</td>
<td>6.14E+04 ± 4.28E+04</td>
</tr>
<tr>
<td>(F_1)</td>
<td>1.27E-06 ± 2.20E-06</td>
<td>1.34E-05 ± 2.15E-05</td>
<td>1.57E-02 ± 1.85E-02</td>
<td>2.75E-06 ± 3.26E-06</td>
<td>4.85E-06 ± 5.56E-06</td>
<td>3.06E-08 ± 7.54E-08</td>
</tr>
<tr>
<td>(F_8)</td>
<td>3.78E-02 ± 4.72E-02</td>
<td>5.58E-01 ± 3.59E-01</td>
<td>5.52E-01 ± 6.12E-01</td>
<td>2.38E-02 ± 2.81E-02</td>
<td>4.52E-01 ± 3.84E-01</td>
<td>1.67E-01 ± 1.30E-01</td>
</tr>
<tr>
<td>(F_8)</td>
<td>2.01E-06 ± 7.36E-06</td>
<td>3.36E-05 ± 1.08E-04</td>
<td>3.04E+00 ± 1.39E+00</td>
<td>1.01E-10 ± 2.40E-10</td>
<td>7.39E-07 ± 8.99E-07</td>
<td>3.12E-09 ± 7.75E-09</td>
</tr>
<tr>
<td>(F_8)</td>
<td>2.95E-04 ± 1.47E-03</td>
<td>4.71E-15 ± 6.90E-15</td>
<td>3.94E+04 ± 1.97E-03</td>
<td>6.90E-04 ± 2.41E-03</td>
<td>3.94E+04 ± 1.97E-03</td>
<td>6.90E-04 ± 2.41E-03</td>
</tr>
<tr>
<td>(F_8)</td>
<td>2.09E+01 ± 3.47E-02</td>
<td>2.09E+01 ± 3.70E-02</td>
<td>2.09E+01 ± 5.01E-02</td>
<td>2.09E+01 ± 5.26E-02</td>
<td>2.09E+01 ± 4.89E-02</td>
<td>2.09E+01 ± 3.63E-02</td>
</tr>
<tr>
<td>(F_8)</td>
<td>3.60E-09 ± 1.21E-08</td>
<td>1.26E+01 ± 2.11E+00</td>
<td>1.13E+02 ± 2.14E+01</td>
<td>2.27E+10 ± 3.51E+10</td>
<td>1.17E+01 ± 2.49E+00</td>
<td>1.86E+04 ± 9.31E-04</td>
</tr>
<tr>
<td>(F_{10})</td>
<td>1.48E+02 ± 1.26E+01</td>
<td>1.51E+02 ± 1.23E+01</td>
<td>1.81E+02 ± 8.62E+00</td>
<td>1.51E+02 ± 9.52E+00</td>
<td>1.50E+02 ± 1.23E+01</td>
<td>1.50E+02 ± 1.24E+01</td>
</tr>
</tbody>
</table>

In order to find the best performing algorithm among all LADE variants, Tukey-Kramer multiple comparison [55] has been applied over all test functions. Table 5 shows the result of multiple comparisons in the form of \((b, w)\). For each cell \((row, col)\) of the table, \(b \) and \(-w\) represent the number of problems for which LADE_{row} is significantly better than and worse than LADE_{col}, respectively. If the subtraction of \(b \) and \(w \) (boldface values) is a positive number, it means that LADE_{row} is better than the LADE_{col} and vice versa. In case that this value is equal to zero, none of the algorithms are superior to the other one. The last column of the Table 5 indicates the overall superiority of each method over the other methods, which is obtained by summing the boldface values of each row.
A number of conclusions can be drawn from Table 5:

1) GLADE_RεP is the worst performing algorithm that is outperformed by all the other LADE variants.

2) ILADE_RεP is the best performing algorithm on the set of benchmark functions that is not outperformed by any other LADE variants.

3) Overall performance of ILADE versions is better than GLADEs. This is mainly because in ILADE variants each genome of the population adjusts its parameters according to its own progress.

The reason for the superiority of ILADE_RεP over other variants of ILADE lies in the fact that ILADE_RεP uses a linear reward ε-penalty reinforcement scheme. As can be seen in Table 5, ILADE_RεP and ILADE_RI are highly competitive. However, ILADE_RεP can perform slightly better than ILADE_RI. The only difference between these two algorithms is in their reinforcement scheme. It can be concluded that the penalty scheme used in ILADE_RεP is a key feature that can contribute to its better performance.

In the rest of this paper, we compare the performance of ILADE_RεP with other alternative algorithms.

7.2. Comparison with other DE variants

This subsection compares the proposed ILADE_RεP with other types of DE. Since LADEs use DE/rand/1/bin and DE/rand-to-best/2/bin as their actions for LA scheme, DE/rand/1/bin and DE/rand-to-best/2/bin are the first candidates for comparison. jDE [24], EPSDE [30] and OXDE [23] are also chosen as three state-of-the-art DE to compare with the proposed method. Finally, the computational complexity of the proposed method is reported.

7.2.1. Comparison with DE/rand/1/bin and DE/rand-to-best/2/bin

Tables 6, 7 and 8 present the statistical results obtained by DE/rand/1/bin, DE/rand-to-best/2/bin and ILADE_RεP on a suite of ten benchmark functions. As can be seen from the reported results in Tables 6 and 8, for all tested functions, ILADE_RεP outperforms DE/rand/1/bin in terms of both rate of convergence and quality of final solution.
Table 6. Error values of DE/rand/1/bin over 25 independent runs on ten benchmark functions at 30D.

