Chapter 7
Lossless Compression Algorithms

7.1 Introduction
7.2 Basics of Information Theory
7.3 Run-Length Coding
7.4 Variable-Length Coding (VLC)
7.5 Dictionary-based Coding
7.6 Arithmetic Coding
7.7 Lossless Image Compression
7.8 Further Exploration
7.1 Introduction

- **Compression**: the process of coding that will effectively reduce the total number of bits needed to represent certain information.

![Diagram of Data Compression Scheme](image)

Fig. 7.1: A General Data Compression Scheme.
Introduction (cont’d)

• If the compression and decompression processes induce no information loss, then the compression scheme is **lossless**; otherwise, it is **lossy**.

• Compression ratio:

\[
\text{compression ratio} = \frac{B_0}{B_1}
\]

(7.1)

- B_0 – number of bits before compression
- B_1 – number of bits after compression
7.2 Basics of Information Theory

- The entropy η of an information source with alphabet $S = \{s_1, s_2, \ldots, s_n\}$ is:

$$ \eta = H(S) = \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i} $$

(7.2)

$$ = - \sum_{i=1}^{n} p_i \log_2 p_i $$

(7.3)

p_i – probability that symbol s_i will occur in S.

$log_2 \frac{1}{p_i}$ – indicates the amount of information (self-information as defined by Shannon) contained in s_i, which corresponds to the number of bits needed to encode s_i.
Distribution of Gray-Level Intensities

\[p_i = 1/256 \]

\[i = 0, 1, \ldots, 255 \]

\[\log_2 256 = 8 \quad (7.4) \]

Fig. 7.2 Histograms for Two Gray-level Images.

- Fig. 7.2(a) shows the histogram of an image with \textit{uniform} distribution of gray-level intensities, i.e., \(\forall i \ p_i = 1/256 \). Hence, the entropy of this image is:

\[\log_2 256 = 8 \]
Entropy and Code Length

- As can be seen in Eq. (7.3): the entropy \(\eta \) is a weighted-sum of terms \(\log_2 \frac{1}{p_i} \); hence it represents the average amount of information contained per symbol in the source \(S \).

- The entropy \(\eta \) specifies the lower bound for the average number of bits to code each symbol in \(S \), i.e.,

\[
\eta \leq \bar{l} \quad (7.5)
\]

\(\bar{l} \) - the average length (measured in bits) of the codewords produced by the encoder.
7.3 Run-Length Coding

- **Memoryless Source**: an information source that is independently distributed. Namely, the value of the current symbol does not depend on the values of the previously appeared symbols.

- Instead of assuming memoryless source, *Run-Length Coding (RLC)* exploits memory present in the information source.

- **Rationale for RLC**: if the information source has the property that symbols tend to form continuous groups, then such symbol and the length of the group can be coded.
7.4 Variable-Length Coding (VLC)

Shannon-Fano Algorithm — a top-down approach

1. Sort the symbols according to the frequency count of their occurrences.

2. Recursively divide the symbols into two parts, each with approximately the same number of counts, until all parts contain only one symbol.

An Example: coding of “HELLO”

<table>
<thead>
<tr>
<th>Symbol</th>
<th>H</th>
<th>E</th>
<th>L</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Frequency count of the symbols in "HELLO".
Fig. 7.3: Coding Tree for HELLO by Shannon-Fano.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Count</th>
<th>$\log_2 \frac{1}{p_i}$</th>
<th>Code</th>
<th># of bits used</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2</td>
<td>1.32</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>2.32</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>2.32</td>
<td>110</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>2.32</td>
<td>111</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL number of bits:</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 7.4 Another coding tree for HELLO by Shannon-Fano.
Table 7.2: Another Result of Performing Shannon-Fano on HELLO (see Fig. 7.4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Count</th>
<th>(\log_2 \frac{1}{p_i})</th>
<th>Code</th>
<th># of bits used</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2</td>
<td>1.32</td>
<td>00</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>2.32</td>
<td>01</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>2.32</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>2.32</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL number of bits: 10
Huffman Coding

ALGORITHM 7.1 Huffman Coding Algorithm — a bottom-up approach

1. Initialization: Put all symbols on a list sorted according to their frequency counts.

2. Repeat until the list has only one symbol left:
 (1) From the list pick two symbols with the lowest frequency counts. Form a Huffman subtree that has these two symbols as child nodes and create a parent node.
 (2) Assign the sum of the children’s frequency counts to the parent and insert it into the list such that the order is maintained.
 (3) Delete the children from the list.

