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Abstract. In this paper, we introduce a Monote Carlo simulation method based
on distributed learning automata (DLA) for solving the stochastic shortest path
problem. We give an iterative stochastic algorithm that finds the minimum expected
value of set of random variables representing cost of paths in a stochastic graph
by taking sufficient samples from them. In the given algorithm, the sample size is
determined dynamically as the algorithm proceeds. It is shown that when the total
sample size tends to infinity, the proposed algorithm finds the shortest path. In
this algorithm, at each instant, DLA determine which edges to be sampled. This
reduces the unnecessary sampling from the edges which don't seem to be on the
shortest path and thus reduces the overall sampling size. A new method of proof
{different from [2,3]) is used to prove the convergence of the proposed algorithm,
The simulations conducted confirm the theory.

1 Introduction

The deterministic shortest path problem has been studied extensively and
many algorithms reported in the literature. In this problem, one looks for
a path joining source and destination nodes while minimizing sum of costs
of the traversed edges. However, there are many applications in which cost
of edges are random variables [1]. These graphs called stochastic graphs and
can be defined by a triple G =< V,E, >, where V = {1,2,...,n} is set
of nodes, E C V x V is set of edges, and n x n matrix €} is the probability
distribution describing the statistics of edge costs. In particular, cost Cj;
of edge (i,7) is assumed to be a random variable with gi; as its probability
density function. It is assumed that the distribution g;; is not known a priori,

The path m; from source node v, to destination node vy in the stochastic
graph G is defined as an ordering m; = {i1,42,...,im} (7 C V) in such a
way that i, = v, and i,,, = vy are source and destination nodes, respec-
tively and (ij,#;41) € E for 1 € j < m;. Assume that there are r paths
II = {m,73,...,7} between source node v, and destination node vy. The
shortest path is defined as a path with minimum expected cost. In other



2 M. R. Meybodi and Hamid Beigy

word, the shortest path =* has the expected cost Cr = mingen{Cx,},
where Cy, = Y75 Cyi,,, and C; are the expected cost of path m; and
edge (i,7), respectively. It is evident that when enough samples are taken
from edges of the graph, the estimated cost of paths approach to their ex-
pected value, but the ways to sample, number of samples, and distribution
of sampling are important and must be addressed.

DLA iz a network of automata which collectively cooperate to solve a
particular problem. In DLA, the number of actions for any automaton in
the network is equal to the number of cutgoing edges from that automa-
ton. When an automaton selects one of its actions, another automaton on
the other end of edge corresponding to the selected action will be activated.
At any time only one automaton in the network will be active. Formally, a
DLA with n learning automata (LA) can be defined by a graph (A, E), where
A= {4, Ay, -+, An} is the set of automata and E C Ax A is the set of edges
in the graph in which an edge (i,7) corresponds to action oy of automaton
A;. Two DLA based algorithms for finding shortest path in stochastic graph
are reported in the literature [2,3]. In [2], DLA is introduced and applied
to the shortest path problem. In order to compute the probability of path
7 being the shortest (p(w)), a DLA is constructed from given graph. Each
LA in this DLA updates its action probability vector using Lgr_; reinforce-
ment scheme [4] until the shortest path is found. In [3], another DLA based
algorithm which is faster than the algorithm reported in [2] is given. That
is, it requires fewer number of gamples taken from the edges of the graph
in grder to decide which path from source to destination is shortest. The
main difference between algorithms reported in [3] and the one reported in
[2] is the definition of dynamic threshold. In [2], the dynamic threshold is
the average cost of sampled paths whereas in the algorithm given in [3] the
dynamic threshold is defined to be the minimum of average cost of sampled
paths taken. It has been shown that both algorithms find the shortest path
in a stochastic graph with probability as close as to unity.

In this paper, we introduce a Monte Carlo simulation method based on
DLA for solving the stochastic shortest path problem. We give an iterative
stochastic algorithm that finds the minimum value of set {Cr,,...,Cr } of
random variables representing the expected cost of paths in a stochastic graph
by taking sufficient samples from them. In this algorithm, the sample size is
determined dynamically as the algorithm proceeds. It is shown that when the
total sample size tends to infinity, the proposed algorithm finds the shortest
path. In this algorithm, at each instant, DLA determine which edges to be
sampled. This reduces the unnecessary sampling from the edges which don't
seem to be on the shortest path and thus reduces the overall sampling size.
A new method of proof (different from [2,3]} i used to prove that if each LA
used in DLA uses the Lg_; learning algorithm, the given algorithm finds the
shortest path with probability as close as to the unity. The convergence proof
reported in [2,3] is based on Martingle theorem whereas the convergence proof
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reported in this paper is based on sampling theory. The simulation results
show that the proposed algorithin performs better in comparing to algorithms
reported in [2,3] for some of the graphs and perform worse for some other.

The rest of the paper is organized as follows: Section 2 presents the pro-
posed Algorithm. Simulation results and discussion are given in section 3 and
section 4 concludes the paper.

