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a b s t r a c t

In this paper, we first propose two learning automata based decentralized dynamic guard
channel algorithms for cellular mobile networks. These algorithms use learning automata
to adjust the number of guard channels to be assigned to cells of network. Then, we intro-
duce a new model for nonstationary environments under which the proposed algorithms
work and study their steady state behavior when they use LR�I learning algorithm. It is also
shown that a learning automaton operating under the proposed nonstationary environ-
ment equalizes its penalty strengths. Computer simulations have been conducted to show
the effectiveness of the proposed algorithms. The simulation results show that the perfor-
mances of the proposed algorithms are close to the performance of guard channel algo-
rithm that knows all the traffic parameters.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, there is an increase in the popularity of mobile computing systems, which results in an increase for
channel (bandwidth) demands. Since the number of channels allocated for this purpose is limited, cellular networks are
introduced, in which the service area is partitioned into regions called cells. Every cell is serviced by a server called base
station. When a mobile station moves across the cell boundary while using channels, handoff is required. If an idle channel
is available in the destination cell, then the call is resumed; otherwise the call is dropped. The dropping probability of
handoff calls ðBhÞ and the blocking probability of new calls ðBnÞ are important quality of service (QoS) measures of the
cellular networks. Since the disconnection in the middle of a call is highly undesirable, dropping of handoff calls is more
serious than blocking of new calls. Blocking more new calls generally improves the dropping probability of handoff calls
and admitting more new calls generally improves the blocking probability of new calls. In order to control these QoS mea-
sures, call admission control algorithms are introduced, which determine whether a new call should be admitted or blocked.
Both blocking probability of new calls and dropping probability of handoff calls are affected by call admission control algo-
rithms. Several call admission algorithms have been proposed in the literature. Fractional channel algorithm accepts new
calls with a certain probability that depends on the current channel occupancy and accepts handoff calls as long as chan-
nels are available [1]. A restricted version of this algorithm is uniform fractional channel algorithm (UFC), which accepts
new calls with probability of p independent of channel occupancy [2]. It is shown that there is an optimal p�, which min-
imizes the blocking probability of new calls with the constraint on the dropping probability of handoff calls. An algorithm
for finding p� and conditions for which the uniform fractional guard channel performs better than guard channel is given
in [2]. Another restricted version of fractional channel algorithm is called guard channel algorithm, which reserves a subset
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of channels allocated to a cell, called guard channels, for handoff calls (say C � T channels) [3–5], where 0 6 T 6 C is a
threshold and C is the number of channels allocated to the cell. Whenever the channel occupancy exceeds the threshold
T, the algorithm rejects new calls until the channel occupancy goes below the threshold. The guard channel algorithm ac-
cepts handoff calls as long as channels are available. As the number of guard channels increases, the dropping probability
of handoff calls will be reduced while the blocking probability of new calls will be increased [4]. It has been shown that
there is an optimal threshold T� in which the blocking probability of new calls is minimized subject to the constraint on
the dropping probability of handoff calls [1]. Algorithms for finding T� are given in [1,4,5]. If only the dropping probability
of handoff calls is considered, the guard channel algorithm gives very good performance, but the blocking probability of
new calls is degraded to a great extent. In order to have more control on both the dropping probability of handoff calls and
the blocking probability of new calls, limited fractional guard channel algorithm (LFG) is proposed [1]. This algorithm, which
reserves non-integral number of guard channels for handoff calls, uses an additional parameter p and operates the same
as the guard channel algorithm except when T channels are occupied in the cell, in which case new calls are accepted with
probability p. It has been shown that there is an optimal pair ðT�;p�Þ, which minimizes the blocking probability of new
calls subject to the constraint on the dropping probability of handoff calls [1]. An algorithm for finding the optimal param-
eters is given in [1].

All of the above mentioned algorithms are useful when the input traffic is a stationary process with known parameters.
Since the parameters of input traffic are unknown and possibly time varying, adaptive versions of these algorithms need to
be used. In [6], two adaptive uniform fractional channel algorithm based on learning automata are introduced in which the
parameter of uniform fractional guard channel algorithm is adjusted according to the traffic condition. In [7,8], dynamic
guard channel algorithms are proposed in which the number of guard channels in any particular cell is adjusted based on
the number of ongoing calls in neighboring cells. For more information about the call admission algorithms in cellular mobile
networks, the readers may refer to [9].

In other hand learning automata are simple agents that have many desirable features such as they can be used without
any priori information about the underlying application with large amount of uncertainty, require a very little and simple
feedback from their environment, are very simple in structure and can be implemented easily in software or hardware,
and require a few mathematical operations at each iteration so they can be used in real-time applications. Learning
automata are also very useful in multi-agent and distributed systems with limited intercommunication and incomplete
information and unlike traditional hill-climbing algorithms, hill-climbing in learning automata is done in expected sense
in a probability space. Optimization algorithms based on learning automata do not need the objective function to be an
analytical function of adjustable parameters. Learning automata have flexibility and analytical tractability needed for most
applications. These features make learning automata as a useful tool for finding the near optimal number of guard
channels.

