Banyan Heap Machine

M. R. Meybodi
Computer Science Department
Ohio University
Athens, Ohio 45701

Abstract

A priority queue 13 o device which stores a set of ele-
ments and their associated priorities and provides a set
of operations on these elements, called priority queue
operations. The standard operations on priority queue
are XMAX and INSERT. XMAX operation retrieves
and deletes the element with the highest priority and
INSERT operation inserts an element and its associ-
ated priority into the priority queue. A number of mul-
tiprocessor designs for maintaining priority queue have
been proposed in the literatures. These designs can be
classified into two main groups: 1) designs with many
processors each having an small amount of memory,
and 2) designs with small number of processors each
having a large amount of memory. In this paper a new
destgns, belonging to the second group, for performing
a group of priority queue operations on a set of ele-
ment are presented. Processors in this design, called
banyan heap machine are connected together to form
a linear chain. The algorithms for Banyan Heap ma-
chine are the generalizalion of binary heap algorithms
to a more general acyclic graph called banyan. This
design, unlike exzisting designs, requires fewer proces-
sors to meet the same capacity requirement, and also,
processors do not have geometrically varying memory
sizes. This results in a completely homogeneous sys-
tem. The key advantage of banyan heap machine is in
its ability to retrieve elements at different percentile
levels.

Index Terms: Priority Queue, Banyan Heap, Paral-
lel Algorithm, Parallel Computer

1 Introduction

Special classes of computational tasks have led to
the development and realization of special purpose
systems that most efficiently perform the given tasks.
Special purpose machines for variety of computational
tasks such as : signal and image processing, matrix op-
erations, graph algorithms, database operations have
been proposed in the literatures [4,8,9,10]. In this re-
port we study the implementation of a priority queue
data structure in hardware.

Priority queue is a very important data structure
which has found applications in varieties of situations
[17-19,22]. This data structure is a set of elements each
of which has an associated number, its priority. For

0-8186-2672-0/92 $03.00 © 1992 IEEE

224

each element z, p(z), the priority of z is a number from
some linearly ordered set. Standard operations on a
priority queue are INSERT, which inserts an element
and its associated priority into the priority queue, and
XMAX, which deletes the element with the highest
priority from the queue. Let P denote the set of all
element-priority pairs. Define

P(s) = {(=, p())Ip(z) = s and (z,p(2)) € P};

The effect of priority queue operations are as follows:
INSERT(z,p(z)) :
P — PU{(=,p(2))} .

Response is null.

XMAX:

P — P — P(pmaz) where P(pmaz)
is the pair with the highest priority.
Response i8 P(pmaz)-

A priority queue machine receives a stream of oper-
ations (INSERT,XMAX), execute them in a piplined
manner, and, in the case of XMAX operation, reports
the element with the highest priority via the I/0 port.
The response time for an operation is the time elapsed
between the initiation and completion of an operation,
and the pipeline interval of an operation is the min-
imum time needed before the initiation of the next
operation. The period of the machine is the maximum
of all operation pipeline intervals.

Hardware realization of data structures have been
investigated by several researchers. Leiserson [2] pro-
posed a machine to implement priority queue opera-
tions and Bentley and Kung [1] have given an imple-
mentation of dictionary operations on a tree in which
the data elements are stored in the leaves of the tree.
Using X-trees, Ottmann et al. [3] designed a more ef-
ficient implementation of dictionary operations at the
expense of additional wires. Atallah and Kosaraju 7]
and Somani and Agarwal [5,6] have shown that dictio-
nary operations can be implemented on a tree which
does not use any links other than the binary tree links.
Schmeck and Schroders [11], and Dehne and Santoro
[20] have given an implementation of dictionary opera-
tions on mesh-connected array. Recently, J. H. Chang,
O. H. Ibarra, M. J. Chung and K. Rao [24] have pro-
posed systolic tree architectures for data structures

such as stacks, queues, dequeues, priority queues, and
dictionary machines. Cray and Thompsonctlti], Fisher
[12], and Tanaka, Nozaka, and Masuyama [15] have
shown that a dictionary machine can be constructed
using search trees implemented on a linear array of
prTcessors. Other related designs are reported in [24-
30].