<table>
<thead>
<tr>
<th>FEs</th>
<th>Function</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×10^4 best</td>
<td></td>
<td>1.45E+04</td>
<td>3.38E+04</td>
<td>1.69E+08</td>
<td>4.68E+04</td>
<td>1.56E+04</td>
<td>1.59E+09</td>
<td>2.37E+03</td>
<td>2.09E+01</td>
<td>2.52E+02</td>
<td>3.26E+02</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.77E+04</td>
<td>4.28E+04</td>
<td>2.54E+08</td>
<td>5.50E+04</td>
<td>2.03E+04</td>
<td>2.99E+09</td>
<td>3.06E+03</td>
<td>2.11E+01</td>
<td>2.89E+02</td>
<td>3.79E+02</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1.94E+04</td>
<td>4.84E+04</td>
<td>3.07E+08</td>
<td>6.20E+04</td>
<td>2.09E+04</td>
<td>3.92E+09</td>
<td>3.55E+03</td>
<td>2.12E+01</td>
<td>2.96E+02</td>
<td>3.92E+02</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2.16E+04</td>
<td>5.21E+04</td>
<td>3.63E+08</td>
<td>6.69E+04</td>
<td>2.20E+04</td>
<td>4.70E+09</td>
<td>3.89E+03</td>
<td>2.12E+01</td>
<td>3.12E+02</td>
<td>4.03E+02</td>
</tr>
<tr>
<td>worst</td>
<td></td>
<td>2.64E+04</td>
<td>5.99E+04</td>
<td>4.52E+08</td>
<td>7.76E+04</td>
<td>2.43E+04</td>
<td>6.51E+09</td>
<td>4.40E+03</td>
<td>2.12E+01</td>
<td>3.26E+02</td>
<td>4.37E+02</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>1.96E+04</td>
<td>4.78E+04</td>
<td>3.08E+08</td>
<td>6.13E+04</td>
<td>2.08E+04</td>
<td>3.95E+09</td>
<td>3.49E+03</td>
<td>2.12E+01</td>
<td>2.98E+02</td>
<td>3.88E+02</td>
</tr>
<tr>
<td>std</td>
<td></td>
<td>2.67E+03</td>
<td>7.39E+03</td>
<td>7.62E+07</td>
<td>7.47E+03</td>
<td>2.25E+03</td>
<td>1.32E+09</td>
<td>5.63E+02</td>
<td>7.18E-02</td>
<td>1.82E+01</td>
<td>2.86E+01</td>
</tr>
<tr>
<td>3×10^4 best</td>
<td></td>
<td>2.64E+00</td>
<td>2.42E+03</td>
<td>1.30E+07</td>
<td>5.82E+03</td>
<td>3.24E+03</td>
<td>3.11E+03</td>
<td>4.56E+00</td>
<td>2.09E+01</td>
<td>1.75E+02</td>
<td>1.97E+02</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5.40E+00</td>
<td>4.44E+03</td>
<td>2.56E+07</td>
<td>8.79E+03</td>
<td>3.85E+03</td>
<td>6.93E+03</td>
<td>8.21E+00</td>
<td>2.10E+01</td>
<td>1.90E+02</td>
<td>2.14E+02</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>6.42E+00</td>
<td>5.43E+03</td>
<td>2.88E+07</td>
<td>1.07E+04</td>
<td>4.14E+03</td>
<td>1.36E+04</td>
<td>9.51E+00</td>
<td>2.10E+01</td>
<td>2.00E+02</td>
<td>2.19E+02</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>7.99E+00</td>
<td>7.08E+03</td>
<td>3.78E+07</td>
<td>1.18E+04</td>
<td>4.49E+03</td>
<td>2.09E+04</td>
<td>1.08E+01</td>
<td>2.11E+01</td>
<td>2.07E+02</td>
<td>2.25E+02</td>
</tr>
<tr>
<td>worst</td>
<td></td>
<td>1.23E+01</td>
<td>9.05E+03</td>
<td>4.09E+07</td>
<td>1.58E+04</td>
<td>5.29E+03</td>
<td>3.97E+04</td>
<td>1.29E+01</td>
<td>2.12E+01</td>
<td>2.19E+02</td>
<td>2.35E+02</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>6.65E+00</td>
<td>5.62E+03</td>
<td>3.04E+07</td>
<td>1.05E+04</td>
<td>4.13E+03</td>
<td>1.60E+04</td>
<td>9.45E+00</td>
<td>2.10E+01</td>
<td>2.00E+02</td>
<td>2.19E+02</td>
</tr>
<tr>
<td>std</td>
<td></td>
<td>2.02E+00</td>
<td>1.67E+03</td>
<td>7.48E+06</td>
<td>2.25E+03</td>
<td>4.85E+02</td>
<td>1.03E+04</td>
<td>2.13E+00</td>
<td>6.38E-02</td>
<td>1.08E+01</td>
<td>1.02E+01</td>
</tr>
<tr>
<td>3×10^5 best</td>
<td></td>
<td>0.00E+00</td>
<td>6.44E-06</td>
<td>7.79E+04</td>
<td>9.01E-04</td>
<td>2.02E-01</td>
<td>2.44E-04</td>
<td>0.00E+00</td>
<td>2.08E+01</td>
<td>8.16E+01</td>
<td>1.42E+02</td>
</tr>
<tr>
<td>7</td>
<td>0.00E+00</td>
<td>1.54E-05</td>
<td>2.83E+05</td>
<td>6.69E-03</td>
<td>3.14E-01</td>
<td>1.64E+00</td>
<td>0.00E+00</td>
<td>2.09E+01</td>
<td>1.08E+02</td>
<td>1.73E+02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.00E+00</td>
<td>2.84E-05</td>
<td>4.17E+05</td>
<td>1.17E-02</td>
<td>6.52E-01</td>
<td>2.50E+00</td>
<td>0.00E+00</td>
<td>2.09E+01</td>
<td>1.28E+02</td>
<td>1.78E+02</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.00E+00</td>
<td>5.19E-05</td>
<td>6.68E+05</td>
<td>1.86E-02</td>
<td>1.27E+00</td>
<td>2.94E+00</td>
<td>0.00E+00</td>
<td>2.10E+01</td>
<td>1.47E+02</td>
<td>1.84E+02</td>
<td></td>
</tr>
<tr>
<td>worst</td>
<td>0.00E+00</td>
<td>4.01E-04</td>
<td>9.62E+05</td>
<td>1.16E-01</td>
<td>5.73E+00</td>
<td>7.21E+00</td>
<td>1.23E-02</td>
<td>2.10E+01</td>
<td>1.70E+02</td>
<td>1.94E+02</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.00E+00</td>
<td>5.78E-05</td>
<td>4.83E+05</td>
<td>2.27E-02</td>
<td>9.76E-01</td>
<td>2.48E+00</td>
<td>1.08E-03</td>
<td>2.09E+01</td>
<td>1.29E+02</td>
<td>1.76E+02</td>
<td></td>
</tr>
<tr>
<td>std</td>
<td>0.00E+00</td>
<td>8.49E-05</td>
<td>2.58E+05</td>
<td>3.15E-02</td>
<td>1.13E+00</td>
<td>1.61E+00</td>
<td>3.11E-03</td>
<td>5.94E-02</td>
<td>2.52E+01</td>
<td>1.22E+01</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Error values of DE/rand-to-best/2/bin over 25 independent runs on ten benchmark functions at 30D.