In this paper, we first propose two learning automata based adaptive and autonomous call admission control algo-
rithms. These algorithms only use the current channel occupancy of the given cell and dynamically adjust the number
of guard channels for that cell. The proposed algorithms adapt the number of guard channels in such a way that the
blocking probability of the new calls is minimized subject to the constraint on the dropping probability of the handoff
calls. Since the learning automaton starts its learning without any priori knowledge about its environment, the proposed
algorithms do not need any a priori information about input traffic and can adapt itself to the varying traffic. One of the
most important advantages of the proposed algorithms is that no status information will be exchanged among the neigh-
boring cells, although addition of such information increases the performance of the call admission algorithm [10,11].
The simulation results show that the performances of the proposed algorithms are close to the performance of guard
channel algorithm that knows all traffic parameters. In this paper, we also formulated the nonstationary environment
under which the proposed algorithms work and then study their behavior when they use LR�I learning algorithm. It is
also shown that a learning automaton operating under the proposed nonstationary environment equalizes its penalty
strengths.

The rest of this paper is organized as follows. Guard channel algorithm and learning automata are given in Sections 2 and
3, respectively. The proposed adaptive call admission control algorithms are given in Section 4. The simulation results are
given in Section 5 and Section 6 concludes the paper.

2. Basics in guard channel algorithm

In this section, we briefly describe the guard channel algorithm and compute its blocking performance. We assume that
any given cell has a limited number of full duplex channels, C, in its channel pool. The guard channel algorithm, which is
depicted algorithmically in Algorithm 1, reserves a subset of channels allocated to a particular cell for handoff calls (say
C � T channels) [3], where 0 6 T 6 C is a threshold. These C � T channels are called guard channels. Whenever the channel
occupancy exceeds threshold T, guard channel algorithm rejects new calls until the channel occupancy goes below T. The
guard channel algorithm accepts handoff calls as long as channels are available.
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Algorithm 1. The algorithmic description of the guard channel algorithm

1: procedure GUARDCHANNEL(C, T)
2: if NEW CALL then . if the incoming call is a new call
3: if cðtÞ < Tthen
4: accept call . if the number of occupied channels is less than the threshold
5: else
6: block call
7: endif
8: else . if the incoming call is a handoff call
9: if cðtÞ < Cthen
10: accept call . if the cell has free channels
11: else
12: drop call
13: end if
14: end if
15: end procedure

We consider a homogeneous cellular network where all cells have the same number of channels C and experience the same
new and handoff call arrival rates. In each cell, the arrival of new calls and handoff calls are Poisson distributed with arrival
rates kn and kh, respectively, and the channel holding time of new and handoff calls are exponentially distributed with mean
l�1. This set of assumptions have been found reasonable as long as the number of mobile users in a cell is much greater than
the number of channels allocated to that cell. We define the state of a particular cell at time T to be the number of busy chan-
nels in that cell and is represented by cðtÞ. fcðtÞjt P 0g is a continuous-time Markov chain (birth–death process) with states
0;1; . . . ;C. The state transition rate diagram of a cell with C full duplex channels and guard channel algorithm is shown in Fig. 1.

Define the steady state probability

Pn ¼ lim
t!1

Prob½cðtÞ ¼ n n ¼ 0;1; . . . ;C: ð1Þ

The steady state probability Pn that n channels are busy is given by the following expression [3].

Pn ¼
qn

n!
P0 0 6 n 6 T

qnan�T

n!
P0 T < n 6 C;

(
ð2Þ

where k ¼ kn þ kh;a ¼ kh=k;q ¼ k=l, and P0 is the probability that all channels are free and is calculated by the following
expression.

P0 ¼
XT�1

k¼0

qk

k!
þ
XC

k¼T

qkak�T

k!

" #�1

: ð3Þ

Using above expressions, we can drive an expression for dropping probability of handoff calls using C channels and C � T
guard channels.

BhðC; TÞ ¼
qCaC�T

C!
P0: ð4Þ

Similarly, the blocking probability of new calls is given by the following expression.

BnðC; TÞ ¼
XC

k¼T

qkak�T

k!
P0: ð5Þ

3. Learning automata

The automata approach to learning involves determination of an optimal action from a set of allowable actions. An
automaton can be regarded as an abstract object with finite number of actions [12]. It selects an action from its finite set

Fig. 1. Markov chain model of a cell for guard channel algorithm.
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of actions and applies it to a random environment. The random environment evaluates the applied action and gives it a
response. The response from the environment is used by automaton to modify its action probabilities (p) and to select its
next action. By continuing this process, the automaton learns to select the action with the highest reward. The interaction
of an automaton with its environment is shown in Fig. 2.

An automaton acting in an unknown random environment and improves its performance using a learning algorithm in
some specified manner, is referred to as learning automaton (LA). The crucial factor affecting the performance of a learning
automaton is learning algorithm. Various learning algorithms have been reported in the literature. Let ai be the action chosen
at time k as a sample realization from probability distribution pðkÞ. In linear reward-inaction algorithm the recurrence equa-
tion for updating pjðnÞ for j ¼ 1;2; . . . ; r is defined as

pjðnþ 1Þ ¼
pjðnÞ � a½1� bðnÞ�pjðnÞ j–i

pjðnÞ þ a½1� bðnÞ�
P
k–i

pkðnÞ j ¼ i;

8<: ð6Þ

where parameter 0 < a < 1 represent step length that determines the amount of increase of the action probabilities, r is the
number of actions for learning automaton and 0 6 bðnÞ 6 1 is the response of the environment, where smaller values of bðnÞ
means more favorable response. If output of the environment is binary, i.e. bðnÞ 2 f0;1g, where 0 is for reward and 1 is for
penalty, the environment is called P-model and the algorithm is denoted by LR�I . If output of the environment takes a finite
number of values in interval ½0;1�, the environment is called Q-model and if output of the environment lies in interval ½0;1�,
the environment is denoted by S-model. In Q- and S-model environments the algorithm is called SLR�I . Learning automata
have been used successfully in many applications such as routing and call admission control in computer network [13–
15], solving NP-Complete problems [16–19], capacity assignment [20,21], neural network engineering [22–26], cellular net-
works [6], and too many other applications [27–29] to mention a few.