In this paper, a new design, called banyan heap ma-
chine, for performing a group of priority queue opera-
tions on a set of elements is proposed. The algorithms
for this machine are the generalization of heap algo-
rithms to a more general acyclic graph called banyan.
This design requires fewer processors than the existing
designs [1- 7,11,20] in order to meet the same capacity
requirement and unlike some of the existing designs
[14,15], processors do not have geometrically varying
memory sizes, resulting in a completely homogeneous
system. The key advantage of banyan heap machine
is in its ability to retrieve elements at different per-
centile levels. The rest of this paper is organized as
follows. Section 2 defines banyan graphs and banyan
heaps. Section 3 discuss Banyan Heap machine. Al-
gorithms for Banyan Heap are given in section 4. In
section 5 analytical formulas for percentile level of a
retrieved element. The last section is the conclusion.

2 Banyan graphs and banyan heaps

A banyan graph is a Hasse diagram [21] of a partial
ordering in which there is only one path from any base
to any apex. A base is defined as any vertex with
no arcs incident out of it and an apex is defined as
any vertex with no arcs incident into it. A vertex
that is neither an apex nor a base vertex is called an
intermediate vertex.

An L-level banyan is a banyan in which the path
from base to apex(or apex to base) is of length L.
Therefore, in an L-level banyan, there are L + 1 levels
of nodes and L levels of edges. By convention, apexes
are considered to be at level 0 and bases at level L.
In a banyan graph, the outdegree and the indegree of
a node are called spread and fanout of that node. If
there is an edge between two nodes, z at level = and y
at level 1 4 1, then we say z is the parent of y, and y
is the child of z.

Definition 1 A banyan s called a uniform banyan
if all the nodes within the same level have identical
spread and fanout.

In a uniform banyan , the fanout and spread values
may be characterized by L component vectors, F =
(fo, f1s .+ fL—1) and § = (sy,82,...,s1), the fanout
vector and spread vector, respectively, where s; and
f; denotes the spread and fanout of a node at level 5.

Definition 2 If s;4; = fi, (0 < 7 < L — 1), that
is ' = S, then the banyan 1is called rectangular.
If siy1 # s; for some 1, then the banyan is non-
rectangular.

Definition 8 A banyan 1s said to be regular if s; = s,
(1<i<L),and fy=f, (0<1 < L—1), for some
constant s and f. Otherwise it 13 said to be irregular.

225

Definition 4 A banyan 13 an SW-banyan if it has the
following two additional properties: a) Two nodes at
an intermediate level ¢, have either no or all common
parents at level + — 1. b) two nodes at intermediate
level 1 have either no or all common children at level
1+ 1.

Definition 5 An SW-banyan is said to be rectangular
if it is regular and s; = d, (1 < ¢ < L), and f; = d,
0<1:< L—1), for some constant d.

Now we define banyan heap.

Definition 6 An L-level banyan heap is an L-level
banyan such that the priority of the element at each
node 1s equal or greater than the priorities of the ele-
ments at each of tts children.

3 Banyan Heap Machine

Banyan heap machine is a linear array of log M +1
processors, one for each level of the heap. In this
report, we study the implementation of MxM rect-
angular SW-banyan heap with d = 2 in an array of
log M +1 processors where M is the number of apexes.
The restriction to an MxM rectangular banyan is in
the interest of simplicity of presentation.

In such banyans the number of levels is log M +
1, each of which assigned to one processor with the
apexes assigned to processor p;. Figure 1 shows an
example of a 4-level rectangular banyan heap and its
mapping into the linear array of processors.