<table>
<thead>
<tr>
<th>FEs</th>
<th>Function</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>F_4</th>
<th>F_5</th>
<th>F_6</th>
<th>F_7</th>
<th>F_8</th>
<th>F_9</th>
<th>F_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×10^3</td>
<td>best</td>
<td>3.67E+03</td>
<td>2.11E+04</td>
<td>8.74E+07</td>
<td>2.21E+04</td>
<td>1.06E+04</td>
<td>1.86E+08</td>
<td>7.58E+02</td>
<td>2.11E+01</td>
<td>2.19E+02</td>
<td>2.64E+02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.06E+03</td>
<td>2.67E+04</td>
<td>1.07E+08</td>
<td>3.57E+04</td>
<td>1.21E+04</td>
<td>2.69E+08</td>
<td>1.04E+03</td>
<td>2.12E+01</td>
<td>2.12E+02</td>
<td>2.71E+02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.15E+03</td>
<td>3.11E+04</td>
<td>1.36E+08</td>
<td>4.17E+04</td>
<td>1.32E+04</td>
<td>3.45E+08</td>
<td>1.14E+03</td>
<td>2.12E+01</td>
<td>2.79E+02</td>
<td>3.15E+02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.53E+03</td>
<td>3.59E+04</td>
<td>1.54E+08</td>
<td>4.70E+04</td>
<td>1.50E+04</td>
<td>4.32E+08</td>
<td>1.28E+03</td>
<td>2.12E+01</td>
<td>2.89E+02</td>
<td>3.29E+02</td>
</tr>
<tr>
<td></td>
<td>worst</td>
<td>8.69E+03</td>
<td>4.44E+04</td>
<td>2.18E+08</td>
<td>6.11E+04</td>
<td>1.85E+04</td>
<td>1.23E+09</td>
<td>1.68E+03</td>
<td>2.13E+01</td>
<td>3.04E+02</td>
<td>3.62E+02</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>6.24E+03</td>
<td>3.13E+04</td>
<td>1.39E+08</td>
<td>4.17E+04</td>
<td>1.35E+04</td>
<td>3.88E+08</td>
<td>1.17E+03</td>
<td>2.12E+01</td>
<td>2.77E+02</td>
<td>3.12E+02</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>1.48E+03</td>
<td>5.69E+03</td>
<td>3.53E+07</td>
<td>8.73E+03</td>
<td>2.02E+03</td>
<td>2.06E+08</td>
<td>2.33E+02</td>
<td>1.94E+01</td>
<td>2.57E+01</td>
<td>1.71E+02</td>
</tr>
<tr>
<td>3×10^4</td>
<td>best</td>
<td>1.28E-02</td>
<td>3.67E+02</td>
<td>4.52E+06</td>
<td>1.23E+03</td>
<td>1.22E+03</td>
<td>4.82E+01</td>
<td>1.05E+00</td>
<td>2.09E+01</td>
<td>1.71E+02</td>
<td>2.02E+02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.79E-02</td>
<td>6.91E+02</td>
<td>6.80E+06</td>
<td>2.06E+03</td>
<td>1.51E+03</td>
<td>6.41E+01</td>
<td>1.08E+00</td>
<td>2.10E+01</td>
<td>1.92E+02</td>
<td>2.13E+02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.60E-02</td>
<td>8.33E+02</td>
<td>8.53E+06</td>
<td>2.95E+03</td>
<td>1.80E+03</td>
<td>7.97E+01</td>
<td>1.10E+00</td>
<td>2.11E+01</td>
<td>2.01E+02</td>
<td>2.24E+02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.85E-02</td>
<td>9.94E+02</td>
<td>9.32E+06</td>
<td>3.53E+03</td>
<td>2.35E+03</td>
<td>1.84E+02</td>
<td>1.11E+00</td>
<td>2.11E+01</td>
<td>2.10E+02</td>
<td>2.27E+02</td>
</tr>
<tr>
<td></td>
<td>worst</td>
<td>3.93E-02</td>
<td>1.48E+03</td>
<td>1.17E+07</td>
<td>5.05E+03</td>
<td>3.38E+03</td>
<td>8.32E+02</td>
<td>1.23E+00</td>
<td>2.11E+01</td>
<td>2.22E+02</td>
<td>2.50E+02</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>2.45E-02</td>
<td>8.59E+02</td>
<td>8.15E+06</td>
<td>2.86E+03</td>
<td>1.92E+03</td>
<td>1.72E+02</td>
<td>1.10E+00</td>
<td>2.11E+01</td>
<td>2.00E+02</td>
<td>2.22E+02</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>7.70E-03</td>
<td>2.83E+02</td>
<td>1.80E+06</td>
<td>1.00E+03</td>
<td>5.35E+02</td>
<td>2.09E+02</td>
<td>4.00E+02</td>
<td>5.11E-02</td>
<td>1.29E+01</td>
<td>1.21E+01</td>
</tr>
<tr>
<td>3×10^5</td>
<td>best</td>
<td>1.14E-28</td>
<td>2.01E-11</td>
<td>8.14E+03</td>
<td>3.30E-07</td>
<td>7.47E-06</td>
<td>3.21E-22</td>
<td>0.00E+00</td>
<td>2.09E+01</td>
<td>1.36E+02</td>
<td>1.66E+02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>13</td>
<td>19</td>
<td>worst</td>
<td>mean</td>
<td>std</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.53E-28</td>
<td>4.54E-28</td>
<td>5.05E-28</td>
<td>6.06E-28</td>
<td>4.21E-28</td>
<td>1.20E-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.07E-11</td>
<td>1.06E-10</td>
<td>2.03E-10</td>
<td>2.97E-10</td>
<td>1.35E-10</td>
<td>8.87E-11</td>
<td>7.67E-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.58E+04</td>
<td>8.37E+04</td>
<td>1.28E+05</td>
<td>3.20E+05</td>
<td>1.05E+05</td>
<td>5.54E+06</td>
<td>5.29E+06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.99E-06</td>
<td>5.98E-06</td>
<td>9.98E-06</td>
<td>1.91E-05</td>
<td>6.69E-06</td>
<td>5.54E-06</td>
<td>5.29E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.24E-05</td>
<td>1.53E-04</td>
<td>2.64E-04</td>
<td>2.63E-03</td>
<td>3.05E-04</td>
<td>5.29E-04</td>
<td>5.29E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.97E-20</td>
<td>8.05E-20</td>
<td>2.58E-19</td>
<td>3.99E+00</td>
<td>3.19E-01</td>
<td>1.10E+00</td>
<td>6.42E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>2.22E-02</td>
<td>2.86E-03</td>
<td>6.42E-03</td>
<td>3.87E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.09E+01</td>
<td>2.10E+01</td>
<td>2.10E+01</td>
<td>2.10E+01</td>
<td>2.10E+01</td>
<td>2.09E+01</td>
<td>9.62E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.51E+02</td>
<td>1.57E+02</td>
<td>1.67E+02</td>
<td>2.10E+02</td>
<td>1.59E+02</td>
<td>1.51E+02</td>
<td>9.63E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8. Error values of ILADE over 25 independent runs on ten benchmark functions at 30D.