4. Dynamic guard channel algorithms

In this section, we consider cellular networks with two classes of calls and introduce two learning automata based algo-
rithms to determine the near optimal number of the guard channels when parameters kn, kh and l are unknown and possibly
time varying. In these algorithms, learning automata are used to adapt the number of guard channels as the network
operates. Let gðtÞ be the number of guard channels at time instant T which takes values in interval gmin; gmax½ �, (for
0 6 gmin < gmax 6 C). In these algorithms, each base station uses one learning automaton with action set a ¼
fa1;a2; . . . ;arg, where r ¼ gmax � gmin þ 1. Selection of action ai by learning automaton means that the base station uses
gðtÞ ¼ gmin þ ai � 1 guard channels. The operation of these algorithms can be described as follows. These algorithms accept
handoff calls as long as the cell has free channels. When a new call arrives at a given cell, the learning automaton assigned to
this cell chooses one of its actions, say ai. If the cell has at least gmin þ ai � 1 free channels, then the call will be accepted;
otherwise it will be blocked. Then the base station computes the current estimate of the dropping probability of handoff calls
ðbBhÞ and based on the result of comparison of this quantity with the specified level of QoS ðphÞ, the reinforcement signal is
produced and the action probability vector of the learning automaton updated using a learning algorithm. The differences
between the proposed algorithms are the way that they produce reinforcement signal for the learning automata and the
learning algorithm used to update the action probability vector.

4.1. Dynamic guard channel algorithm I

This algorithm, which is depicted in Algorithm 2, uses an SLR�I learning automaton in each cell of the network. The rein-
forcement signal at time instant n is generated using the following expression.

bðnÞ ¼ w bBh � ph

��� ���� �
; ð7Þ

where w : R! ½0;1� is a projection function. The projection function wð:Þ is considered to be a continuous, nondecreasing and
non-negative function that maps the set of real numbers ðRÞ into ½0;1�, for example wðxÞ ¼ x can be a projection function,
which maps ½0;1� into ½0;1�. The continuity of w is needed because the response produced by the environment is a real num-
ber in interval ½0;1�, the non-negativity of function w is needed in order to maintain the reward and penalty nature of updat-

Fig. 2. The interaction of an automaton and its environment.
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ing, and the nondecreasing property of w ðw0ð:ÞP 0Þ is needed for preserving the relative strength of the reinforcement sig-
nal. From (7), it is obvious that when bBh is far from ph, then the reinforcement signal will be large, which causes the selected
action of the learning automaton to be penalized. When bBh is near to ph, the reinforcement signal will be small and near to
zero which causes the selected action of the learning automaton to be rewarded. In other words, when bBh is greater than ph,
the chosen number of guard channels is too small and when bBh is smaller than ph, the number of guard channels chosen by
learning automaton is large. In other words, the reinforcement signal is an indicator of the relative distance of the dropping
probability of handoff calls to the predefined level of QoS.

Algorithm 2. Learning automata based dynamic guard channel algorithm I

1: procedure DGC1(C)
2: if NEW CALL then . if the incoming call is a new call
3: LA chooses an action and call it ai

4: giðtÞ  gmin þ ai � 1. . Learning automaton determines the number of guard channels
5: if cðtÞ < C � giðtÞ then
6: accept the incoming call
7: else
8: block the incoming call
9: end if
10: b w bBh � ph

��� ���� �
.

11: for k 1 to r
12: if k–i then
13: pk  pk � a½1� b�pk . Penalize the chosen action
14: else
15: pi  pi þ a½1� b�ð1� piÞ . Penalize the chosen action
16: end if
17: end for
18: else . if the incoming call is a handoff call
19: if cðtÞ < C then
20: accept the incoming call
21: else
22: drop the incoming call
23: end if
24: end if
25: end procedure

The operation of Algorithm 2 can be described as follows: when a handoff call arrives at a cell and if the cell has at least one
free channel, then the call is accepted and a free channel is assigned to it; otherwise it is dropped. When a new call arrives to a
cell, the learning automaton assigned to that cell chooses one of its actions. Let ai be the action selected by learning autom-
aton. Then the base station calculates the number of guard channels to be used in the cell according to the following equation.

gðtÞ ¼ gmin þ ai � 1:

The incoming new call is accepted if the cell has at least gðtÞ free channels; otherwise it is blocked. Finally an estimate of
dropping probability and the reinforcement signal is computed and then the action probability vector updated accordingly.
In the rest of this section, we will study the behavior of this algorithm.

4.1.1. Behavior of dynamic guard channel algorithm I
In the rest of this section, we study the steady state behavior of this algorithm. We first give a mathematical model for the

nonstationary environment under which the SLR�I learning automaton operates and then study the behavior of the autom-
aton operating in this environment. For the sake of simplicity, we use an automaton, with two actions a1 and a2 with prob-
ability vector pðnÞ ¼ ½p1ðnÞ; p2ðnÞ�

t at stage n. The nonstationary environment at stage n can be completely described by input
set a ¼ fa1;a2g, a continuous output set b ¼ f½0;1�g, and the penalty strengths s1ðnÞ and s2ðnÞ, where smaller value of b
means more favorable output. The penalty strengths s1ðnÞ and s2ðnÞ when the automaton chooses action ai (for i ¼ 1;2) is
changed according to the following equations.

sjðnþ 1Þ ¼
sjðnÞ þ h0ijðnÞ with probability of qiðnÞ
sjðnÞ þ /0ijðnÞ with probability of 1� qiðnÞ;