Each node in the banyan heap has six fields: DATA,
PRIORITY, LCHILD, RCHILD, LEMPTYNODES,
and REMPTYNODES. For a node, DATA field holds
a element and the PRIORITY field holds the priority
associated with that element, LCHILD and RCHILD
holds respectively pointers to the left child and right
child of that node, and LEMPTYNODES and REMP-
TYNODES hold the number of null nodes (nodes with
no information) in the left and right subtrees of that
nodes. In addition to the above six fields, each apex
has another field called NEXT. This field is used to
link apexes together. Initially, the DATA fields of all
the nodes are set to null and the priority fields of all
the nodes are set to —1. To initialize The LEMPTYN-
ODES and REMPTYNODES fields, we first partition
the heap into M disjoint binary trees. The partition-
ing process starts with the leftmost apex and continues
in increasing order of the apex numbers. The leftmost
apex is numbered 1. Partition 7 is the set of all nodes
which are reachable from apex 2 by moving down the
heap and are not part of partition ¢—1. The root of the
binary tree in partition ¢ is apex z. Once the partitions
are determined, we initialize the REMPTYNODES
and LEMPTYNODES fields of every node at level z in
a given partition to 21°8 M+1~¢_1_ Level of the root of
a partition is defined to be 1. The depth of a partition
is the maximum level of any node in that partition.
Set of partitions and the initial settings of LEMP-
TYNODES and REMPTYNODES fields for an 8x8
SW-banyan is given in figure 2. REMPTYNODES
and LEMPTYNODES fields are updated as data ele-
ments are inserted into and deleted from the machine.

Information about the number of empty nodes is used
by the INSERT operation to decide which path in the
heap should be followed during the insertion process.
Lack of such information may lead to an overflow sit-
uation in the last processor. This happens if the IN-
SERT operation moves along a path in which all the
nodes are non-empty.

Definition T An L-level partitioned banyan heap 1s
an L-level banyan such that each partition of the
banyan (as defined above) is a binary heap.

Definition 8 A partitioned L-level banyan heap 1s
said to be full up to apex d if all the nodes in par-
tittons 7, (7 < d), are non-null and the nodes in the
remasning partitions are null.

Definition 9 A node in a banyan heap is said to be
reachable by partition from apex ¢ if its parent is reach-
able by partition from apez 1. Node | at level j+1 1s
reachable by partition from node k at level j if node
| either has non-zero REMPTYNODES and it is the
right child of node l,or has non-zero LEMPTYNODES
and 1s the left child of node l. An apez is reachable by
partition from itself.

Remark 1 The null nodes which are reachable by
partition from a given apex will be filled up by in-
sertions initiated at that apex unless the reachablity
of the nodes will change by a later deletion operation
initiated at some other apexes. Reachablity does not
imply reachablity by partition.

Each processor in the array is equipped with
send and receive instructions. They are used
for communication between neighboring processors.
Send(<processor>,'<instruction>’) sends instruction
<instruction>
to processor <processor> for execution. The execu-
tion of receive(<processor>,(information)) causes the
information specified by the second argument be ob-
tained from processor <processor> and forwarded to
the requesting processor (the processor executing the
receive instruction). Receive instruction is of blocking
type, that is , it is not complete until a message is
received from the specified processor.

In the next section we describe the implementation
of priority queue operations for partitioned banyan
heap. The implementation of priority queue opera-
tions for banyan heap is reported in [30].

4 Algorithms for Partitioned Banyan
Heap

Insertion into a banyan heap is performed by op-
eration INSERT. This operation, executed by proces-
sor py, first finds the leftmost partition which has at
least one empty node. This can be done by checking
the REMPTYNODES and LEMPTYNODES of the
apexes. It then pushes the element requested to be
inserted down the banyan heap using operation insert-
adjust. The operation tnsert-adjust pushes down the
element (along the paths from the root of the partition
to the bases) until it finds its correct position.

Upon receiving INSERT(p,(item,priority)) by pro-
cessor pj, it executes the following codes. The letter
p refers to the address of the leftmost apex and (item,
priority) is the pair requested to be inserted.

found + false
While (not found) do
if DATA(p) # null then
if priority > PRIORITY(p) then
begin
if LEMPTYNODES(p)# 0 or
REMPTYNODES(p)# 0 then
begin
if LEMPTYNODES(p) >
REMPTYNODESEp; then
begin
p’ « RCHILD(p);
REMPTYNODES p} —
REMPTYNODESEp -1
end
else
begin
p’ « LCHILD(p);
LEMPTYNODES(p? —

LEMPTYNODES(p) —1
end
send(P; , ‘insert-adjust(p’, DATA(p))");