3. Assign a codeword for each leaf based on the path from the root.
Fig. 7.5: Coding Tree for “HELLO” using the Huffman Algorithm.
Huffman Coding (cont’d)

In Fig. 7.5, new symbols P1, P2, P3 are created to refer to the parent nodes in the Huffman coding tree. The contents in the list are illustrated below:

- After initialization: L H E O
- After iteration (a): L P1 H
- After iteration (b): L P2
- After iteration (c): P3
Properties of Huffman Coding

1. **Unique Prefix Property**: No Huffman code is a prefix of any other Huffman code - precludes any ambiguity in decoding.

2. **Optimality**: *minimum redundancy code* - proved *optimal* for a given data model (i.e., a given, accurate, probability distribution):
 - The two least frequent symbols will have the same length for their Huffman codes, differing only at the last bit.
 - Symbols that occur more frequently will have shorter Huffman codes than symbols that occur less frequently.
 - The average code length for an information source S is strictly less than $\eta + 1$. Combined with Eq. (7.5), we have:

 $$\bar{l} < \eta + 1$$ (7.6)
Extended Huffman Coding

• **Motivation:** All codewords in Huffman coding have integer bit lengths. It is wasteful when p_i is very large and hence $\log_2 \frac{1}{p_i}$ is close to 0. Why not group several symbols together and assign a single codeword to the group as a whole?

• **Extended Alphabet:** For alphabet $S = \{s_1, s_2, \ldots, s_n\}$, if k symbols are grouped together, then the extended alphabet is:

$$S^{(k)} = \{s_1s_1\ldots s_1, s_1s_1\ldots s_2, \ldots, s_1s_1\ldots s_n, s_1s_1\ldots s_2s_1, \ldots, s_n s_n \ldots s_n\}.$$

— the size of the new alphabet $S^{(k)}$ is n^k.

Extended Huffman Coding (cont’d)

• It can be proven that the average # of bits for each symbol is:

\[\eta \leq \bar{l} < \eta + \frac{1}{k} \] \hspace{1cm} (7.7)

An improvement over the original Huffman coding, but not much.

• **Problem:** If \(k \) is relatively large (e.g., \(k \geq 3 \)), then for most practical applications where \(n \gg 1 \), \(n^k \) implies a huge symbol table — impractical.
Adaptive Huffman Coding

- **Adaptive Huffman Coding**: statistics are gathered and updated dynamically as the data stream arrives.

```
ENCODER
------
Initial_code();
while not EOF
{
    get(c);
    encode(c);
    update_tree(c);
}

DECODER
------
Initial_code();
while not EOF
{
    decode(c);
    output(c);
    update_tree(c);
}
```
Adaptive Huffman Coding (Cont’d)

- *Initial_code* assigns symbols with some initially agreed upon codes, without any prior knowledge of the frequency counts.

- *update_tree* constructs an Adaptive Huffman tree.

 It basically does two things:

 (a) increments the frequency counts for the symbols (including any new ones).

 (b) updates the configuration of the tree.

- The *encoder* and *decoder* must use exactly the same *initial_code* and *update_tree* routines.
Notes on Adaptive Huffman Tree Updating

- Nodes are numbered in order from left to right, bottom to top. The numbers in parentheses indicates the count.

- The tree must always maintain its sibling property, i.e., all nodes (internal and leaf) are arranged in the order of increasing counts.

 If the sibling property is about to be violated, a swap procedure is invoked to update the tree by rearranging the nodes.

- When a swap is necessary, the farthest node with count N is swapped with the node whose count has just been increased to $N + 1$.

Fig. 7.6: Node Swapping for Updating an Adaptive Huffman Tree

(a) A Huffman tree

(b) Receiving 2nd 'A' triggered a swap

(c−1) A swap is needed after receiving 3rd 'A'

(c−2) Another swap is needed

(c−3) The Huffman tree after receiving 3rd 'A'
Another Example: Adaptive Huffman Coding

- This is to clearly illustrate more implementation details. We show exactly what bits are sent, as opposed to simply stating how the tree is updated.

- An additional rule: if any character/symbol is to be sent the first time, it must be preceded by a special symbol, \texttt{NEW}. The initial code for NEW is 0. The \textit{count} for NEW is always kept as 0 (the count is never increased); hence it is always denoted as \texttt{NEW:(0)} in Fig. 7.7.
Table 7.3: Initial code assignment for AADCCDD using adaptive Huffman coding.