�
ð8Þ

where h0ijðnÞ and /0ijðnÞ is the amount of changes in sjðnÞ (for j ¼ 1;2) when the automaton chooses action ai (for i ¼ 1;2) at
stage n and
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qiðnÞ ¼ Prob cðnÞ < C � giðnÞ½ �:

In general, h0ijðnÞ;/0ijðnÞ, and qiðnÞ (for i; j ¼ 1;2) can be functions of p1ðnÞ; s1ðnÞ; s2ðnÞ; kn; kh;l, and C, but to keep the model
both simple and tractable we assume that h0ijðnÞ;/0ijðnÞ, and qiðnÞ are fixed h0ij;/0ij, and qi. Since s1ðnÞ and s2ðnÞ in (8) are in
the interval ð0;1Þ and are not close to zero or one, we need to have the following assumption.

Assumption 1. h0ijðnÞ and /0ijðnÞ are h0ij and /0ij, respectively, unless they lie outside of the interval ½0;1�. That is

h0ijðnÞ ¼
h0ij if 0 6 sjðnÞ þ h0ij 6 1
sjðnÞ if sjðnÞ þ h0ij < 0
1� sjðnÞ if sjðnÞ þ h0ij > 1:

8><>: ð9Þ

Similarly,

/0ijðnÞ ¼
/0ij if 0 6 sjðnÞ þ /0ij 6 1
sjðnÞ if sjðnÞ þ /0ij < 0
1� sjðnÞ if sjðnÞ þ /0ij > 1:

8><>: ð10Þ

By the above assumptions, the changes in probability strengths, h0ijðnÞ or /0ijðnÞ (for i; j ¼ 1;2), are fixed except when the pen-
alty strength s1ðnÞ and s2ðnÞ, which is given by Eq. (8), lies outside of the interval ½0;1�. In the following two lemmas, we com-
pute s1ðnÞ and s2ðnÞ. Let ~p1ðnÞ ¼ fp1ð0Þ; p1ð1Þ; . . . ; p1ðn� 1Þg. It is assumed that s1ðnÞ and s2ðnÞ are in interval ð0;1Þ and are not
close to 0 or 1, i.e. hijðnÞ and /ijðnÞ (for i; j ¼ 1;2) are fixed. The resulting analysis is approximate in the sense that it is not
valid when s1ðnÞ and s2ðnÞ are close to zero or one.

Lemma 1. Let hijðnÞ ¼ qiðnÞh0ij and /ijðnÞ ¼ ð1� qiðnÞÞ/0ijðnÞ. The expected value of penalty strength s2ðnÞ and s1ðnÞ are equal to

E s2ðnÞ ~p1ðnÞj½ � ¼ s2ð0Þ þ ðh12 þ /12Þ � ðh22 þ /22Þ½ �
Xn�1

i¼0

p1ðiÞ þ n h22 þ /22½ �; ð11Þ

E s1ðnÞ ~p1ðnÞj½ � ¼ s1ð0Þ þ ðh11 þ /11Þ � ðh21 þ /21Þ½ �
Xn�1

i¼0

p1ðiÞ þ n h21 þ /21½ �: ð12Þ

Proof. Computing the expectations of s2ðnÞ on the sequence of action probabilities ~p1ðnÞ ¼ fp1ð0Þ; p1ð1Þ; . . . ; p1ðn� 1Þg, we
obtain

E s2ðnÞ ~p1ðnÞj½ � ¼ E s2ðn� 1Þ ~p1ðnÞj½ � þ p1ðn� 1Þq1ðn� 1Þh012ðn� 1Þ þ ð1� p1ðn� 1ÞÞq2ðn� 1Þh022ðn� 1Þ
þ p1ðn� 1Þð1� q1ðn� 1ÞÞ/012ðn� 1Þ þ ð1� p1ðn� 1ÞÞð1� q2ðn� 1ÞÞ/022ðn� 1Þ: ð13Þ

Suppose that qiðnÞ ¼ qi (for n P 0) and using Assumption 1, the above equation becomes

E s2ðnÞ ~p1ðnÞj½ � ¼ E s2ðn� 1Þ ~p1ðnÞj½ � þ p1ðn� 1Þh12 þ ð1� p1ðn� 1ÞÞh22

� p1ðn� 1Þ/12 þ ð1� p1ðn� 1ÞÞ/22 ð14Þ
¼ p1ðn� 1Þ ðh12 þ /12Þ � ðh22 þ /22Þ½ � þ h22 þ /22½ � þ E s2ðn� 1Þ ~p1ðnÞj½ �
¼ p1ðn� 1Þ ðh12 þ /12Þ � ðh22 þ /22Þ½ �
þ p1ðn� 2Þ ðh12 þ /12Þ � ðh22 þ /22Þ½ � þ 2 h22 þ /22½ � þ E s2ðn� 2Þ ~p1ðnÞj½ �

¼ s2ð0Þ þ ðh12 þ /12Þ � ðh22 þ /22Þ½ �
Xn�1

i¼0

p1ðiÞ þ n h22 þ /22½ �: ð15Þ

The expected value of penalty strength s1ðnÞ is obtained in similar way. h

Now, we are ready to study the behavior of the SLR�I learning algorithm in the given nonstationary environment. In the
automaton–environment connection, ðp1ðnÞ; s1ðnÞ; s2ðnÞÞ describes a discrete time continuous state Markov process with
ð0;1;0Þ and ð1;0;1Þ as the absorbing states. Computing the expectations on the sequence of action probabilities
~p1ðnÞ ¼ fp1ð0Þ; p1ð1Þ; . . . ; p1ðn� 1Þg, we obtain