DATA(p) + item;
PRIORITY(p)+« priority;
found + true
end
else
p + NEXT(p)
end
else
begin (priority < PRIORITY(p))
if LEMPTYNODES(p) # 0 or
REMPTYNODES(p)# 0 then
begin
if LEMPTYNODES(p) >
REMPTYNODES(p) then

begin
p’ + LCHILD(p);
LEMPTYNODES(p) +
LEMPTYNODES(p) —1
end
else
begin
p’ — RCHILD(p);
REMPTYNODES(p) —
REMPTYNODES(p) —1
end

send(p2, ‘insert-adjust(p’, (item,priority))’);

foun
end

+«— true

else
P« NEXT(p)
else
begin
DATA(p) « item;
PRIORITY(p) + priority

ena;

226

Processor P;, (2 < 1 < L), upon receiving tnsert-
ad]ust(p,(1tem,pnor1ty)) executes the following codes.

if DATA(p) # null then
if priority > PRIORITY(p) then
begin
if LEMPTYNODES(p
REMPTYNODES({p
begin
1f LEMPTYNODES(p
REMPTYNODES(p then
begin
p’ «— LCHILD(p) ;
LEMPTYNODES(p)«—
LEMPTYNODES(p) —
end
else
begin
p’ — RCHILD(p);
REMPTYNODES(p
LEMPTYNODES(p) —
end

0 or
0 then

en
send(p; 1, insert-adjust(p’

DATA(p),PRIORITY (p
DASTA(p) (4—) item; E)));
PRIORITY(p) « priority

end
else
begin
1f LEMPTYNODES(p) # 0 or
REMPTYNODES(p) # 0 then
begin
if LEMPTYNODES(p) >
REMPTYNODES(p) then
begin
p’ — RCHILD(p);
REMPTYNODES(p) «
REMPTYNODES(p) —1
end
else
begin
p’+ LCHILD(p);
LEMPTYNODES(p) «—
LEMPTYNODES(p) —
end

send(pit1, 1nsert-adjust(p
,(item priority))’);

end

else

begin
DATA(p
PRIORI

end

)rc— item;
Y(p) « priority

else
begin
DATA(p) « item;
PRIORITY(p) « priority
end;

XMAX operation first locates the apex which contains
the element with the highest priority, reports that ele-
ment to the outside world, and then fills up that apex

227

with the element in one of its children. zmaz-adjust
is responsible for restructuring the banyan as it moves
down the heap. When XMAX(p) is received by pro-
cessor p, it executes the following codes,where pis the
address of the leftmost apex. This address is known
to the outside world (front end computer).

S

p
while NEXT(p) # nil and
DATA(NEXT(p)) # null do

begin
if PRIORITY(p) > PRIORITY(NEXT(p)) then

P’
p o NEXT(p)
end
send(’outsxde world’, DATA(p’));
receive g,[' l&PRIORITY RCHILD(1)
CHILD(p’))),

PRIO ITY%LC ILD(p 1)
DATA LCHILD p)))
if DATA RCHILD p null or
DATA(LCHILD(p’ #null then
if DATA RCHILD(p’
DATA(LCHILD(p’) then
begin
DATA(p’) — DATA(RCHILD(Wi
PRIORITY(p {{
PRIORIT %CHILD
REMPTYNO
REMPTYNODES() +
send(p2, xmax-ad]ust(RCHILD(p’)’)
end
else
begin
DATA(p") + DATA(LCHILD(p"));
PRIORITY(p’) —
PRIORITY (LCHILD (p’));
LEMPTYNODES(p’) +
LEMPTYNODES(p’) + 1;
send (p2, xmax-adjust(LCHILD(p 1)
end
else
begin
DATA(p’) « null
PRIORI Y(p’) — -1
end

Processor p;, (2 < ¢ < L), upon receiving zmaz-
adjust(p)) executes the following codes.

receive p,+1, (PRIORITY(RCHILD(p))
RCHILD(p {%

PRIO ITY(LCHILD(p))
DATA LCHILD()))]}

if DATA(RC ILD(p or
DATA(LCHILD # null then

if DATA(R GRILD pf) - DATA(LCHILD(p)) then
begin

DATA(p) — DATA(RCHILD(p));
PRIORITY(p) « PRIORITY (RCHILD(p));
REMPTYNODES(p) «

REMPTYNODES(p) + 1;

s:.ind(p.-+1 , ‘xmax-adjust(RCHILD(p))’)

en
else
begin
DATA (p) — DATA(LCHILD(p
PRIORI Yg)) +— PRIORIT CHILD p ,
LEMPTYN DES(p) +— PRIORITY(p
send(p;41, ‘xmax-adjust(LCHILD(p))’
end
else