<table>
<thead>
<tr>
<th>Initial Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW: 0</td>
</tr>
<tr>
<td>A: 00001</td>
</tr>
<tr>
<td>B: 00010</td>
</tr>
<tr>
<td>C: 00011</td>
</tr>
<tr>
<td>D: 00100</td>
</tr>
<tr>
<td>. .</td>
</tr>
<tr>
<td>. .</td>
</tr>
<tr>
<td>. .</td>
</tr>
</tbody>
</table>
Fig. 7.7 Adaptive Huffman tree for AADCCDD.
Fig. 7.7 (cont’d) Adaptive Huffman tree for AADCCD.
Table 7.4 Sequence of symbols and codes sent to the decoder

<table>
<thead>
<tr>
<th>Symbol</th>
<th>NEW</th>
<th>A</th>
<th>A</th>
<th>NEW</th>
<th>D</th>
<th>NEW</th>
<th>C</th>
<th>C</th>
<th>D</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>0</td>
<td>0001</td>
<td>1</td>
<td>0</td>
<td>0010</td>
<td>00</td>
<td>001</td>
<td>001</td>
<td>101</td>
<td>101</td>
</tr>
</tbody>
</table>

- It is important to emphasize that the code for a particular symbol changes during the adaptive Huffman coding process.

 For example, after AADCCDD, when the character D overtakes A as the most frequent symbol, its code changes from 101 to 0.

- The “Squeeze Page” on this book’s web site provides a Java applet for adaptive Huffman coding.
7.5 Dictionary-based Coding

- LZW uses fixed-length codewords to represent variable-length strings of symbols/characters that commonly occur together, e.g., words in English text.

- the LZW encoder and decoder build up the same dictionary dynamically while receiving the data.

- LZW places longer and longer repeated entries into a dictionary, and then emits the code for an element, rather than the string itself, if the element has already been placed in the dictionary.
ALGORITHM 7.2 LZW Compression

BEGIN
 s = next input character;
 while not EOF
 { c = next input character;

 if s + c exists in the dictionary
 s = s + c;
 else
 { output the code for s;
 add string s + c to the dictionary with a new code;
 s = c;
 }
 }

output the code for s;

END
Example 7.2 LZW compression for string “ABABBABABCABABBA”

• Let’s start with a very simple dictionary (also referred to as a “string table”), initially containing only 3 characters, with codes as follows:

<table>
<thead>
<tr>
<th>code</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

• Now if the input string is “ABABBABABCABABBA”, the LZW compression algorithm works as follows:
<table>
<thead>
<tr>
<th>s</th>
<th>c</th>
<th>output</th>
<th>code</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>A</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>B</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>4</td>
<td>6</td>
<td>ABB</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>5</td>
<td>7</td>
<td>BAB</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>6</td>
<td>9</td>
<td>CA</td>
</tr>
<tr>
<td>AB</td>
<td>A</td>
<td>10</td>
<td></td>
<td>ABA</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABB</td>
<td>A</td>
<td>6</td>
<td>11</td>
<td>ABBA</td>
</tr>
<tr>
<td>A</td>
<td>EOF</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The output codes are: 1 2 4 5 2 3 4 6 1. Instead of sending 14 characters, only 9 codes need to be sent (compression ratio = 14/9 = 1.56).
ALGORITHM 7.3 LZW Decompression (simple version)

BEGIN
 s = NIL;
 while not EOF
 {
 k = next input code;
 entry = dictionary entry for k;
 output entry;
 if (s != NIL)
 add string s + entry[0] to dictionary with a new code;
 s = entry;
 }

END

Example 7.3: LZW decompression for string “ABABBABABCABABBA”.

Input codes to the decoder are 1 2 4 5 2 3 4 6 1.