Dp1ðnÞ ¼ E p1ðnþ 1Þ � p1ðnÞ ~p1ðnÞj½ � ¼ a½1� p1ðnÞ�p1ðnÞE 1� s1ðnÞ ~p1ðnÞj½ � � a½1� p1ðnÞ�p1ðnÞE 1� s2ðnÞ ~p1ðnÞj½ �
¼ a½1� p1ðnÞ�p1ðnÞE s2ðnÞ � s1ðnÞ ~p1ðnÞj½ �: ð16Þ

We are interested in studying the equilibrium points of Eq. (16). The equilibrium points of Eq. (16) are those points that sat-
isfy the equation Dp1ðnÞ ¼ 0, where the expected changes in the probability is zero. The equilibrium points of Eq. (16) are

p1ðnÞ ! 0; p1ðnÞ ! 1; E s2ðnÞ � s1ðnÞ ~p1ðnÞj½ � ! 0: ð17Þ

We assume that Eq. (16) converges to one of its equilibrium points, i.e. limn!1Dp1ðnÞ ¼ 0. Two equilibrium points p1ðnÞ ¼ 0
and p1ðnÞ ¼ 1 correspond to the absorbing states as in a conventional SLR�I learning algorithm operating in a stationary
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environment. The third equilibrium point, E s2ðnÞ � s1ðnÞ ~p1ðnÞj½ � ! 0, represents an entirely different kind of behavior and
convergence of p1ðnÞ depends on the evolution of the penalty strengths, which are studied in the following lemma.

Lemma 2. When p1ðnÞ converges in the sense that E s2ðnÞ � s1ðnÞ ~p1ðnÞj½ � ! 0, then

1
n

Xn�1

i¼0

p1ðiÞ !
ðh22 þ /22Þ � ðh21 þ /21Þ½ �

ðh11 þ /11Þ þ ðh22 þ /22Þ � ðh21 þ /21Þ � ðh12 þ /12Þ½ � : ð18Þ

Proof. Substituting (11) and (12) in E s2ðnÞ � s1ðnÞ ~p1ðnÞj½ � ! 0, we obtain

E s2ðnÞ � s1ðnÞ ~p1ðnÞj½ � ¼ s2ð0Þ � s1ð0Þ½ � þ n ðh22 þ /22Þ � ðh21 þ /21Þ½ �

þ ðh12 þ /12Þ � ðh22 þ /22Þ � ðh11 þ /11Þ þ ðh21 þ /21Þ½ �
Xn�1

i¼0

p1ðiÞ: ð19Þ

Since E s2ðnÞ � s1ðnÞ ~p1ðnÞj½ � ! 0; the above equation implies that

1
n

Xn�1

i¼0

p1ðiÞ !
ðh22 þ /22Þ � ðh21 þ /21Þ½ �

ðh11 þ /11Þ þ ðh22 þ /22Þ � ðh21 þ /21Þ � ðh12 þ /12Þ½ � : � ð20Þ

Substituting Eq. (18) in (11) and simplifying we get

E s2ðnÞ ~p1ðnÞj½ � ¼ s2ð0Þ þ n
ðh22 þ /22Þ � ðh21 þ /21Þ½ � ðh12 þ /12Þ � ðh22 þ /22Þ½ �
ðh22 þ /22Þ � ðh21 þ /21Þ þ ðh11 þ /11Þ � ðh12 þ /12Þ

þ n h22 þ /22½ �

¼ s2ð0Þ þ n
ðh22 þ /22Þðh11 þ /11Þ � ðh21 þ /21Þðh12 þ /12Þ

ðh22 þ /22Þ � ðh21 þ /21Þ þ ðh11 þ /11Þ � ðh12 þ /12Þ
: ð21Þ

Eq. (21) must be used with caution because its validity holds only when hijðnÞ;/ijðnÞ, and qiðnÞ are fixed and when s2ðnÞ is not
in the vicinity of zero or one. However, Eq. (21) gives the valuable information that E s2ðnÞ ~p1ðnÞj½ � decreases towards zero
when the second term is negative and increases towards one when the second term is positive. A similar analysis for
s1ðnÞ yields

E s1ðnÞ ~p1ðnÞj½ � ¼ s1ð0Þ þ n
ðh22 þ /22Þ � ðh21 þ /21Þ½ � ðh11 þ /11Þ � ðh21 þ /21Þ½ �
ðh22 þ /22Þ � ðh21 þ /21Þ þ ðh11 þ /11Þ � ðh12 þ /12Þ

þ n h21 þ /21½ �

¼ s1ð0Þ þ n
ðh11 þ /11Þðh22 þ /22Þ � ðh21 þ /21Þðh12 þ /12Þ

ðh22 þ /22Þ � ðh21 þ /21Þ þ ðh11 þ /11Þ � ðh12 þ /12Þ
: ð22Þ

and hence E s1ðnÞ ~p1ðnÞj½ � behaves in the same way as E s2ðnÞ ~p1ðnÞj½ �.

Theorem 1. The SLR�I automaton operating in the nonstationary environment as defined by equation (8) equalizes the expected
penalty strengths of two actions.