<table>
<thead>
<tr>
<th>FEσ</th>
<th>Function</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>F₄</th>
<th>F₅</th>
<th>F₆</th>
<th>F₇</th>
<th>F₈</th>
<th>F₉</th>
<th>F₁₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×10³</td>
<td>best</td>
<td>8.53E+03</td>
<td>2.83E+04</td>
<td>1.46E+04</td>
<td>3.09E+04</td>
<td>1.23E+04</td>
<td>5.47E+08</td>
<td>1.59E+03</td>
<td>2.10E+01</td>
<td>1.95E+02</td>
<td>2.74E+02</td>
</tr>
<tr>
<td>7</td>
<td>1.09E+04</td>
<td>4.17E+04</td>
<td>1.86E+04</td>
<td>5.04E+04</td>
<td>1.53E+04</td>
<td>1.22E+09</td>
<td>1.71E+03</td>
<td>2.11E+01</td>
<td>2.49E+02</td>
<td>3.24E+02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.20E+04</td>
<td>4.44E+04</td>
<td>2.39E+04</td>
<td>5.77E+04</td>
<td>1.63E+04</td>
<td>1.45E+09</td>
<td>1.89E+03</td>
<td>2.12E+01</td>
<td>2.61E+02</td>
<td>3.41E+02</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.25E+04</td>
<td>4.87E+04</td>
<td>2.55E+04</td>
<td>6.26E+04</td>
<td>1.80E+04</td>
<td>1.69E+09</td>
<td>2.07E+03</td>
<td>2.12E+01</td>
<td>2.57E+02</td>
<td>3.49E+02</td>
<td></td>
</tr>
<tr>
<td>worst</td>
<td>1.41E+04</td>
<td>5.75E+04</td>
<td>3.87E+04</td>
<td>7.77E+04</td>
<td>2.14E+04</td>
<td>2.36E+09</td>
<td>2.40E+03</td>
<td>2.13E+01</td>
<td>2.85E+02</td>
<td>3.92E+02</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>1.16E+04</td>
<td>4.44E+04</td>
<td>2.33E+04</td>
<td>5.67E+04</td>
<td>1.66E+04</td>
<td>1.42E+09</td>
<td>1.90E+03</td>
<td>2.12E+01</td>
<td>2.52E+02</td>
<td>3.38E+02</td>
<td></td>
</tr>
<tr>
<td>std</td>
<td>1.29E+03</td>
<td>6.89E+03</td>
<td>5.41E+07</td>
<td>1.10E+04</td>
<td>2.05E+03</td>
<td>4.17E+08</td>
<td>2.42E+02</td>
<td>7.87E-02</td>
<td>2.11E+01</td>
<td>2.24E+01</td>
<td></td>
</tr>
<tr>
<td>3×10⁴</td>
<td>best</td>
<td>4.08E-01</td>
<td>8.55E+02</td>
<td>2.42E+06</td>
<td>1.95E+03</td>
<td>2.85E+03</td>
<td>7.68E+02</td>
<td>3.52E+00</td>
<td>2.09E+01</td>
<td>7.22E+01</td>
<td>1.89E+02</td>
</tr>
<tr>
<td>7</td>
<td>4.75E-01</td>
<td>1.28E+03</td>
<td>4.28E+06</td>
<td>4.44E+03</td>
<td>3.43E+03</td>
<td>1.19E+03</td>
<td>4.85E+00</td>
<td>2.10E+01</td>
<td>8.40E+01</td>
<td>2.08E+02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.49E-01</td>
<td>1.66E+03</td>
<td>5.93E+06</td>
<td>5.46E+03</td>
<td>3.61E+03</td>
<td>2.18E+03</td>
<td>6.15E+00</td>
<td>2.10E+01</td>
<td>9.01E+01</td>
<td>2.14E+02</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6.66E-01</td>
<td>1.97E+03</td>
<td>6.73E+06</td>
<td>6.19E+03</td>
<td>3.94E+03</td>
<td>2.90E+03</td>
<td>6.88E+00</td>
<td>2.11E+01</td>
<td>9.28E+01</td>
<td>2.23E+02</td>
<td></td>
</tr>
<tr>