The initial string table is identical to what is used by the encoder.
The LZW decompression algorithm then works as follows:

<table>
<thead>
<tr>
<th>s</th>
<th>k</th>
<th>entry/output</th>
<th>code</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIL</td>
<td>1</td>
<td>A</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>AB</td>
<td>4</td>
<td>AB</td>
</tr>
<tr>
<td>AB</td>
<td>5</td>
<td>BA</td>
<td>5</td>
<td>BA</td>
</tr>
<tr>
<td>BA</td>
<td>2</td>
<td>B</td>
<td>6</td>
<td>ABB</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>C</td>
<td>7</td>
<td>BAB</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>AB</td>
<td>8</td>
<td>BC</td>
</tr>
<tr>
<td>AB</td>
<td>6</td>
<td>ABB</td>
<td>9</td>
<td>CA</td>
</tr>
<tr>
<td>ABB</td>
<td>1</td>
<td>A</td>
<td>10</td>
<td>ABA</td>
</tr>
<tr>
<td>A</td>
<td>EOF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apparently, the output string is “ABABBABABCABABBA”, a truly lossless result!
ALGORITHM 7.4 LZW Decompression (modified)

BEGIN

 s = NIL;
 while not EOF
 { k = next input code;
 entry = dictionary entry for k;

 /* exception handler */
 if (entry == NULL)
 entry = s + s[0];

 output entry;
 if (s != NIL)
 add string s + entry[0] to dictionary with a new code;
 s = entry;
 }

 END
LZW Coding (cont’d)

- In real applications, the code length l is kept in the range of $[l_0, l_{max}]$. The dictionary initially has a size of 2^{l_0}. When it is filled up, the code length will be increased by 1; this is allowed to repeat until $l = l_{max}$.

- When l_{max} is reached and the dictionary is filled up, it needs to be flushed (as in Unix `compress`, or to have the LRU (least recently used) entries removed.)
7.6 Arithmetic Coding

- Arithmetic coding is a more modern coding method that usually out-performs Huffman coding.

- Huffman coding assigns each symbol a codeword which has an integral bit length. Arithmetic coding can treat the whole message as one unit.

- A message is represented by a half-open interval $[a, b)$ where a and b are real numbers between 0 and 1. Initially, the interval is $[0, 1)$. When the message becomes longer, the length of the interval shortens and the number of bits needed to represent the interval increases.
ALGORITHM 7.5 Arithmetic Coding Encoder

BEGIN

low = 0.0; high = 1.0; range = 1.0;

while (symbol != terminator)
{
 get (symbol);
 low = low + range * Range_low(symbol);
 high = low + range * Range_high(symbol);
 range = high - low;
}

output a code so that low <= code < high;

END
Example: Encoding in Arithmetic Coding

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.2</td>
<td>[0, 0.2)</td>
</tr>
<tr>
<td>B</td>
<td>0.1</td>
<td>[0.2, 0.3)</td>
</tr>
<tr>
<td>C</td>
<td>0.2</td>
<td>[0.3, 0.5)</td>
</tr>
<tr>
<td>D</td>
<td>0.05</td>
<td>[0.5, 0.55)</td>
</tr>
<tr>
<td>E</td>
<td>0.3</td>
<td>[0.55, 0.85)</td>
</tr>
<tr>
<td>F</td>
<td>0.05</td>
<td>[0.85, 0.9)</td>
</tr>
<tr>
<td>$</td>
<td>0.1</td>
<td>[0.9, 1.0)</td>
</tr>
</tbody>
</table>

(a) Probability distribution of symbols.

Fig. 7.8: Arithmetic Coding: Encode Symbols “CAEE$”
Fig. 7.8(b) Graphical display of shrinking ranges.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>low</th>
<th>high</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>A</td>
<td>0.30</td>
<td>0.34</td>
<td>0.04</td>
</tr>
<tr>
<td>E</td>
<td>0.322</td>
<td>0.334</td>
<td>0.012</td>
</tr>
<tr>
<td>E</td>
<td>0.3286</td>
<td>0.3322</td>
<td>0.0036</td>
</tr>
<tr>
<td>$</td>
<td>0.33184</td>
<td>0.33220</td>
<td>0.00036</td>
</tr>
</tbody>
</table>

(c) New low, high, and range generated.

Fig. 7.8 (cont’d): Arithmetic Coding: Encode Symbols “CAEE$”
PROCEDURE 7.2 Generating Codeword for Encoder

BEGIN
 code = 0;
 k = 1;
 while (value(code) < low)
 {
 assign 1 to the kth binary fraction bit
 if (value(code) > high)
 replace the kth bit by 0

 k = k + 1;
 }

END

• The final step in Arithmetic encoding calls for the generation of a number that falls within the range \([low, high]\). The above algorithm will ensure that the shortest binary codeword is found.
ALGORITHM 7.6 Arithmetic Coding Decoder

BEGIN

 get binary code and convert to
decimal value = value(code);