Proof. It is seen from (18) that the limit to which 1
n

Pn�1
i¼0 p1ðiÞ converges depends only on the changes in the penalty

strengths. In (18), ðh22 þ /22Þ � ðh21 þ /21Þ corresponds to the difference between changes in s2 and s1 when action a2 is per-
formed and ðh11 þ /11Þ � ðh12 þ /12Þ corresponds to the difference between changes in s1 and s2 when action a1 is performed.
From (18), it is clear that the ratio in which the two actions a1 and a2 are chosen in the long run is inversely proportional to
these changes, i.e. ðh22 þ /22Þ � ðh21 þ /21Þ and ðh11 þ /11Þ � ðh12 þ /12Þ. It must be noted that p1ðnÞ does not converge to a
fixed value since this would imply an absorbing state other than zero or one. The convergence is in the sense indicated in
(19) and is that of a sample average. The probabilities of p1ðnÞ and p2ðnÞ of the two actions as well as the penalty strengths
s1ðnÞ and s2ðnÞ vary with time in such manner that

E s2ðnÞ � s1ðnÞ ~p1ðnÞj½ � ! 0; ð23Þ

or the expected penalty strengths of two actions tend to be equalized. This is achieved by a1 being chosen a fraction
ðh22þ/22Þ�ðh21þ/21Þ

ðh11þ/11Þþðh22þ/22Þ�ðh21þ/21Þ�ðh12þ/12Þ
of the total number of times in the long run. The equalization of the expected values of penalty

strengths is one significant feature of this model. h

Remark 1. Let cðnÞ be the number of busy channels at stage n; PcðnÞðnÞ be the probability of having cðnÞ busy channels and
giðnÞ be the number of guard channels chosen by the learning automaton at stage n. Let pcðnÞðnÞ be the probability of accept-
ing new calls at stage n when the cell has cðnÞ busy channels. It is evident that piðnÞ is a function of PcðnÞðnÞ and pgiðnÞðnÞ. Since
piðnÞ is updated as a result of learning, the proposed algorithm can be considered as an adaptive version of fractional guard
channel algorithm.
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Remark 2. The equalization of the expected values of penalty strengths is one significant feature of the proposed model.
When the expected values of penalty probabilities are equalized, new calls are rejected with the same probability at different
states of birth–death process model of the cell. This is similar to the adaptive uniform fractional channel algorithm [6].

Remark 3. From Remarks 2 and 1, it can be concluded that the given algorithm exhibits the behavior of adaptive fractional
guard channel algorithm in transient state and adaptive uniform fractional channel algorithm in steady state.

4.2. Dynamic guard channel algorithm II

Although the blocking probability of new calls for algorithm I is lower than the blocking probability of the guard channel
algorithm, but it can not maintain the predefined level of QoS, as evidenced by the results of simulation. The algorithm pre-
sented in this section, (Algorithm 3) tries to minimize the blocking probability of new calls and at the same time to maintain
the specified level of QoS. This algorithm uses an LR�I learning automaton in each cell for determination of the number of
guard channels. The selected action of learning automaton in a cell will be rewarded if the incoming new call is accepted
and the current estimate of dropping probability of handoff calls ðbBhÞ is less than the specific level of QoS ðphÞ or the incom-
ing new call is rejected and the current estimate of dropping probability of handoff calls is greater than the specific level of
QoS; the selected action neither rewarded nor penalized otherwise.

Algorithm 3. Learning automata based dynamic guard channel algorithm II

procedure DGC II(C)
if NEW CALL then . if the incoming call is a new call

LA chooses an action and call it ai

giðtÞ  gmin þ ai � 1. . Learning automaton determines the number of guard channels
if cðtÞ < C � giðtÞ then

accept the incoming call
else

block the incoming call
end ifbBh  thenumberofdroppedhandoffcalls

totalnumberofhandoffcalls
. Estimate the dropping probability of handoff calls

if the incoming new call is accepted then

if bBh 6 ph then
for k 1 to r do

if k–i then
pk  ð1� aÞpk

else
pi  pi þ að1� piÞ

end if
end for

end if

else if bBh > ph then
for k 1 to r do

if k–i then
pk  ð1� aÞpk

else
pi  pi þ að1� piÞ

end if
else for

end if
else

if cðtÞ < C then
accept the incoming call

else
drop the incoming call

end if
end if

end procedure
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The operation of this algorithm can be described as follows: when a handoff call arrives at a cell, if the cell has at least one
free channel, the call will be accepted and a free channel will be assigned to it; otherwise it will be dropped. When a new call
arrives at a cell, the learning automaton associated to that cell will choose one of its actions. Let ai be the action selected by
learning automaton. Then the base station calculates the number of guard channels to be used in the cell according to the
following equation.

giðtÞ ¼ gmin þ ai � 1:

The incoming new call will be accepted if the cell has at least giðtÞ free channels; otherwise it will be blocked. Finally an esti-
mate of dropping probability ðbBhÞ is computed and if the new call is accepted and bBh is less than ph then the selected action of
learning automaton will be rewarded; if the new call is blocked and bBh is greater than ph then the selected action of learning
automaton will be rewarded. In the rest of this section, we study the behavior of this algorithm.4.2.1. Behavior of dynamic
guard channel algorithm II

In what follows, first we study the behavior of this algorithm with respect to the channel utilization and then investigate
the asymptotic behavior of this algorithm. This analysis is similar to analysis of the asymptotic behavior of algorithm I.

4.2.2. The channel utilization for algorithm II
Define mn ðm1 < m2 < . . .Þ be a sequence of random variables, where mn is the time at which the nth new call arrives. We

have

Dmn ¼ mnþ1 �mn ¼ 1=kn: ð24Þ

Let giðnÞ be the number of guard channels reserved for the given cell at time mn and XiðnÞ be a random variable that at time
mn takes value 1 when a new call is accepted and value 0 when a new call is rejected. Suppose that some handoff calls will
arrive in time interval ðmn;mnþ1Þ, thus the excepted number of handoff calls in interval mn;mnþ1ð Þ is equal to kh=kn. Suppose
that the dropping probability of handoff calls in the interval mn;mnþ1ð � to be fixed. When the nth new call arrives to a cell, the
learning automaton associated to that cell chooses one of its actions, say ai. If the new call is accepted at time mn, the ex-
pected number of busy channels at time mnþ1 can be computed as follows.