<td>worst</td>
<td>8.97E-01</td>
<td>2.60E+03</td>
<td>1.04E+07</td>
<td>1.05E+04</td>
<td>4.62E+03</td>
<td>5.14E+03</td>
<td>8.72E+00</td>
<td>2.11E+01</td>
<td>1.06E+02</td>
<td>2.37E+02</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>5.81E-01</td>
<td>1.63E+03</td>
<td>5.65E+06</td>
<td>5.38E+03</td>
<td>3.69E+03</td>
<td>2.30E+03</td>
<td>6.00E+00</td>
<td>2.10E+01</td>
<td>8.90E+01</td>
<td>2.14E+02</td>
<td></td>
</tr>
<tr>
<td>std</td>
<td>1.23E-01</td>
<td>4.74E+02</td>
<td>1.91E+06</td>
<td>1.67E+03</td>
<td>4.85E+02</td>
<td>1.21E+03</td>
<td>1.31E+00</td>
<td>5.70E-02</td>
<td>7.27E+00</td>
<td>1.15E+01</td>
<td></td>
</tr>
<tr>
<td>3×10⁵</td>
<td>best</td>
<td>0.00E+00</td>
<td>1.02E-22</td>
<td>6.39E+03</td>
<td>4.08E-11</td>
<td>2.56E-02</td>
<td>3.19E-11</td>
<td>0.00E+00</td>
<td>2.09E+01</td>
<td>8.88E-14</td>
<td>1.19E+02</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.00E+00</td>
<td>4.58E-21</td>
<td>3.20E+04</td>
<td>3.48E-09</td>
<td>8.94E-02</td>
<td>3.19E-10</td>
<td>0.00E+00</td>
<td>2.09E+01</td>
<td>1.24E-10</td>
<td>1.47E+02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.00E+00</td>
<td>2.03E-20</td>
<td>5.21E+04</td>
<td>1.03E-08</td>
<td>1.30E-01</td>
<td>5.98E-10</td>
<td>0.00E+00</td>
<td>2.10E+01</td>
<td>8.72E-10</td>
<td>1.51E+02</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.00E+00</td>
<td>1.19E-19</td>
<td>7.23E+04</td>
<td>2.01E-08</td>
<td>1.91E-01</td>
<td>1.87E-09</td>
<td>0.00E+00</td>
<td>2.10E+01</td>
<td>9.36E-09</td>
<td>1.58E+02</td>
<td></td>
</tr>
<tr>
<td>worst</td>
<td>0.00E+00</td>
<td>8.27E-18</td>
<td>2.24E+05</td>
<td>3.77E-07</td>
<td>4.98E-01</td>
<td>3.83E-08</td>
<td>9.86E-03</td>
<td>2.10E+01</td>
<td>4.65E-03</td>
<td>1.67E+02</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.00E+00</td>
<td>5.34E-19</td>
<td>6.14E+04</td>
<td>3.00E-08</td>
<td>1.67E-01</td>
<td>3.12E-09</td>
<td>6.90E-04</td>
<td>2.09E+01</td>
<td>1.86E-04</td>
<td>1.50E+02</td>
<td></td>
</tr>
<tr>
<td>std</td>
<td>0.00E+00</td>
<td>1.78E-18</td>
<td>4.28E+04</td>
<td>7.54E-08</td>
<td>1.30E-01</td>
<td>7.75E-09</td>
<td>2.41E-03</td>
<td>3.63E-02</td>
<td>9.31E-04</td>
<td>1.24E+01</td>
<td></td>
</tr>
</tbody>
</table>
DE/rand-to-best/2/bin surpasses ILADE_{R,E,P} only in F_4 (see Table 7 and 8). In some cases, ILADE_{R,E,P} shows a slower convergence rate than DE/rand-to-best/2/bin, but the difference between the final solutions of ILADE_{R,E,P} and DE/rand-to-best/2/bin is considerable. The obtained results suggest that the proposed automata based approach is a significant improvement over DE/rand/1/bin and DE/rand-to-best/2/bin.