2 Proposed Algorithm

In this section, we propose an algorithm based on DLA for finding shortest
path in a stochastic graph. In this algorithm, the stochastic graph plays the
role of random environment for DLA. The cutput of DLA is a sequence of
actions that represent a particular path in the graph. The environment uses
the length of this path to produce its response. This response causes the ac-
tions along this path be rewarded or penalized. In the proposed algorithm, at
first a network of LA which is isomorphic to the input graph is created. In
this network each node is a LA and each outgoing edge of this node is one of
the actions of this LA. The algorithm then traverse the graph (as described
later) until the shortest path is found. For the sake of simplicity, we use no-
tations shown in figure 1 to describe the algorithm. The action probability
vector for automaton A; is shown by p = (1, p%,- ey jc)fl,} where p!. denotes
the probability of selecting action ey, that is, edge (7, m). For simplicity in
the presentation of algorithm, the actions of an automaton are shown by the
indices of adjacent automata. For example, the set of actions of automaton
A; in figure 1 is represented by {as,as}. The variable AvgCost(k) stores
the average taken over the cost of the paths traversed up to time %k and T
denotes the dynamic threshold. Now, we give a general description of the
proposed algorithm. In the first step, the source automaton A, chooses one
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Fig. 1.

of its actions, say oy,;. This action activates automaton 4., on the other end
of edge (s,m)}. The process of selection of an action and activating an au-
tomaton is repeated until destination automaton A, is reached or for some
reason moving along the edges of the graph is not possible or the number
of visited nodes exceeds the number of nodes in the graph. After the Ay is
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reached, the length of the traversed path and average cost of sampled paths
[AvgClost) are computed. Then AvgCost is compared with a dynemic thresh-
old (described later) and depending on the result of comparison, the value
of dynamic threshold is updated. Dynamic threshold T' at instant k is the
minimum of sequence {AvgCost(0),..., AvgCost(k — 1)}. At the beginning
of algorithm, the dynamic threshold is set to average cost of some random
penerated paths. If AvgCost is less than T, then T is set to AvgClost and all
the selected actions of automata along the traversed path are rewarded. If
AvgCost is grater than T, then T remains unchanged and all the selected ac-
tions of automata along the traversed path are penalized. Updating of action
probability vectors are done according to the Ly ; algorithm in the direction
from Ag to Ag. In updating phase the step lengths of automata at instant k&
along the traversed path are updated according to the following equation.
o
~ b+ek
The proeess of travelling from Ay to Ay is repeated until the stopping criteria
is reached which at this point the path last travelled has minimum expected
length among all the paths from source to destination. The algorithm stops
if the product of the probability of choosing the edge of the traversed path,
called path probability, is greater than a certain threshold. Updating the step
length of Lg_; scheme according to equation (1) decreases the risk of conver-
gence to non-optimal action [5]. In order to excludes loops from the traversed
paths, the algorithm meets every node along a path being traversed at most
once. To implement this, if an LA chooses action ap from the list of its ac-
tions, then all unactivated LAs will disable action o (but not removed) in
their list of actions. When travelling again from source to destination node,
all the disabled actions will be enabled.

The main contribution of this paper is summarized by the following theorem.

ap for k>1 and b21>afe>0 (1)

Theorem 1. If g{n} evolves according to the given algorithm, then the pro-
posed algorithm converges to the shortest path with a probability as close as
to unity for graphs with unique shortest path.

Sketch of Proof This theorem is proved in two steps. In the first step, it
is shown that every edge in the graph will be sampled infinitely often with
probability 1. In the second step, it is first shown that the dynamic threshold
is a decreasing function with respect to time and then shown that the dynamic
threshold converges to its minimum with probability 1. That is the algorithm
finds the path with minimum expected cost with probability as close as to
unity. The detailed proof is given in [6].

3 Experiments

In order to study the feasibility of the proposed algorithm, experiments are
conducted on stochastic graphs given in figures 3 through 5. These graphs
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are borrowed from [7]. Graph 1, which is shown in figure 3 is a graph with
4 nodes, 5 arcs, v, = 1, and vy = 4. Graph 2 that is shown in figure 4 is a
graph with 10 nodes, 23 arcs, vy, = 1, and vy = 10. Graph 3, which is shown in
figure 5 is a graph with 15 nodes, 42 arcs, v, = 1, and vy = 15. To compare
the performance of the proposed algorithm and the algorithm reported in
[2,3], three sets of experiments are conducted on the above mentioned graphs
and the results are summarized in table 1. The proposed algorithm will be
terminated when the probability of traversed path is greater than 0.9 or
900, 000 paths are traversed. The algorithm is executed 100 times and the
results are summarized in two tables. The average number of iterations for
converged runs and the percentage of converged runs are given in the first
table. The second table for each algorithm, shows the total number of samples
taken from all edges in the graph and also the total number of samples taken
from the edges along the shortest path. The simulation results show that the
proposed algorithm performs better in comparison with algorithms reported
in [2,3] for some of the graphs and performs worse for some other graphs.
It seems that the graph on which the proposed algorithm is tested plays a
major rule on the rate of convergence. For more experimentation refer to [6].

Fig. 5. Graph 3

4 Conelusion

In this paper we have studied the problem of determining the optimal path
in a stochastic network. The algorithm presented provides policy which can
be used to determine a path from source to destination node with minimal
expected cost. This algorithm is an adaptive procedure based on distributed
learning automata. A new method of proof (different from [2,3]) is used to