 Do

 { find a symbol s so that
 Range_low(s) <= value < Range_high(s);

 output s;

 low = Rang_low(s);
 high = Range_high(s);
 range = high - low;
 value = [value - low] / range;
 }

 Until symbol s is a terminator

END
Table 7.5 Arithmetic coding: decode symbols “CAEE$”

<table>
<thead>
<tr>
<th>value</th>
<th>Output Symbol</th>
<th>low</th>
<th>high</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33203125</td>
<td>C</td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>0.16015625</td>
<td>A</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.80078125</td>
<td>E</td>
<td>0.55</td>
<td>0.85</td>
<td>0.3</td>
</tr>
<tr>
<td>0.8359375</td>
<td>E</td>
<td>0.55</td>
<td>0.85</td>
<td>0.3</td>
</tr>
<tr>
<td>0.953125</td>
<td>$</td>
<td>0.9</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
7.7 Lossless Image Compression

- **Approaches of Differential Coding of Images:**
 - Given an original image $I(x, y)$, using a simple difference operator we can define a difference image $d(x, y)$ as follows:
 \[
 d(x, y) = I(x, y) - I(x - 1, y)
 \]
 (7.9)

 or use the discrete version of the 2-D Laplacian operator to define a difference image $d(x, y)$ as
 \[
 d(x, y) = 4I(x, y) - I(x, y - 1) - I(x, y + 1) - I(x + 1, y) - I(x - 1, y)
 \]
 (7.10)

- Due to *spatial redundancy* existed in normal images I, the difference image d will have a narrower histogram and hence a smaller entropy, as shown in Fig. 7.9.
Fig. 7.9: Distributions for Original versus Derivative Images. (a,b): Original gray-level image and its partial derivative image; (c,d): Histograms for original and derivative images.

(This figure uses a commonly employed image called “Barb”.)
Lossless JPEG

- **Lossless JPEG**: A special case of the JPEG image compression.

- **The Predictive method**
 1. **Forming a differential prediction**: A predictor combines the values of up to three neighboring pixels as the predicted value for the current pixel, indicated by ‘X’ in Fig. 7.10. The predictor can use any one of the seven schemes listed in Table 7.6.

 2. **Encoding**: The encoder compares the prediction with the actual pixel value at the position ‘X’ and encodes the difference using one of the lossless compression techniques we have discussed, e.g., the Huffman coding scheme.
Fig. 7.10: Neighboring Pixels for Predictors in Lossless JPEG.

- **Note:** Any of A, B, or C has already been decoded before it is used in the predictor, on the decoder side of an encode-decode cycle.
Table 7.6: Predictors for Lossless JPEG

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>A</td>
</tr>
<tr>
<td>P2</td>
<td>B</td>
</tr>
<tr>
<td>P3</td>
<td>C</td>
</tr>
<tr>
<td>P4</td>
<td>A + B - C</td>
</tr>
<tr>
<td>P5</td>
<td>A + (B - C) / 2</td>
</tr>
<tr>
<td>P6</td>
<td>B + (A - C) / 2</td>
</tr>
<tr>
<td>P7</td>
<td>(A + B) / 2</td>
</tr>
</tbody>
</table>
Table 7.7: Comparison with other lossless compression programs

<table>
<thead>
<tr>
<th>Compression Program</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lena</td>
</tr>
<tr>
<td>Lossless JPEG</td>
<td>1.45</td>
</tr>
<tr>
<td>Optimal lossless JPEG</td>
<td>1.49</td>
</tr>
<tr>
<td>compress (LZW)</td>
<td>0.86</td>
</tr>
<tr>
<td>gzip (LZ77)</td>
<td>1.08</td>
</tr>
<tr>
<td>gzip -9 (optimal LZ77)</td>
<td>1.08</td>
</tr>
<tr>
<td>pack (Huffman coding)</td>
<td>1.02</td>
</tr>
</tbody>
</table>
7.8 Further Exploration

- **Text books:**
 - *The Data Compression Book* by M. Nelson
 - *Introduction to Data Compression* by K. Sayood

- **Web sites:**
 - Link to Further Exploration for Chapter 7.
 - An excellent resource for data compression compiled by Mark Nelson.
 - The Theory of Data Compression webpage.
 - The FAQ for the comp.compression and comp.compression.research groups.
 - A set of applets for lossless compression.
 - A good introduction to Arithmetic coding
 - Grayscale test images f-18.bmp, flowers.bmp, football.bmp, lena.bmp