7.2.2. **Comparison with three state-of-the-art DE variants**

The results of ILADE_{R,E,P} and three other state-of-the-art DE variants are given in Table 9. The last three rows of Table 9 summarize the simulation results.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>0.00E+00 ± 0.00E+00</td>
<td>0.00E+00 ± 0.00E+00</td>
<td>6.27E-29 ± 1.14E-28^3</td>
<td>0.00E+00 ± 0.00E+00</td>
</tr>
<tr>
<td></td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
<tr>
<td>F_2</td>
<td>3.59E-07 ± 3.25E-07^3</td>
<td>9.77E-26 ± 3.16E-25^3</td>
<td>7.33E-05 ± 8.20E-05^3</td>
<td>5.34E-19 ± 1.78E-18(100%)</td>
</tr>
<tr>
<td>F_3</td>
<td>1.55E+05 ± 1.06E+05^3</td>
<td>6.93E+05 ± 2.94E+06^3</td>
<td>5.39E+05 ± 2.53E+05^3</td>
<td>6.14E+04 ± 4.28E+04</td>
</tr>
<tr>
<td>F_4</td>
<td>6.70E-02 ± 2.32E-01^3</td>
<td>3.88E+01 ± 1.18E+02^4</td>
<td>4.04E+00 ± 7.94E+00^3</td>
<td>3.00E+08 ± 7.54E-08(100%)</td>
</tr>
<tr>
<td>F_5</td>
<td>4.65E+02 ± 3.65E+02^3</td>
<td>1.42E+03 ± 7.12E+02^3</td>
<td>2.71E+01 ± 4.44E+01^3</td>
<td>1.67E-01 ± 1.30E-01</td>
</tr>
<tr>
<td>F_6</td>
<td>2.13E+01 ± 2.46E+01^4</td>
<td>3.18E-01 ± 1.10E+00^9</td>
<td>1.11E+00 ± 1.82E+00^9</td>
<td>3.12E-09 ± 7.75E-09(100%)</td>
</tr>
<tr>
<td>F_7</td>
<td>1.27E-02 ± 7.00E-03^3</td>
<td>1.62E-02 ± 1.47E-02^5</td>
<td>1.11E-02 ± 8.72E-03^3</td>
<td>6.90E+04 ± 2.41E-03(100%)</td>
</tr>
<tr>
<td>F_8</td>
<td>2.09E+01 ± 4.78E-02^2</td>
<td>2.09E+01 ± 4.79E-02^2</td>
<td>2.09E+01 ± 5.95E-02^2</td>
<td>2.09E+01 ± 3.63E-02</td>
</tr>
<tr>
<td>F_9</td>
<td>0.00E+00 ± 0.00E+00</td>
<td>3.97E-02 ± 1.98E-01^5</td>
<td>1.54E+01 ± 4.16E+00^0</td>
<td>1.86E+04 ± 9.31E-04(100%)</td>
</tr>
<tr>
<td>F_{10}</td>
<td>5.71E+01 ± 1.03E+01^1</td>
<td>4.79E+01 ± 1.35E+01^1</td>
<td>6.69E+01 ± 6.42E+01^1</td>
<td>1.50E+02 ± 1.24E+01</td>
</tr>
</tbody>
</table>

†	2	2	1
§	6	6	8
≈	2	2	1

"†" and "§" indicate a 0.05 level of significance by Wilcoxon rank sum test. "†", "§" and "≈" denote that the performance of the corresponding algorithm is better than, worse than, and similar to that of LADE, respectively.

Moreover, the average function error value curves of jDE, EPSDE, OXDE and ILADE_{R,E,P} over 25 independent runs for test functions F_1-F_{10} are depicted in Fig. 6 and Fig. 7.
LADE: Learning Automata Based Differential Evolution

(a)

(b)
Mahshid Mahdaviani, Javidan Kazemi Kordestani, Alireza Rezvanian, Mohammad Reza Meybodi

Since the text is not clearly visible, I cannot provide a natural text representation.
On unimodal test functions (i.e. \(F_1\)-\(F_5\)), it is observed that ILADE_{ERP} is very efficient. It outperforms other methods on three test functions (i.e. \(F_3\)-\(F_5\)) (see Table 9). Moreover, ILADE_{ERP} has the fastest convergence rate on \(F_3\)-\(F_5\) (see Fig. 6). jDE and OXDE cannot outperform ILADE_{ERP} on any unimodal functions and EPSDE surpasses ILADE_{ERP} only in \(F_2\). On the other hand, on multimodal functions (i.e. \(F_6\)-\(F_{10}\)), ILADE_{ERP} is significantly better on \(F_6\) and \(F_7\). On \(F_8\), ILADE_{ERP} is the second best method. \(F_{10}\) is the only test function that ILADE_{ERP} fails to reach to global minimum with a competitive accuracy. A closer look at Table 9 shows that EPSDE can perform better than ILADE_{ERP} on functions \(F_2\) and \(F_{10}\). The possible reason is that EPSDE uses a mutation pool with three strategies DE/best/2/bin, DE/rand/1/bin and DE/current-to-rand/1/bin. On the one hand, the first two strategies are robust. On the other hand, the third strategy is rotation-invariant. In addition, the value of parameter \(F\) is also adapted for each vector during the search process. These characteristics can contribute toward better performance of EPSDE on functions \(F_2\) and \(F_{10}\). Finally, simulation results reveal that the ILADE_{ERP} is a viable approach for the optimization of real-parameter functions.
(a) Average Function Error Value vs Function Evaluations

(b) Average Function Error Value vs Function Evaluations
7.2.3. Computational complexity of ILADE_{R,P}