E cðnþ 1Þ XiðnÞ ¼ 1j½ � ¼ cðnÞ þ 1� ½cðnÞ þ 1� l
kn
þ 1� E bBhðnÞ XiðnÞ ¼ 1j

h ih i kh

kn

¼ cðnÞ þ 1½ � 1� l
kn

� �
þ 1� E bBhðnÞ XiðnÞ ¼ 1j

h ih i kh

kn
; ð25Þ

where 1� E bBhðnÞ XiðnÞ ¼ 1j
h ih i

kh
kn

is the expected number of the accepted handoff calls and ½cðnÞ þ 1� lkn
is the excepted num-

ber of calls that are departed from the system in interval ðmn;mnþ1Þ. Similarly, if the new call is rejected at time mn, then the
expected number of busy channels at mnþ1 can be computed as follows.

E cðnþ 1Þ XiðnÞ ¼ 0j½ � ¼ cðnÞ � cðnÞ l
kn
þ 1� E bBhðnÞ XiðnÞ ¼ 0j

h ih i kh

kn

¼ cðnÞ 1� l
kn

� �
þ 1� E bBhðnÞ XiðnÞ ¼ 0j

h ih i kh

kn
; ð26Þ

where 1� E bBhðnÞ XiðnÞ ¼ 0j
h ih i

kh
kn

is the expected number of the accepted handoff calls and cðnÞ l
kn

is the excepted number of
calls that are departed from the system in interval ðmn;mnþ1Þ. Let qiðnÞ ¼ Prob½XiðnÞ ¼ 1�. The expected number of busy chan-
nels at time mnþ1 is equal to

E cðnþ 1Þ½ � ¼
Xr

i¼1
E cðnþ 1Þ XiðnÞ ¼ 1j½ �Prob½XiðnÞ ¼ 1� þ E cðnþ 1Þ XiðnÞ ¼ 0j½ �Prob½XiðnÞ ¼ 0�f gpiðnÞ

¼
Xr

i¼1
E cðnþ 1Þ XiðnÞ ¼ 1j½ �qiðnÞ þ E cðnþ 1Þ XiðnÞ ¼ 0j½ �ð1� qiðnÞÞf gpiðnÞ; ð27Þ

where piðnÞ is the probability of choosing action ai by the automaton and r is the number of actions for the automaton.

4.2.3. The asymptotic behavior of algorithm II
In the rest of this section, we study the asymptotic behavior of algorithm II. The mathematical model for the nonstation-

ary environment under which the LR�I learning automaton operates is similar to the nonstationary environment for algo-
rithm I. For the sake of simplicity, the analysis is done for an automaton with two actions a1 and a2 with probability
vector pðnÞ ¼ ½p1ðnÞ; p2ðnÞ�

t at stage n. The nonstationary environment at stage n can be completely described by input set
a ¼ fa1;a2g, a binary output set b ¼ f0;1g, and penalty probabilities c1ðnÞ and c2ðnÞ. The penalty probabilities c1ðnÞ and
c2ðnÞ when the automaton chooses action ai (for i ¼ 1;2) is changed according to the following equation.

cjðnþ 1Þ ¼
cjðnÞ þ h0ijðnÞ with probability of qiðnÞ
cjðnÞ þ /0ijðnÞ with probability of 1� qiðnÞ;

�
ð28Þ
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where h0ijðnÞ and /0ijðnÞ is the amount of changes in cjðnÞ (for j ¼ 1;2) when the automaton chooses action ai (for i ¼ 1;2) at
stage n and

qiðnÞ ¼ Prob cðnÞ < C � giðnÞ½ �:

In general, h0ijðnÞ;/0ijðnÞ, and qiðnÞ (for i; j ¼ 1;2) can be functions of p1ðnÞ; c1ðnÞ; c2ðnÞ; kn; kh;l, and C, but to keep the model
both simple and tractable we assume that h0ijðnÞ, /0ijðnÞ, and qiðnÞ are fixed h0ij, /0ij, and qi. Since c1ðnÞ and c2ðnÞin (28) are in
the interval ½0;1�, the Assumption 1 will be held for h0ijðnÞ and /0ijðnÞ (for i; j ¼ 1;2). From the analysis done for algorithm I,
the following results are immediate for algorithm II.

Lemma 3. Let hijðnÞ ¼ qiðnÞh0ij and /ijðnÞ ¼ ð1� qiðnÞÞ/0ijðnÞ. When p1ðnÞ converges in the sense that E c2ðnÞ � c1ðnÞ ~p1ðnÞj½ � ! 0,
then the expected value of penalty probabilities c2ðnÞ and c1ðnÞ are equal to

E c2ðnÞ ~p1ðnÞj½ � ¼ c2ð0Þ þ n
ðh22 þ /22Þðh11 þ /11Þ � ðh21 þ /21Þðh12 þ /12Þ

ðh22 þ /22Þ � ðh21 þ /21Þ þ ðh11 þ /11Þ � ðh12 þ /12Þ
; ð29Þ

E c1ðnÞ ~p1ðnÞj½ � ¼ c1ð0Þ þ n
ðh11 þ /11Þðh22 þ /22Þ � ðh21 þ /21Þðh12 þ /12Þ

ðh22 þ /22Þ � ðh21 þ /21Þ þ ðh11 þ /11Þ � ðh12 þ /12Þ
: ð30Þ

Theorem 2. The LR�I automaton operating in the nonstationary environment as defined by Eq. (28) equalizes the expected penalty
strengths of its actions.