begin
DATA(p +— null;
PRIORITY(p) +— —1
end

Remark 2 The elements stored in the apex nodes are
not ranked in any particular order. This speeds up
the insertion process, but will lead to O(M) time for
deletion. It is possible to insert the elements in such
a way that the element with the highest priority is
always available at the leftmost apex, in this case, lo-
cating the correct apex to initiate the insertion takes
O(M) time. This method seems to be more efficient
because a portion of the time spent to find the cor-
rect position can be overlapped with the time spent
to locate an apex with zero REMPTYNODES or zero
LEMPTYNODES. In the algorithms presented above
we have used the first approach. The latter approach
will be reported in another paper.

From the properties of SW-banyan graphs and the
above algorithms we can state the following results.
For proofs of the lemmas refer to [29)].

Lemma 1 a) The inseri-adjust operation never en-
counters a node which 13 non-null and has zero
LEMPTYNODES and zero REMPTYNODES. b) The
insert-adjust operation always finds a null node to in-
sert its element.

Remark 8 Deletion of an element from partition
may cause one of the elements in other partitions
whose nodes are reachable from apex 1 to become null.
This happens if a delete operation causes the zmaz-
adjust, on its way down the heap, to move up the
content of one of the leaf nodes of partition i to fill
up its parent which has been emptied by zmaz-adjust
operation at the previous step. The emptiness of this
node now will be reflected in the REMPTYNODES or
LEMPTYNODES of apex ¢. This node is now reach-
able by partition from apex z and will be filled by an
insertion initiated at apex . The maximum number
of nodes that may become reachable by partition from
apex ¢ as a result of a deletion is equal to (L + 1} — D
where D is the depth of partition .

Lemma 2 Zero REMPTYNODES and zero REMP-
TYNODES for an apez does not tmply that all the
nodes in the corresponding partition are non- null.

Lemma 3 Apez s, }ll <t < N), always contains the
element which has the highest priority among the ele-
ments stored in the nodes of partition 1.

228

Lemma 4 The element with the highest priority is al-
ways reported by operation XMAX.

Definition 10 A partition induced by LEMPTYN-
ODES and REMPTYNODES fields of apez 4 is the
set of all nodes which are reachable by paristion from
apez 1.

5 Retrieval at Percentile Levels

One of the advantages of banyan heap machine over
other machines is in its ability to retrieve elements at
different percentile levels. In this section we derive for-
mulas for the percentile level of the element reported
by operation XMAX for different cases.

Definition 11 An element removed from e banyan
heap 1s at percentile ¢ if at least ¢ percent of the el-
ements stored tn the heap have priority less than or
equal to the priority of the deleted element.

We define REMPTYNODES; and
LEMPTY NODES; to denote respectively the value
of REMPTYNODES field and LEMPTYNODES field
of apex 2. The proof of the following 4 lemmas are im-
mediate from the definitions of REMPTYNODES and
LEMPTYNODES.

Lemma 5 The total number of

null nodes which are reachable by partition from apez
118 REMPTYNODES; + LEMPTYNODES;.

Lemma 6 If an MzM partitioned rectangular SW-
banyan banyan heap is full up to apez d then

d
> (REMPTYNODES;+LEMPTYNODES;) =0
7=1

Lemma 7 In an MzM rectangular SW-banyan, the
total number of null nodes reachable by partition from
apezes 1 through d, written NULLNODES(M,d), is

given by:
NULLNODES(M,d) =

d
> (REMPTYNODES;+LEMPTY NODES;)+K.
i=1

where K 1s the number of null apezes 4, (i< d).

Lemma 8 The total number of non-null nodes in
a MzM partitioned rectangular SW-banyan, writ-
ten NONNULLNODES(M,M), is M(logM + 1) —
NULLNODES(M, M).

Lemma 9 The total number of partitions of depth k
in a full partitioned banyan heap up to apez d, written
N Py, is given by:

Cd-klNyp;
NPk:[——EJZ_I 2

where NPy = |£].