In order to evaluate the runtime complexity of our proposed algorithm, we use the method based on [50]. Table 10 reports the computational complexity of ILADE_{R,P} and compares it with EPSDE. It should be noted that the reason why EPSDE was selected as a peer algorithm for comparison is that EPSDE uses both parameter adjustment and strategy adaptation simultaneously, similar to ILADE_{R,P}. In Table 10, \(T_0 \) is the computing time needed for a test program depicted in Fig. 8, \(T_1 \) is the computing time of the function \(F_3 \) for 200000 evaluations of a certain dimension \(D \) and \(\bar{T}_2 \) is the average computing time for the 5 runs of the algorithm with 200000 evaluations of the same \(D \) dimensional function \(F_3 \).
From Table 10, it is clear that our proposed ILADE\(_{\text{ILP}}\) is more computationally efficient than EPSDE.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Dim & \(T_0\) & \(T_1\) & \(\bar{T}_2\) & \(\frac{(\bar{T}_2 - T_1)}{T_0}\) & \(\bar{T}_2\) & \(\frac{(\bar{T}_2 - T_1)}{T_0}\) \\
\hline
10 & 0.17 & 12.09 & 26.70 & 25.28 & 81.17 & 72.82 \\
30 & 0.17 & 15.00 & 41.14 & 27.51 & 153.76 & 73.58 \\
50 & 0.17 & 17.61 & 66.23 & 31.55 & 286 & 82 \\
\hline
\end{tabular}
\caption{Computational complexity of ILADE\(_{\text{ILP}}\) in comparison with EPSDE}
\end{table}

In order to study the relationship between the dimensionality of the problems to be solved and the computation time consumed by the algorithms, ILADE\(_{\text{ILP}}\) and EPSDE are further used to solve benchmark functions \(F_1\), whose dimensionality \(D\) is set to 5, 10, 15, 20, 25, 30, 40, and 50. For different dimensionality of the functions, the maximum number of FEs was set to \(D \times 10^4\). Fig. 9 illustrates the average computation time over 25 runs consumed by the two algorithms when the dimensionality increases from 5 to 50.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig9.png}
\caption{The effect of dimensionality on the computation time consumed by ILADE\(_{\text{ILP}}\) and EPSDE on benchmark function \(F_1\)}
\end{figure}
It can be seen in Fig. 9 that ILADE$_{RP}$ has a smaller increasing rate than the EPSDE. Moreover, ILADE$_{RP}$ is able to save computation time by 43.52% on average, in comparison with EPSDE.

7.3. Comparison with other optimization algorithms

In this subsection, ILADE$_{RP}$ is compared to three well-known EAs, namely, CMA-ES [52], CLPSO [7] and GL-25 [51]. Table 11 summarizes the simulation results.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1.69E-25 ± 3.63E-263 (100%)</td>
<td>0.00E+00 ± 0.00E+007 (100%)</td>
<td>1.13E-27 ± 2.33E-273 (100%)</td>
<td>0.00E+00 ± 0.00E+00 (100%)</td>
</tr>
<tr>
<td>F2</td>
<td>6.14E-25 ± 1.89E-257 (100%)</td>
<td>8.15E+02 ± 1.68E+027</td>
<td>6.30E+01 ± 1.32E+023</td>
<td>5.34E-19 ± 1.78E-18 (100%)</td>
</tr>
<tr>
<td>F3</td>
<td>5.28E-21 ± 1.86E-217 (100%)</td>
<td>1.54E+07 ± 3.20E+063</td>
<td>1.94E+06 ± 8.17E+055</td>
<td>6.14E+04 ± 4.28E+04</td>
</tr>
<tr>
<td>F4</td>
<td>6.94E+05 ± 1.54E+063</td>
<td>6.66E+03 ± 1.37E+033</td>
<td>9.01E+02 ± 4.06E+023</td>
<td>3.00E-08 ± 7.54E-08 (100%)</td>
</tr>
<tr>
<td>F5</td>
<td>3.17E-10 ± 5.88E-117 (100%)</td>
<td>3.91E+03 ± 3.63E+023</td>
<td>2.48E+03 ± 2.17E+023</td>
<td>1.67E-01 ± 1.30E-01</td>
</tr>
<tr>
<td>F6</td>
<td>7.97E+01 ± 1.62E+009 (80%)</td>
<td>7.23E+00 ± 9.71E+007</td>
<td>2.14E+01 ± 1.34E+000</td>
<td>3.12E-09 ± 7.75E-09 (100%)</td>
</tr>
<tr>
<td>F7</td>
<td>3.45E-03 ± 7.07E-030 (8%)</td>
<td>4.65E+01 ± 6.07E-023</td>
<td>1.89E-02 ± 1.85E-025 (40%)</td>
<td>6.90E-04 ± 2.41E-03 (100%)</td>
</tr>
<tr>
<td>F8</td>
<td>2.03E+01 ± 5.81E-017</td>
<td>2.09E+01 ± 5.31E-023</td>
<td>2.09E+01 ± 6.05E-023</td>
<td>2.09E+01± 3.63E-02</td>
</tr>
<tr>
<td>F9</td>
<td>4.31E+02 ± 9.04E+013</td>
<td>0.00E+00 ± 0.00E+000 (100%)</td>
<td>2.40E+01 ± 5.10E+000</td>
<td>1.86E-04 ± 9.31E-04 (100%)</td>
</tr>
<tr>
<td>F10</td>
<td>4.60E+01 ± 1.26E+011</td>
<td>9.90E+01 ± 1.12E+013</td>
<td>1.52E+02 ± 5.63E+011</td>
<td>1.50E+02 ± 1.24E+01</td>
</tr>
</tbody>
</table>

† 5 1 0
$^\$ 5 7 9
$^\approx$ 0 2 1

$"^\dagger"$ and "$^\$" indicate a 0.05 level of significance by Wilcoxon rank sum test. "$^\dagger"", "$^\$" and "$^\approx"" denote that the performance of the corresponding algorithm is better than, worse than, and similar to that of LADE, respectively.

From Table 11, it can be concluded that ILADE$_{RP}$ is clearly better than CLPSO and GL-25, and is very competitive with CMA-ES.