5. Numerical example

In order to evaluate the proposed dynamic guard channel algorithms, computer experiments are conducted. In these
experiments, we also compare the performance of the proposed algorithms (DGC I and DGC II) with the performance of
the related algorithms: the limited fractional guard channel (LFG) [1], the uniform fractional channel (UFC) [2], the guard
channel (GC) [3], and the adaptive uniform fractional channel (AUFC) [6]. Simulations are based on a single cell of a homo-
geneous cellular network system in which each cell has 8 full duplex channels ðC ¼ 8Þ. We assume that the arrival of new
calls is Poisson process with rate kn fixed at 30 calls per minute and the arrival of handoff calls is Poisson process with rate kh

varied between 2 and 20 calls per minute. We also assume that the duration of calls are exponentially distributed with mean
l ¼ 1=6 and the desired level of QoS (dropping probability of handoff calls) is less than 0.01, i.e. ph ¼ 0:01 and w for com-
puting the reinforcement signal of the dynamic guard channel I is set to wðxÞ ¼ x. The optimal number of guard channels
for guard channel and limited fractional guard algorithms are obtained by the algorithms given in [1,5] and the optimal
parameters of uniform fractional channel algorithm is obtained by algorithm given in [2]. Algorithm DGC I uses the S-model
environment while DGC II uses P-model environment. These simulations show that the learning automaton learns in P-mod-
el environments more quicker than S-model environments in the proposed algorithms. This is due to the fact that P-model
environment uses a larger steps for reward and punishment of the chosen action. Hence, the DGC II algorithm finds the opti-
mal action in the smaller number of iterations.

The results of simulations are given in Figs. 3 through 6. The dropping probability of handoff calls and the blocking prob-
ability of new calls for the above mentioned algorithms are shown in Figs. 3 and 4, respectively. These results are obtained by

Fig. 3. The dropping probability of different algorithms.
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averaging 10 runs from 2,000,000 seconds simulation of each algorithm. Fig. 3 shows that algorithm I cannot maintain the
specified level of QoS, which is set to 0.01. This is because of the way that the reinforcement signal is generated. But algo-
rithm II maintains the specified level of QoS for all handoff rates. Algorithm DGC I uses the S-model environment while DGC
II uses P-model environment. These simulations show that the learning automaton learns in P-model environments more
quicker than S-model environments in the proposed algorithms. This is due to the fact that P-model environment uses a lar-
ger steps for reward and punishment of the chosen action. Hence, the DGC II algorithm finds the optimal action in the smaller
number of iterations.

By inspecting Fig. 4, it is evident that the performance of algorithm I (II) is close to the performance of guard channel algo-
rithm in low (high) traffic. One reason for the difference in performances of the guard channel algorithm and the proposed
algorithms is due to the transient behavior of the proposed algorithm. Since, the performance parameters (the blocking prob-
ability of new calls and the dropping probability of handoff calls) in the early stages of simulation are far from their desire
value, they affect the long-time calculation of the performance parameters. However, such effect can be removed by exclud-
ing the transient behaviors of the proposed algorithm, which is shown in Figs. 5 and 6. Fig. 5 shows the evolution of the drop-
ping probability of handoff calls for the guard channel algorithm and dynamic guard channel algorithm II. Fig. 6 shows the
evolution of the blocking probability of new calls for the guard channel algorithm and dynamic guard channel algorithm II.
The traffic parameters used for these figures corresponds to case 10 in Figs. 3 and 4. By carefully inspecting these figures and
ignoring the transient behavior of the proposed algorithm, it can be concluded that the dropping probability of handoff calls
approaches its prescribed value ðphÞ, while the blocking probability of new calls is less than the corresponding performance
parameter of guard channel algorithm.

Fig. 4. The blocking probability of different algorithms.

Fig. 5. The dropping probability of handoff for guard channel and dynamic guard channel II algorithms.
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6. Conclusions

In this paper, we studied two decentralized dynamic guard channel algorithms which use learning automata to adjust the
number of guard channels. We also introduced a new model for nonstationary environments, which describes the behavior
of the proposed algorithms, and studied the steady state behavior of LR�I learning algorithm operating under the proposed
environment. It was shown that the learning automaton equalizes its penalty strengths. The first advantage of the proposed
algorithms is that they do not need traffic parameters of the network and they adapt to changing traffic parameters. The sec-
ond advantage of these algorithms is that they are decentralized and do not need any information exchange among the
neighboring cells. We also studied the behavior of the proposed algorithms through computer simulations. The simulation
results showed that the performances of the proposed algorithms were close to the performance of guard channel algorithm
that knows all the traffic parameters. The following points can be concluded from the simulation results.

1. The proposed algorithms are able to operate in networks with unknown traffic parameters.
2. The transient response of algorithms show that the proposed algorithms follow the guard channel algorithm which

knows all traffic parameters.
3. The steady state response of the algorithms shows that the proposed algorithms can maintain the dropping probability of

handover calls and the blocking probability of new calls at the specified level. Although both guard channel and dynamic
guard channel II provide almost the same dropping probabilities for handover calls, the proposed algorithm provides the
lower blocking probability of new calls.

4. The proposed algorithms do not need any information exchange among neighboring cells and are useful in environments
with unknown and incomplete information.
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