Lemma 10 The total number of non-null nodes in
a full MzM partitioned rectangular SW-banyan up to
apez d, written size(M,d), is given by:

Mlog M d
size(M,d) = Z 2k + ZNPJ'zj
k=0 =1

Lemma 11 If an MzM rectangular SW-banyan parti-
tioned heap 1s full up to apex d then the element stored
at apez 1 13 at percentile level

(2M — 1) % 100
size(M, d)
Lemma 12 In an MzM partitioned rectangular SW-
banyan heap which s full up to apez d, if operation
XMAX investigates 1,(3<d), non-null apezes then the
percentile of the reported element s
size(M,4) * 100
size(M, d)
Lemma 18 If operation XMAX ezamines apezes 1
through d in an MzM rectangular banyan heap then
the percentile of the reported element s smaller than
or equal to
size(M, d) * 100
(size(M,M)— NULLNODES (M, M))’

Remark 4 A partition banyan heap can be converted
into a banyan heap by an operation called adjust.
M log M —2 adjust operations are broadcast by XMAX
operation when it inserts an element into an empty
partition. These adjust operations cause some the ele-
ments in the nodes of those partitions which are reach-
able from apex ¢ to move up and fill up the nodes of
partition z. As a result, all the nodes whose contents
(empty or non-empty) have been moved by adjust op-
eration become reachable by partition from apex 2. It
should be noted that some of the adjust operation ini-
tiated at processor p; by XMAX operation may not
have any effect on the structure of the heap. The ad-
vantage of banyan heap over partitioned banyan heap
is that it allows a more uniform distribution of data
elements among the partition in the heap and leads to
a more uniform increase in the percentile level of the
reported element as the number of examined apexes
is increased. Algorithms for XMAX |, zmaz-adjust and
insert-adjust are the same for banyan heap. The op-
eration INSERT and the new operation adjust are de-
scribed in details in [29].

6 Conclusion

A novel design based on MxM SW-banyan heap
data structure, called banyan heap machine, for per-
forming a group of priority queue operations on a set
of elements is presented. This machine is a linear array
of log M + 1 processors (one processor for each level of
banyan) which receives a stream of priority queue op-
erations and executes them in a piplined manner. Un-
like some of the existing designs, processors in banyan

229

heap machine do not have geometrically varying size
memory. This results in a completely homogeneous
system. The response time for XMAX, and pipeline
period for both the XMAX and INSERT operations is
O(1), independent of the length of the array of pro-
cessors. However, it takes O(M) time for each of the
XMAX or INSERT operation to be executed. With
banyan heap machine, it is possible to retrieve ele-
ments at different percentile levels.

7 References
1. J. L. Bentley and H. T. Kung, “A tree Machine
for Searching Problems,” Proceeding of the In-

ternational Conference on Parallel Processing,
1979

2. C. E. Leiserson, “Systolic Priority Queues,”
Dept. of Computer Science, Carnegie Melon
University, Pittsburgh, PA, Report CMU-CS-
115,1979.

3. T. A. Ottmann, A. L. Rosenberg, and L.J.
Stockmeyer, “A Dictionary Machine for VLSI,”
IEEE Transaction on Computers, vol. ¢-31, No.
9, Sept. 1982, pp. 892-897.

4. H. T. Kung and C. E. Leiserson, “Systolic Ar-
rays (for VLSI), » Proceedings of Symposium on
Sparse Matrix Computations and their Applica-
tions, Nov. 1978, pp. 256-282.

5. A. K. Somani and V. K. Agarwal, “An Unsorted
VLSI Dictionary Machine,” Proceedings of 1983
Canadian VLSI Conference, University of Wa-
terloo, Waterloo.

6. A. K. Somani and V. K. Agarwal, “An Efficient
VLSI Dictionary Machine, ” Proceedings of 11th
Annual International Symposium on Computer
Architecture, 1985, pp. 142-150-150.

7. M. J. Atallah and S. R. Kosaraju, “A General-
ized Dictionary Machine for VLSI,” IEEE trans-
actions on Computers, Vol. C-34, No. 2, Feb.
1985, pp. 151-155.-155.

8. L. J. Guibas, H. T. Kung, and C. D. Thompson,
“Direct VLSI Implementation of Combinatorial
Algorithms,” Proceedings of Conference in Very
Large Scale Integration: Architecture, Design,
Fabrication, California Institute of Technology,
Jan. 1979, pp. 509-525.