7.4. Real-life optimization problem

The parameter estimation for FMSW is an important real-life engineering problem which plays a key role in several modern music systems [68]. The parameter estimation for
FMSW is a six-dimensional optimization problem in which the goal of optimization is to estimate the $\hat{x} = \{a_1, \omega_1, a_2, \omega_2, a_3, \omega_3\}$ to minimize the following fitness function:

$$f = \sum_{t=0}^{10\theta} (y(t) - y_0(t))^2$$ \hspace{1cm} (14)

In above equation, $y(t)$ is the generated sound wave and $y_0(t)$ is the target sound wave which are calculated as follows:

$$y(t) = a_1 \times \sin(\omega_1 t \cdot \theta + a_2 \times \sin(\omega_2 t \cdot \theta + a_3 \times \sin(\omega_3 t \cdot \theta)))$$ \hspace{1cm} (15)

$$y_0(t) = (1.0) \times \sin \left((5.0) \cdot \theta + (-1.5) \times \sin\left((4.8) \cdot \theta + (2.0) \times \sin((4.9) \cdot \theta) \right) \right)$$ \hspace{1cm} (16)

Where $\theta = \frac{2\pi}{100}$ and the parameters are bounded in $[-6.4, 6.35]$.

This problem is a highly complex multimodal instance with minimum value $f_{\text{min}} = 0$. The results of ILADE_{\text{RefP}}, EA-DE-Mimetic [69], SAMODE [70], and DE-Λ_{\text{Cr}} [71] on the FMSW have been reported in Table 12. For ILADE_{\text{RefP}}, the results were reported based on 25 independent runs. Results of the other methods were directly taken from their respective papers.

<table>
<thead>
<tr>
<th>FEs</th>
<th>Function value</th>
<th>EA-DE-Mimetic (2011)</th>
<th>SAMODE (2011)</th>
<th>DE-Λ_{\text{Cr}} (2011)</th>
<th>ILADE_{\text{RefP}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^4</td>
<td>best</td>
<td>1.1674E-11</td>
<td>2.5397E-11</td>
<td>1.6147E-10</td>
<td>2.5354E-18</td>
</tr>
<tr>
<td></td>
<td>median</td>
<td>1.0167E+01</td>
<td>8.9616E-06</td>
<td>3.8779E-09</td>
<td>1.8904E-03</td>
</tr>
<tr>
<td></td>
<td>worst</td>
<td>1.5440E+01</td>
<td>1.2547E+01</td>
<td>1.4813E+01</td>
<td>1.3210E+01</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>7.6022E+00</td>
<td>3.0769E+00</td>
<td>2.1870E+00</td>
<td>3.0669E+00</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>6.2025E+00</td>
<td>5.6495E+00</td>
<td>4.6326E+00</td>
<td>4.1835E+00</td>
</tr>
</tbody>
</table>

1×10^5	best	1.1674E-11	1.6373E-30	3.5443E-12	0.0000E-00
	median	1.2912E-09	6.9955E-24	5.0886E-11	0.0000E-00
	worst	1.4900E+01	1.0942E+01	1.1757E+01	1.3111E+01
	mean	3.8056E+00	1.2120E+00	1.0978E+00	8.3291E-01
	std	5.2091E+00	3.3762E+00	3.1751E+00	2.7172E+00

1.5×10^5	best	1.1674E-11	0.0000E+00	7.2093E-15	0.0000E+00
	median	6.0846E-10	0.0000E+00	1.2362E-11	0.0000E+00
	worst	1.1374E+01	1.0942E+01	1.1757E+01	1.8688E+00
	mean	2.0948E+00	1.2120E+00	8.7697E-01	7.4754E-02
	std	4.3063E+00	3.3762E+00	3.0439E+00	3.7377E-01

As can be seen in Table 12, ILADE_{\text{RefP}} has a good performance on the estimation of FMSW.
8. Conclusion

In this paper, learning automata have been applied for adaptive parameter adjustment and strategy selection in DE. Two classes of possible approach have been used for choosing new values for crossover rate as well as mutation strategy. In the first class, i.e. GLADE, all individuals share the same value for CR, and use the same mutation strategy. In the second class, i.e. ILADE, each individual acts in a separate manner and chooses its own CR and mutation strategy based on its success and failure.

In order to justify the proposed approach, experiments were carried out to compare the performance of the proposed method with several state-of-the-art algorithms (i.e., jDE [24], EPSDE [30], OXDE [23], CMA-ES [52], CLPSO [7] and GL-25 [51]) on ten benchmark functions of CEC2005 special session of real-parameter optimization. The proposed approach was also used to solve the parameter estimation for FMSW [68].

From the experimental results, following conclusions can be drawn on the real-parameter function optimization problems. The proposed LADE greatly improves the performance of DE in terms of both accuracy and convergence speed. In comparison with other peer algorithms, LADE shows a good performance, and it is computationally efficient.

Finally, it is also worth noticing that the results of the paper suggest that adjustment of the parameters and mutation strategy at the individual level can lead to a better performance.

Future research may focus on providing a general framework for improving the performance of EAs using the concept of LA. It is also interesting to study other types of learning for the LA.

References

[68] S. Das and P. Suganthan, “Problem definitions and evaluation criteria for the CEC 2011
competition on testing evolutionary algorithms on real world optimization problems,”
Jadavpur University, Kolkata, India, and Nangyang Technological University, Singapore,

real world optimization problems,” in IEEE Congress on Evolutionary Computation, 2011,
pp. 1322–1326.

for solving CEC2011 real-world numerical optimization problems,” in IEEE Congress on

adaptive crossover operator for solving real-world numerical optimization problems,” in IEEE

Optimizer”, Journal of Experimental & Theoretical Artificial Intelligence, Taylor & Francis,

41, no. 4, pp. 1150-1169, 2014.