9. H. T. Kung, “Special Purpose Devices for Sig-
nal and Image Processing : An Opportunity in
VLSI,” Proceedings. SPIE,Vol. 241: Real- Time
Signal Processing III, Society of Photo-Optical
Instrumentation Engineers, July 1980, pp. 76-
84.-84.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. T. Kung and P. L. Lehman, “Systolic Arrays
for Relational Operations,” Proceedings. ACM-
SIGMOD 1980 International Conf. on Data,
May 1980, pp. 105-116.

H. Schmeck and H. Schroder, “Dictionary Ma-
chines for Different Models of VLSI,” IEEE
transaction on computers, Vol. C- 34, No. 5,
May 1985, pp. 472-475.

A. L. Fisher, “Dictionary Machines with Small
Number of Processors,” Proceedings of Interna-
tional Symposium on Computer Architectures,
1984, pp. 151-156.

J. Biswas and J. C. Browne, “Simultaneous Up-
date of Priority Structures,” Proceedings of In-
ternational Conference on Parallel Processing,
August 1987, pp. 124-131.

M. J. Carey and C. D. Thompson, “An efficient
Implementation of Search trees on [log N + 1]
processors,” IEEE Transactions on Computers,
Vol. C-33, No. 11, Nov. 1984, pp. 1038-1041.

C. D. Thompson, “The VLSI Complexity of
Sorting,” IEEE Transactions on Computers,
Vol. C-32, No. 12, Dec. 1983, pp. 373-386.

A. R. Omondi and J. D. Brock, “Implementing
a Dictionary on Hypercube Machine,” Proceed-
ings of International Conference on Parallel Pro-
cessing, August 1987, pp. 707-709.

T. A. Standish, Data Structures Techniques, Ad-
dison Wesley, 1980.

D. Knuth, The Art of Computer Programming,
Vol. 3, 1973.

N. J. Nilsson, Problem Solving Methods in Ar-
tificial Intelligence, McGraw Hill,
1971.

F. Dehne and N. Santoro, “Optimal VLSI Dic-
tionary Machines on Meshes,” Proceedings of In-
ternational Conference on Parallel Processing,
August 1987

, pp. 832-840.

L. R. Goke and G. L. Lipovski, “Banyan Net-
works for Partitioning Multiprocessor Systems,”
Proceedings of the First Annual Symposium on
Computer Architecture, 1973, pp. 21-28.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman,
The Design and Analysis of Computer Algo-
rithms, Addison Wesley, 1974.

230

23

24.

25.

26.

27.

28.

29.

30.

J. H. Chang, O. H. Ibarra, Moon Jung Chung,
and Kotesh K. Rao, “Systolic Tree Implemen-
tation of Data Structures,” IEEE Transactions
on Computers, vol. 37, No 6, June 1988, pp.
727-735.

K. H. Cheng, “Efficient Design of Priority
Queue,” Proceedings of International Confer-

ence on Parallel Processing, August 1988, pp.
363-366.

V. N. Rao and V. Kumar, “Concurrent Access of
Priority Queues,” IEEE Transactions on Com-
puters, vol. 37, No. 12, December 1988, pp.
1657-1665.

Douglas W. Jones, “Concurrent Operations on
Priority Queues,” ACM, Vol. 32, No. 1, January
1989, pp. 132-137.

M. R. Meybodi, “Tree Structured Dictionary
Machines for VLSI,” Report CS-1-M87, Ohio
University, January 1987.

M. R. Meybodi, “Implementing Priority Queue
on Hypercube Machine,” Proceedings of Fourth
Annual Symposium on Parallel Processing,
Fullerton, CA, April 1990, pp.85-111.

M. R. Meybodi, “New Designs for Priority
Queue Machine,” Report CS-1-M89, Ohio Uni-
versity, July 1989.

M. R. Meybodi, “New Designs for Priority
Queue Machine,” Proceedings of PARABASE-
90: International Conference on Databases, Par-
allel Architectures and Their Applications, Mi-
ami Beach, Florida, March 1990, pp. 123-128.

o

Soalys

NN

7%

v AN %
N N .
.
;%
ap Mach

C

N
\M\ AN
) AN // /
C N
N~ N
N~ V
@ (U
15 17

n
P2

